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Abstract—In this paper, a Synthetic Aperture Radar (SAR)
image despeckling technique, based on lapped orthogonal trans-
form (LOT) domain dual local Wiener filtering framework, is
proposed. A logarithmic transformation is employed to convert
the speckle contribution into additive noise. It is demonstrated
that the local distribution of dyadic rearranged LOT coefficients
of logarithmically transformed SAR images are well approxi-
mated using Gaussian distribution. The proposed LT domain
structure employs two local Wiener filtering procedures to de-
speckle the SAR images. The signal variance is estimated using
elliptic directional windows for different oriented subbands. The
motivation of using lapped transform (LT) is that they are
robust to oversmoothing and preserve better oscillatory image
components like textures. Experiments on real SAR images,
show that the proposed method reduces speckle noise effectively
while preserving textures and outperforms well known iterative
probabilistic patch-based (PPB) filter and a recent directionlet
based method, with much less computational complexity.

Index Terms—Lapped orthogonal transform, Speckle re-
duction, Synthetic aperture radar images, Dual local Wiener
filtering, Elliptic directional window.

I. INTRODUCTION

SAR images provide important information in many
applications like surface surveillance, mine detection,

automatic target recognition, search and rescue etc. The
main problem in SAR imagery is that textures are usually
corrupted by multiplicative speckle noise which is due to the
coherent radiation in the process of imaging. The texture in
the images usually contains very important information about
the scene. The presence of speckle badly affects the human
interpretation and further analysis. Thus, the despeckling of
SAR images while preserving textural information is highly
important.

A number of spatial domain methods have been pro-
posed in the literature. The earlier spatial filters like Lee
[1], Frost [2], Kuan [3] and Gamma MAP filter[4] work
directly on intensity image and exploits the local statistics.
These spatial filters often reduce the speckle at the cost of
oversmoothing the details of the image. The SRAD (speckle
reducing anisotropic diffusion) filter [5] is very effective
in terms of speckle noise reduction and detail preservation
compared to earlier spatial domain methods. In the well
known probabilistic patch based (PPB) algorithm [6], the
authors proposed a weighted maximum likelihood denoising
method with probabilistic patch-based weights. The weights
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are iteratively refined based on the similarity between the
noisy patches and the similarity of patches obtained from the
previous estimate. The PPB algorithm have shown excellent
despeckling results in the literature but its computational
complexity is very high. The iterative version of PPB filter
generally shows better despeckling performance only in low
signal to noise ratio images.

In last one and half decades, the discrete wavelet trans-
forms (DWT) have been universally recognized as extremely
strong tool in image processing [7], [8], [9], [10], [11],
[12], [13], [14] and have been used with good success in
reducing speckle noise from SAR images[15], [16], [17].
The DWT based speckle reduction techniques overcome the
problem of earlier spatial domain techniques[15], [18], [16],
[19], [17] and are implemented in homomorphic and non-
homomorphic frameworks. In the popular homomorphic [20]
based approach, the logarithm operator is applied on the
noisy image to convert the multiplicative noise into additive
one. In [21] Solbo et al., in non-homomorphic framework,
proposed a wavelet domain Γ-WMAP (wavelet maximum a
posteriori) filter. This filter exhibits high amount of blurring
and oversmooth textures present in the images. Solbo et al. in
[19] introduced an improved wavelet domain homomorphic
Γ-WMAP filter. The authors proposed to use the normal
inverse Gaussian (NIG) distribution as a statistical model for
the wavelet coefficients of both the reflectance image and the
noisy image. A MAP estimator using the symmetric α-stable
pdf was employed for the estimation of noise free wavelet
coefficients [16]. It was shown that the wavelet coefficients of
log transformed SAR images can be well modeled using α-
stable distribution. Bhuiyan et al. [17] modeled the wavelet
coefficients of log transformed SAR images using Cauchy
pdf. A Bayesian minimum mean absolute error estimator and
MAP estimator were employed using this prior to reduce the
speckle from SAR images. In [22], a MAP estimator using
2D GARCH prior is used to estimate the noise free wavelet
coefficients. The authors show that the wavelet coefficients
of log transformed SAR images are best modeled using 2D
GARCH model.

A number of non-homomorphic wavelet domain methods
for speckle noise reduction also exist in literature. A low
complexity mean based smoothing operation was employed
in stationary wavelet transform (SWT) domain to despeckle
the SAR images. The authors in [23] proposed a denoising
method in undecimated wavelet domain using MAP esti-
mator and assumed the pdf of each wavelet coefficient as
Generalized Gaussian. The parameters of the Generalized
Gaussian pdf are taken to be space varying within each
wavelet frame. Argenti et al. in [24], show that the MAP
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Fig. 1. Rearrangement of block LOT (M=8) coefficients into 3 level wavelet like structure (a) Original aerial image (b) LOT block decomposition (M=8)
(c) 3 level wavelet like structure (octave-like representation)

estimator in undecimated wavelet domain with coefficients
modeled as Laplacian with Gaussian noise shows comparable
despeckling results with the performance of MAP estimator
in the same domain with the coefficients modeled as Gen-
eralized Gaussian, with computational complexity less than
ten times. Parrilli et al. [25] introduced an improved form
of BM3D method where several steps of original BM3D
structure were modified to take care of SAR class of images.

The orthogonal DWT’s are not very good in capturing the
2D singularities found in the images[26], [27], [28], [29].
To overcome this problem, various computationally complex
transforms like directionlet, contourlet, bandelet, curvelet
etc. have been proposed in the literature [26], [27], [28].
Recently, a few approaches on LT based image denoising
have been proposed [30], [31], [32], [29]. The motivation for
image denoising in LT domain is that LTs have good energy
compaction and are robust to oversmoothing. The LTs are
orthogonal transforms, hence signal and noise statistics can
be modeled precisely in the LT domain. Since the LTs are
block transforms, the LT coefficients are first rearranged in
a wavelet like structure (octave like representation), then the
subband statistics of the rearranged LT coefficients are mod-
eled in a way similar to wavelet coefficients [30], [33], [29].
It has been shown that LT domain image denoising methods
are very good in preserving oscillatory components present in
the images like textures and shows competitive performance
compared to wavelet domain techniques. The authors in [34],
observed that the LOT based despeckling approaches are well
capable in reducing the speckle noise from homogeneous
regions and also preserves more textures. The LT has been
proposed to overcome the annoying blocking artifact problem
of DCT with increased coding gain and have extended basis
functions which overlap across the block boundaries. The
LTs are based on discrete cosine transform (DCT) for which
fast implementation algorithms are available. The LOT can
be efficiently computed using the flowgraphs discussed in
Ref. [35]. Malvar [36] also demonstrated that the LOT has
much lower computational complexity as compared to the
fastest possible implementation of the “9/7” DWT via lifting.

Among the various approaches in wavelet based image
denoising schemes, one popular class of approach is to use
the linear minimum mean square error estimator(LMMSE)
[37], [38], [39], [40], [41], [42], [43] to restore the noisy
wavelet image coefficients. These methods assume the local
distribution of the wavelet coefficients to be Gaussian with
spatially varying variance. These methods are popular due

to their good denoising performance and low computational
complexity. In this paper, we introduce a dual local Wiener
filtering framework in LOT domain to reduce speckle noise
from SAR images assuming the local distribution of the log
transformed LOT coefficients to be Gaussian with spatially
varying variance.

This paper is organized as follows. In Section II, an
introduction on LOT and statistical modeling of SAR image
is presented. The proposed LT based despeckling framework
is explained in Section III. In Section IV, the performance of
proposed technique is evaluated and is compared with several
SAR image despeckling methods. Finally, in Section V we
give some conclusions.

II. LAPPED ORTHOGONAL TRANSFORM (LOT) AND
STATISTICAL MODELING OF SAR IMAGE

A. LOT

The lapped orthogonal transform (LOT) [35], [44] is a
block transform and was introduced as an alternative to 2D
DCT with significantly reduced blocking artifacts. The basis
functions of LOT are larger than the block size and decay
smoothly to zero at the block boundaries which leads to
highly reduced blocking artifacts. The LOT bases have length
of 2M for a block of M sample.The feasible LOT matrix
P which may not be necessarily optimal is computed from
[44]

P =
1

2

(
De −Do De −Do

J(De −Do) −J(De −Do)

)
(1)

where De and Do are the MxM/2 matrices containing the
even and odd DCT functions respectively. The matrix J is
the counter identity matrix

J =


0 0 .... 0 1
0 0 .... 1 0
. . .
. . .
0 1 .... 0 0
1 0 ... 0 0

 (2)

The optimal LOT matrix is computed by [35]

P0 = PZ (3)

where Z is an orthogonal matrix. An optimal Z is required
to obtain an optimal LOT matrix. The covariance matrix is
given by [35]

R0 = Z ′P ′RxxPZ (4)
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With P and Rxx fixed, the transform coding gain is maxi-
mized when R0 is diagonal which signifies that the columns
of Z are the eigen vectors of P ′RxxP . With such matrix Z,
the optimal LOT matrix P0 can be computed.

Xiong et al. in [45] introduced an octave-like represen-
tation for 8x8 block DCT coefficients and show that the
8x8 DCT coefficients can be rearranged into a single three
level wavelet like structure. Malvar proposed a similar dyadic
rearrangement for LT coefficients in [36] i.e. block LT
coefficients can be rearranged into a wavelet-like structure of
Jw = log2M decomposition levels. Fig. 1(b) shows block
LOT decomposition (M=8) of a noiseless aerial image (Fig.
1(a)). Fig. 1(c) shows the rearrangement of LOT coefficients
into 3-level wavelet like structure.

B. Speckle noise statistics

The model of SAR image has the following form (assum-
ing the speckle to be fully developed)[46]

ZSAR(i, j) = YSAR(i, j)ηSAR(i, j) (5)

where YSAR(i, j) is a clean image, ZSAR(i, j) is the noisy
observation of YSAR(i, j). The ηSAR(i, j) is the multi-
plicative noise component. The speckle considered here
is a complex process with Gaussian distributed real and
imaginary parts. The intensity of the resulting complex field
is exponentially distributed and the amplitude is Rayleigh
distributed [47]. In case of a L-look processing, the averaging
of L independent observations is performed. The ηSAR is
then modeled using a Γ(L,L) distribution

P (ηSAR) =
LLηL−1

SARe
−ηSARL

Γ(L)
(6)

The logarithmic function is applied on both sides of (5) to
convert the multiplicative noise model to an additive one.

logZSAR(i, j) = log YSAR(i, j) + log ηSAR(i, j) (7)

(7) can be expressed as

Z(i, j) = Y (i, j) +N(i, j) (8)

where Z(i, j),Y (i, j) and N(i, j) are the logarithms of
ZSAR(i, j),YSAR(i, j) and ηSAR(i, j) respectively. The dis-
tribution of log transformed speckle can be well approxi-
mated by Gaussian distribution [17], therefore we assume
log-transformed speckle noise to be additive white Gaussian
noise with standard deviation σn.

C. Statistical Modeling of log transformed SAR image LOT
coefficients

After applying the LOT on (8) and rearranging the block
LOT coefficients into J level wavelet like structure (octave-
like representation), we have

zpq (i, j) = ypq (i, j) + npq(i, j) (9)

where zpq (i, j), ypq (i, j) and npq(i, j) represent the (i, j)th

LOT coefficient, at orientation p with level q of the log
transformed SAR image, the corresponding log transformed
reflectance and the corresponding speckle component respec-
tively. It is to be noted that due to orthogonality of the LOT,
n is also independent identically distributed white Gaussian
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Fig. 2. (a) Histogram of one of the finest subbands of ‘chinalake’ SAR
image (approximately noise free) (b) Solid line: Histogram of the same set
of coefficients scaled by estimated local standard deviations, Dashed dotted
line: Unit variance, zero mean Gaussian probability density function (Image
Courtesy of Sandia National Laboratories, Airborne ISR)
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Fig. 3. (a) Histogram of one of the finest subbands of ‘maricopa’ SAR
image (approximately noise free) (b) Solid line: Histogram of the same set
of coefficients scaled by estimated local standard deviations, Dashed dotted
line: Unit variance, zero mean Gaussian probability density function (Image
Courtesy of Sandia National Laboratories, Airborne ISR)

with zero mean and standard deviation of σn. The mean value
of the log-transformed speckle noise is biased and therefore
requires a correction to adjust the bias so that the radiometric
distortion can be avoided [48]. Hazarika et al. [34] study the
global statistics of dyadic rearranged LOT coefficients of log
transformed SAR images and show that the global statistics
of subband coefficients is highly non Gaussian.

In this paper, we model the local distribution of the dyadic
rearranged LOT coefficients of log transformed SAR image,
to be independent and identically distributed Gaussian with
zero mean and spatially varying variance. In order to justify
the assumption of local distribution of the log transformed
LOT coefficients to be Gaussian for SAR class of images,
in Table I we determine the average skewness and kurtosis
values for different subbands of dyadic rearranged LOT
coefficients for three log transformed SAR (approximately
clean) images, using 3x3, 5x5 and 7x7 square shaped neigh-
borhoods (for the sake of simplicity). In Table I, for every
neighborhood, the first and second rows show the corre-
sponding average kurtosis and skewness values respectively.
Since, all real SAR images are inherently contaminated by
speckle noise, the real SAR images are first filtered using
the well known PPB filter [6] and then the filtered images
are treated as reasonable approximation of speckle free radar
reflectivity. For a Gaussian distribution, the skewness value
(which indicates about the symmetry of the distribution) is 0
and the kurtosis value (which indicates about the peakedness)
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TABLE I
AVERAGE SKEWNESS AND KURTOSIS VALUES FOR DIFFERENT SUBBANDS OF DYADIC REARRANGED LOT COEFFICIENTS (M=8) FOR THREE LOG

TRANSFORMED SAR (APPROXIMATELY CLEAN) IMAGES.(IMAGE COURTESY OF SANDIA NATIONAL LABORATORIES, AIRBORNE ISR)
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’ 3x
3 2.659 2.758 2.550 2.532 2.601 2.546 2.622 2.628 2.603

0.014 0.009 -0.001 -0.105 -0.105 0.031 0.011 0.063 -0.029
5x

5 3.867 4.177 3.553 3.306 3.584 3.358 3.862 3.947 3.553
0.027 0.009 0.003 -0.144 -0.169 0.059 0.031 0.134 -0.056

7x
7 4.672 5.194 4.313 3.811 4.318 3.864 4.547 4.877 4.109

0.038 0.005 0.005 -0.173 -0.204 0.067 0.013 0.213 -0.052

‘m
ar
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op

a’ 3x
3 2.545 2.559 2.515 2.667 2.668 2.579 2.654 2.642 2.808

0.011 0.005 0.013 -0.066 -0.078 -0.005 0.010 -0.069 0.022

5x
5 3.456 3.535 3.453 3.901 3.861 3.603 4.319 4.279 4.239

0.020 -0.006 0.021 -0.096 -0.117 0.007 0.052 -0.057 0.028

7x
7 4.056 4.223 4.143 4.969 4.958 4.337 5.935 5.778 5.239

0.021 -0.016 0.024 -0.1177 -0.136 0.034 0.0716 -0.012 0.054

‘p
ip

er
iv

er
’ 3x

3 2.723 2.744 2.606 2.644 2.656 2.668 2.855 2.888 2.889
0.031 0.019 0.001 -0.114 -0.119 -0.022 0.046 0.069 -0.017

5x
5 4.085 4.151 3.859 3.795 3.787 3.947 4.896 4.786 4.719

0.052 0.041 0.006 -0.126 -0.144 -0.042 0.164 0.109 -0.072

7x
7 5.132 5.244 4.926 4.828 4.759 5.004 7.171 6.505 6.384

0.048 0.040 0.003 -0.114 -0.166 -0.059 0.336 0.089 -0.059

is 3. It can be observed from Table I that the skewness and
kurtosis values are well close to zero and three respectively
in most of the subbands. Therefore, Gaussian distribution
is well able to model the local distribution of the dyadic
rearranged LOT coefficients of log transformed SAR images.
It is to be noted that the local Wiener filter provides optimal
performance when both the signal and noise are Gaussian
distributed[49]. Fig. 2(a) and Fig. 3(a) shows the histogram
of one of the finest subband of ‘chinalake’ and ‘maricopa’
SAR images (approximately noise free) respectively. Fig.
2(b) and Fig. 3(b) shows the same coefficients when normal-
ized by their estimated standard deviations respectively. It is
observed that the normalized histogram is well approximated
by a zero mean, unit variance Gaussian probability density
function.

III. LOT BASED DUAL LOCAL WIENER FILTERING
STRUCTURE FOR SAR IMAGE DESPECKLING

The local Wiener filtering in LOT domain can be per-
formed in two major steps:

First the signal variance estimation for each coefficient
in the LOT domain is carried out using the observed noisy
coefficients in a local neighborhood. When the size of
the region used for signal variance estimation is large and
if the coefficients are locally independent and identically
distributed, then the signal variance estimation is likely to
be more reliable. But the locally independent and identically
distributed assumption seems to be unreliable if we go on
increasing the size of the neighborhood, which indicates
that the reliable signal variance estimation can be achieved
by choosing appropriate neighborhood region. Various tech-
niques based on locally varying windows have been reported
in the literature. In [50], the authors proposed the concept of
adaptive window based variance estimation using the boot-
strap technique. A square shaped window using region ex-
pansion was discussed in [51]. Eom and Kim [40] introduced
a nearly arbitrarily shaped window to obtain more accurate

local variance. Shui in [41] proposed elliptic directional
windows, for different oriented subbands, for more reliable
signal variance estimation. The elliptic directional window
provides better estimates within and around energy clusters
which helps in better preservation of edges and textures in
the images[41].

We estimate the signal variances in each oriented subband
using elliptic directional windows. The elliptic directional
windows produces better variance estimates than simple
square shaped windows [41]. For each noisy LOT coefficient,
the signal variance is estimated by:

σ̂2
y(m,n) = max

(
0, 1

WLD

∑
(i,j)

z2(m+ i, n+ j)− σ2
n

)
(10)

An elliptic directional window is expressed as [41]

WLD(si, sh) =
{

(u, v) ∈ D2 : u2 + s4
hv

2 ≤ s2
hs

2
i

}
(11)

where the parameters si and sh are positive real numbers.
The parameter si denotes the size of the window and sh
determines its shape. As the three oriented subbands usually
show different directional features, we use a longer elliptic
window WLD(si, sh)(sh > 1) in horizontal subbands and a
higher elliptic window WLD(si, 1/sh)(sh > 1) in vertical
subbands. A cross shaped window made of two oblique
ellipses are employed in diagonal subbands because the
energy clusters in this band are distributed approximately
in the diagonal and antidiagonal directions. A cross shaped
window is expressed as [41]:

WLDd
(si, sh) =

{
(u, v) : min

{
s4
hp

2
w + q2

w, s
4
hq

2
w + p2

w

}
≤ s2

hs
2
i

}
(12)

where (pw, qw) = (u− v, u+ v) and sh > 1. Fig. 4(a), 4(b)
and 4(c) shows example of directional windows WLD(3, 2),
WLD(3, 1/2) and WLDd

(3, 2) respectively and Fig. 5(a),
5(b) and 5(c) shows windows WLD(6, 2), WLD(6, 1/2) and
WLDd

(6, 2) respectively.
The selection of shape and size of the elliptic directional

window is very important in the proposed framework. Since
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Fig. 4. Elliptic directional windows with si=3 and sh=2 (a) Horizontal window (b) Vertical window and (c) Diagonal window
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Fig. 5. Elliptic directional windows with si=6 and sh=2 (a) Horizontal window (b) Vertical window and (c) Diagonal window

from the finest scale to coarsest scale the energy clusters
reduces in size, the window sizes should also be reduced
slowly from finest scale to the coarsest scale. The large
window sizes should be used in high noise conditions and
relatively smaller sized windows should be used in low noise
cases[41]. The noise standard deviation is obtained from the
noisy LOT coefficients in the first scale using [52]:

σ̂n = Ks
Median (|z(i, j)|)

0.6745
, z(i, j) ∈ HH1 (13)

where Ks is a smoothing factor.
The second important step is the estimation of signal LOT

coefficients using LMMSE estimator which is expressed as
[38], [41]:

ŷ(m,n) =
σ̂2
y(m,n)

σ̂2
y(m,n) + σ̂2

n(m,n)
z(m,n) (14)

where z(m,n) is the LOT coefficient of log-transformed
SAR image.

The various steps involved in despeckling an SAR image
using single LOT domain local Wiener filtering procedure
are summarized as follows:

1) Apply the logarithm transformation on the SAR image
2) Perform block LOT operation on the log transformed

SAR image
3) Arrange block LOT coefficients into octave-like form
4) Estimate signal variance using (10)
5) Estimate signal LOT coefficients using (14)
6) Rearrange LOT coefficients into block decomposition

form
7) Perform inverse LOT operation on the coefficients

obtained in step 6
8) The mean of log transformed noise is subtracted from

the output obtained in step 7 [48], [43]

TABLE II
PSNR PERFORMANCE FOR DIFFERENT COMBINATIONS OF M USED IN
LOCAL WIENER FILTER-1 PROCEDURE AND LOCAL WIENER FILTER-2
PROCEDURE FOR AN ARTIFICIALLY SPECKLED (L=4) ‘AERIAL’ IMAGE

CORRESPONDING TO DLWF-LOT ALGORITHM

LOT-1 LOT-2 PSNR
M=4 M=8 22.42
M=8 M=8 22.14
M=16 M=8 22.32
M=4 M=16 22.58
M=8 M=16 22.46
M=16 M=16 22.27

9) Perform exponential operation on the values obtained
in step 8

It has been shown in literature that the performance of
single point Wiener filtering can be improved further by
using empirical Wiener filtering which employs pilot signal
[38], [41]. In this paper, we introduce a LOT domain dual
local Wiener filtering structure (in homomorphic framework)
to despeckle SAR images. Fig.6 shows the block diagram of
proposed LOT domain framework. The framework uses two
local Wiener filtering procedures where the first local Wiener
filtering is performed in LOT-1 domain and uses (14) to
produce an approximately clean version of the image which
is used as a pilot image in the second local Wiener filtering
procedure. The second LOT domain local Wiener filtering
procedure makes use of the following equation to restore the
noisy LOT coefficients:

ŷ2(m,n) =
σ̂2
yp(m,n)

σ̂2
yp(m,n) + σ̂2

n(m,n)
zLOT−2(m,n) (15)

where zLOT−2(m,n) is the coefficient of actual log-
transformed SAR image in LOT-2 domain and σ2

yp(m,n) is
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Fig. 6. Block diagram of the proposed despeckling framework

the signal variance estimated from the pilot image in LOT-2
domain.

In [37], [41], [42], the authors demonstrated that the de-
noising performance can be improved further if two different
wavelet bases are used in the empirical Wiener filtering
structure. Since the application of LOT(M=4), LOT(M=8)
and LOT(M=16) show quite different objective and subjec-
tive output results, we study the effect of employing five
different combinations of M in first local Wiener filtering
procedure and second local Wiener filtering procedure, on
the despeckling performance (in terms of PSNR) of DLWF-
LOT framework, for an artificially speckled ‘aerial’ image as
shown in Table II. Table II demonstrates that the combination
of LOT-1 with M=4 (first local Wiener filtering procedure)
and LOT-2 with M=16 (second local Wiener filtering pro-
cedure) is the best combination and hence employed in the
proposed DLWF-LOT structure.

IV. EXPERIMENTAL RESULTS

This section presents the despeckling results of proposed
LOT based framework using synthetically speckled and real
SAR images. We compare the performance of proposed
method with three following well known despeckling tech-
niques:

1) Linear MMSE filtering in undecimated wavelet trans-
form domain [18]

2) PPB (iterative version) based method [6]
3) Directionlet based method [28]

The method discussed in [18], [6], [28], single LOT domain
local Wiener filtering procedure for SAR image despeckling
and proposed dual local Wiener filtering framework are
referred to as UDWT-LMMSE, PPB, Directionlet, LWF-LOT
and DLWF-LOT techniques respectively.

In the first local Wiener filtering procedure of DLWF-
LOT, the elliptic directional windows WLD(si, sh),
WLD(si, 1/sh) and WLDD

(si, sh) with sh=2, si=6 and 3,
from finest to coarsest scale are used, respectively (large
size windows should be used in high noise cases). In the
second local Wiener filtering procedure of DLWF-LOT, we
use sh=2, si=2, 2, 1 and 1 from finest to coarsest scale,

respectively (relatively small size windows should be used
in low noise cases). In LWF-LOT method, we perform
LOT with M=16 and use the elliptic directional windows
WLD(si, sh), WLD(si, 1/sh) and WLDD

(si, sh) with
sh=2, si=8, 4, 2, 2 from finest to coarsest scale are used,
respectively. The UDWT-LMMSE implementation uses four
multiresolution levels and 9/7 biorthogonal wavelet. The
results of PPB method have been obtained using publically
available Matlab code made available by its authors on
their website. The results were obtained using 25 number
of iterations, T=0.2, α=0.92, 21x21 search window with
7x7 patch. The results of UDWT-LMMSE scheme have
been obtained from the authors through direct web based
service and the results of directionlet based method have
been obtained using authors own code run by the authors
themselves on our SAR images.

A. With synthetically speckled Aerial images

The use of synthetically speckled aerial images, with its
noise free version available, allows objective performance
analysis. The aerial images resembles real SAR images in
terms of very similar scene features. The original aerial
images used in this subsection are shown in Fig. 7. The aerial

(a) (b)

Fig. 7. Original aerial images used in experiments (a) ‘Aerial1’ image
(256x256) (b) ‘Aerial2’ image (256x256)

image ‘Aerial1’ shown in Fig. 7(a) is obtained from USC-
SIPI image database (www.sipi.usc.edu/database/). The aerial
image ‘Aerial2’ shown in Fig. 7(b) is obtained by cropping
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‘boston’ image available in Matlab’s image processing tool-
box. Three different levels of artificially generated speckle
noise with L=2, 4 and 16 are used in the simulation.

In the LWF-LOT implementation, for synthetically speck-
led and real SAR images, the value of Ks is set to 1. In
the DLWF-LOT implementation, for synthetically speckled
images, the value of Ks is set to 0.88 and 1 in the local
Wiener filtering-1 and local Wiener filtering-2 procedures
respectively.

Three widely used objective metrics are employed for
despeckling performance comparison:

1) Signal to mean square error (S/MSE) ratio
2) Structural similarity (SSIM) index
3) Edge preservation index (β)

The S
MSE ratio in decibels is defined as [53]

S

MSE
= 10 log10


N∑
i=1

Y 2
i

N∑
i=1

(Ŷi − Yi)2

 (16)

where N denotes size of the image and Y and Ŷ are
noise free and despeckled images respectively. The SSIM
index [54] measures the structural similarity between the
noise free version of the image and its distorted form (in
this case, the despeckled image). SSIM index is a good
indicator of perceived image quality and popularly used
in the literature for comparing the denoising performance
of different techniques. The publicly available Matlab code
(www.ece.uwaterloo.ca/ z70wang/research/ssim) is used for
calculating the SSIM index. The edge preservation index (β)
is used to evaluate the performance of edge preservation and
is computed using the following expression [16]:

β =
Γ
(

∆Y−∆Y ,∆̂Y−∆̂Y
)

√
Γ(∆Y−∆Y ,∆Y−∆Y )Γ

(
∆̂Y−∆̂Y ,∆̂Y−∆̂Y

) (17)

where ∆Y and ∆̂Y are the high pass filtered versions of
noise free image and despeckled image respectively. By
applying Laplacian of Gaussian (LOG) filter, the required
high pass filtered version of the images were obtained. The
∆Y and ∆̂Y denotes the mean values of ∆Y and ∆̂Y
respectively and Γ (a, b) =

∑
i,j

a(i, j)b(i, j). For optimal

effect of edge preservation, the β should be close to one.
Table III shows that UDWT-LMMSE method performs

best in terms of S/MSE ratio but exhibits low β values,
compared to PPB and DLWF-LOT methods. PPB method
outperforms UDWT-LMMSE and Directionlet method in
terms of β value. The proposed LOT based framework pro-
vides larger values of edge preservation factor (β) and SSIM
index results in comparison to all other methods, therefore
indicating a better ability to preserve edge structures and pro-
vides despeckled images with better perceived image quality.
Fig. 8 shows the visual results for ‘Aerial2’ image. The
despeckled image provided by Directionlet method shows
oversmoothing of important details (Fig 8(d)). Fig. 8(b)
demonstrates that UDWT-LMMSE method is well efficient
in reducing the speckle but shows slightly inferior results in
retaining the edges compared to PPB and proposed method.
The proposed method when compared to UDWT-LMMSE,

PPB, Directionlet and LWF-LOT methods (Fig.8(b), 8(c) and
8(d)) shows good trade off between smoothing and texture
preservation.

B. Using real SAR images

The despeckling performance assessment in SAR image
despeckling, in the absence of clean images, is a very
tough task. Out of various performance measures available
in literature we have used the following widely popular
measures:

1) Equivalent number of looks (ENL): ENL represents the
degree of speckle smoothing in a homogeneous region.
Higher ENL value indicates better speckle reduction.
Theoretically, the ENL value equals the number of
looks of an intensity image. It is computed as [19],
[17], [25]:

ENL =
̂E{YSAR}

2

̂var{YSAR}
(18)

where ̂E{YSAR} and ̂var{YSAR} are estimated from
a homogeneous region in the despeckled image.

2) Edge save index (ESI): ESI [55], [56], [28] indi-
cates the edge preservation ability of the despeck-
ling method. The ESI is computed in the horizontal
(ESIH ) and vertical (ESIV ) directions. The ESIH

is computed from the following expression

ESIH =

r∑
i=1

c−1∑
j=1

∣∣∣ŶSAR(i, j + 1)− ŶSAR(i, j)
∣∣∣

r∑
i=1

c−1∑
j=1

|ZSAR(i, j + 1)− ZSAR(i, j)|

(19)
where ŶSAR is despeckled image and ZSAR is the
original SAR image. r and c denotes the number of
of rows and columns in the SAR image. The ESIV is
computed from the following expression

ESIV =

c∑
j=1

r−1∑
i=1

∣∣∣ŶSAR(i+ 1, j)− ŶSAR(i, j)
∣∣∣

c∑
j=1

r−1∑
i=1

|ZSAR(i+ 1, j)− ZSAR(i, j)|

(20)
The higher the ESI, the better the edge saving ability.

3) Ratio image analysis: Ratio image [57], [58], [59] is
the pointwise ratio of real SAR image to the despeck-
led image. In case of ideal despeckling, the ratio image
should contain speckle only.

a) Ratio image mean (MRI ): MRI indicates the
degree of radiometric preservation and is ideally
equals to one. Hence, despeckling methods which
provide MRI close to unity indicate better perfor-
mance of radiometric preservation.

b) Visual analysis of ratio image: The visual analysis
of ratio image also indicates the performance of a
despeckling technique. The presence of any struc-
tural details correlated to the actual image shows
that the despeckling technique has smoothened
not only speckle noise but few important details
also.
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TABLE III
S/MSE, SSIM AND β VALUES OBTAINED BY DIFFERENT DESPECKLING ALGORITHMS FOR TWO AERIAL IMAGES

‘Aerial1’
L=2 L=4 L=16

S/MSE SSIM β S/MSE SSIM β S/MSE SSIM β
UDWT-LMMSE 16.26 0.6325 0.3451 17.92 0.7394 0.4693 21.84 0.8824 0.7163

It. PPB 16.34 0.5808 0.3469 18.26 0.7279 0.5090 21.07 0.8691 0.6980
Directionlet 13.38 0.5508 0.3313 16.49 0.6945 0.4564 20.89 0.8451 0.6909
LWF-LOT 14.27 0.6625 0.3530 17.52 0.7610 0.4848 21.86 0.8830 0.7361

DLWF-LOT 14.01 0.6610 0.3671 17.49 0.7667 0.4975 21.94 0.8860 0.7408
‘Aerial2’

L=2 L=4 L=16
S/MSE SSIM β S/MSE SSIM β S/MSE SSIM β

UDWT-LMMSE 13.97 0.6877 0.3907 15.61 0.7865 0.5364 19.71 0.9149 0.7458
It. PPB 13.87 0.6673 0.4334 15.10 0.7711 0.5500 17.49 0.8666 0.6706

Directionlet 12.01 0.6181 0.4004 14.59 0.7446 0.5568 18.09 0.8637 0.7317
LWF-LOT 12.62 0.7223 0.4297 15.38 0.8080 0.5901 18.92 0.8972 0.7585

DLWF-LOT 12.35 0.7248 0.4365 15.29 0.8132 0.5985 19.49 0.9100 0.7677

(a) (b) (c)

(d) (e) (f)

Fig. 8. Despeckled images for ‘Aerial2’ image (a) Noisy (L=4) (b) Using UDWT-LMMSE [18] (c) Using It. PPB [6] (d) Using Directionlet [28] (e)
Using LWF-LOT (f) Using DLWF-LOT

In this paper, we report the experimental results for three
real SAR images (displayed in Fig. 9). The real SAR
images used for various experiments in this paper are freely
available for download at www.sandia.gov/RADAR/sar.html.
Fig.9(a), 9(c) are Ku-band SAR images and Fig. 9(b) is a

X-band SAR image acquired by twin otter aircraft of Sandia
National Laboratories. Fig. 9(a) shows an intensity image of
Horsetrack near Albuquerque, New Mexico, Fig. 9(b) shows
an intensity image of Hangars at Kirtland AFB, Albuquerque,
New Mexico and Fig. 9(c)shows an intensity image of sports
complex, Albuquerque, New Mexico.

In the DLWF-LOT implementation, for real SAR images,
the value of Ks is set to 1.1 and 1 in the local Wiener
filtering-1 and local Wiener filtering-2 procedures respec-
tively.

The ENL and ESI values obtained for various despeckling
methods are provided in Table IV. For ENL computation
two homogeneous regions, ‘Region1’ and ‘Region2’, in

each SAR image have been selected. Region1 and Region2
comprise of 30x43 and 40x35 pixels in ‘horsetrack’, 25x43
and 37x21 pixels in ‘stadium’ and 12x33 and 20x30 pixels
in ‘hangars’ respectively. It is obvious from Table IV that
the DLWF-LOT method outperforms the UDWT-LMMSE
method and PPB method both in terms of ENL and ESI
values in most of the situations. The directionlet based
method provides very high value of ENL compared to all
other methods including proposed method, which is achieved
at the cost of oversmoothed images, the same can be verified
by observing extremely low values of ESI. The UDWT-
LMMSE method exhibits very low values of ESI compared
to PPB and DLWF-LOT methods.

As shown in Table V, the LOT based methods in most of
the cases, obtains closer results to the ideal value of MRI

which indicates its better ability of radiometric preservation.
The despeckled images obtained from UDWT-LMMSE,

PPB, directionlet based method, LWF-LOT and DLWF-LOT
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Despeckled images for ‘stadium’ SAR image (a) Original image (b) Using UDWT-LMMSE [18] (c) Using PPB [6] (d) Using Directionlet [28]
(e) Using LWF-LOT (f) Using DLWF-LOT

(a) (b) (c)

(d) (e) (f)

Fig. 11. Ratio images for ‘hangars’ (a) Original image (b) Using UDWT-LMMSE [18] (c) Using PPB [6] (d) Using Directionlet [28] (e) Using LWF-LOT
(f) Using DLWF-LOT

methods are shown in Fig. 10. It is observed that the speckle
noise is well reduced in almost all the despeckled images,
however in terms of details and edge preservation the DLWF-
LOT method performs the best. The output image (Fig.
10(d)) obtained using Directionlet method clearly shows

oversmoothing of details.
The superiority of DLWF-LOT over UDWT-LMMSE,

PPB, directionlet and LWF-LOT methods can also be verified
by visual inspection of ratio images shown in Fig. 11. The
ratio images shown in Fig. 11(b), 11(c), 11(d) and 11(e)
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(a) (b)

(c)

Fig. 9. Three real SAR images used in the experiments (a) ‘horsetrack’(b)
‘hangars’ (c) ‘stadium’.(Image Courtesy of Sandia National Laboratories,
Airborne ISR)

TABLE IV
ENL AND ESI VALUES OBTAINED BY DIFFERENT DESPECKLING

ALGORITHMS FOR THREE REAL SAR IMAGES

‘horsetrack’
ENL ESI

Region1 Region2 ESIH ESIV

Original 15.57 11.43 – –
UDWT-LMMSE 32.52 22.49 0.6714 0.7268

PPB 36.01 18.77 0.7435 0.8048
Directionlet 666.62 69.92 0.3626 0.4436
LWF-LOT 55.35 23.62 0.7290 0.7804

DLWF-LOT 50.68 21.17 0.7856 0.8312
‘stadium’

ENL ESI
Region1 Region2 ESIH ESIV

Original 14.92 21.79 – –
UDWT-LMMSE 25.59 36.99 0.8294 0.8600

PPB 21.87 33.92 0.8440 0.8715
Directionlet 123.62 133.91 0.5468 0.5971
LWF-LOT 29.42 43.13 0.8221 0.8496

DLWF-LOT 28.45 37.96 0.8925 0.9116
‘hangars’

ENL ESI
Region1 Region2 ESIH ESIV

Original 12.35 11.18 – –
UDWT-LMMSE 20.26 17.08 0.7770 0.8228

PPB 17.70 14.83 0.7869 0.8539
Directionlet 48.22 28.12 0.7056 0.7605
LWF-LOT 23.50 24.13 0.8691 0.9062

DLWF-LOT 18.44 17.44 0.9412 0.9681

clearly shows presence of some edge structures and patterns
which indicates that these techniques not only removes noise
but some important informations also. Fig. 11(f) provides
least structural details from original image. The visual results
on real SAR images seems to be consistent with the results
reported in Table IV.

TABLE V
MRI VALUES OBTAINED BY DIFFERENT DESPECKLING ALGORITHMS

FOR THREE REAL SAR IMAGES

Mean of ratio image (MRI )
‘horsetrack’ ‘stadium’ ‘hangars’

UDWT-LMMSE 0.9683 0.9707 0.9905
PPB 0.9712 0.9739 0.9729

Directionlet 1.0366 1.0500 1.0179
LWF-LOT 0.9791 0.9868 0.9679

DLWF-LOT 0.9760 0.9789 0.9657

V. CONCLUSION

An effective LOT domain dual local Wiener filtering
framework is proposed for SAR image despeckling. It was
shown that Gaussian distribution is able to model the local
statistics of dyadic rearranged LOT coefficients of the loga-
rithmically transformed reflectance image. Experimental re-
sults show that the proposed despeckling method outperforms
several recent well known methods and can achieve both
the speckle reduction and texture preservation simultaneously
with much less computational complexity.
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