IAENG International Journal of Computer Science, 43:1, IJCS 43 1 04

Dynamic Salt Generation and Placement for
Secure Password Storing

Sirapat Boonkrong and Chaowalit Somboonpattanakit

Abstract—Cryptographic hash functions such as MDS and
SHA-1 are the most popular functions used for storing pass-
words. The main problem is that they were not designed to serve
such purpose. Therefore, using them for storing passwords has
generated a vulnerability. An attack using a rainbow table is
possible. In order to counter this type of attack, a salt value has
been introduced. However, attaching a salt value to a password
is still found not to be enough. This research, therefore,
proposes a method that helps generate and place a salt value
into a password dynamically. After the implementation and
mathematical analysis, the results show that if our method is
applied, passwords will become more tolerant to the attack,
which makes it more difficult to compromise.

Index Terms—authentication, dynamic, password, salt, se-
cure.

I. INTRODUCTION

UTHENTICATION is considered a very important se-

curity mechanism for any IT systems. It is used to
ensure that only authorised persons are allowed to enter and
use the systems. It can also be used to prevent such attacks
as information forgery [1] and phishing attack [2].

There are four common methods of authentication nowa-
days. They are “Something You Know”, “Something You
Have”, “Something You Are” and “Something You Produce”.
Even though the “Something You Are” method such as
biometric [3] is gaining popularity, this paper focuses on
the “Something You Know” method of authentication, or
commonly known as a password, and how to make it more
secure.

Password is the most popular method of authentication to-
day. It is the main method used for verifying the authorisation
of a user before entering an IT system [4], [S]. Due to its
importance, many have come up with ways to help make
passwords more secure. For example, some organisations
only allow the use of a password for a limited amount of
time, while some organisations try to get their employees to
generate passwords that are difficult to crack.

Unfortunately, many people still put convenience before
security. In other words, many still use insecure passwords
and many even use the same password to access all their
accounts. It is, therefore, the job of the systems or service
providers to find a way to secure those passwords. Without
any secure mechanism for storing or keeping passwords, it
is possible that an adversary can get hold of the passwords
and use them in any wrongdoings.

One popular method that people have used to keep pass-
words more secure is cryptographic hash functions, such as

Manuscript received April 14, 2015; revised July 7, 2015; accepted
September 2, 2015.

S. Boonkrong and C. Somboonpattanakit are with the Department of Data
Communication and Networking, Faculty of Information Technology, King
Mongkut’s University of Technology North Bangkok, Thailand.

e-mail: sirapat.b@it.kmutnb.ac.th

MDS5 [6] and SHA-1 [7]. That is, instead of storing password
in the database in the plaintext format, their hash values are
stored. However, the problem with these functions is that they
were designed to be very fast to serve their main usage in
message integrity checking. The fastness of MD5 and SHA-
1 is considered the main nemesis of passwords, because it
allows a rainbow table attack [8] and a dictionary attack [9]
to be carried out. With today’s technology, using a graphic
processing unit or a GPU, more than one hundred million
MDS5 hashes can be computed per second [5]. This implies
that a password that consists of one to six characters can
easily be cracked, but longer passwords will take more time.

This is why a rainbow table has been created. A rainbow
table, first pioneered by [8], is a large database containing
pre-computed hash values of possible plaintext patterns [10].
This means that if an adversary gets hold of a password
database that contains hash values of the passwords, the
adversary will only need to compare those hash values with
the ones in the rainbow table to know the corresponding
plaintext. This implies that keeping passwords using just
cryptographic hash functions is not enough. A well-published
example is that of LinkedIn [11], when an attacker got
hold of 6.5 million SHA-1 hash values of the passwords
in the social network’s database. The hash values were run
through the rainbow table and many corresponding plaintext
passwords were found. LinkedIn had to later come out and
inform their users to change passwords, while they needed
to find a better way to store them.

The chosen method was to introduce a random value
known as a salt, to which a password would be appended
before hashing. This is considered a more secure method.
However, we will show in this research that this cannot with-
stand an attack, either. The main objective of this research
is, therefore, to find an algorithm that helps instill a salt
value into a password dynamically, rather than attaching them
together. The way the salt value is used will be unique to
each password. As a result, a more secure password storing
technique can be achieved.

The rest of the paper is organised as follows. Section 2
contains background knowledge and existing methods for
storing passwords and the analysis of each method. Section
3 explains our proposed algorithm for inserting a salt value
into a password. Section 4 shows the speed, security and
mathematical analyses of the proposed method. Section 5
concludes the paper.

A. Background Knowledge and Related Work

This section provides an overview of necessary knowledge
on password storing methods as well as existing research
on the subject of passwords. The section begins with a
brief description of cryptographic hash functions, which

(Advance online publication: 29 February 2016)



IAENG International Journal of Computer Science, 43:1, IJCS 43 1 04

are commonly used for storing passwords today. We then
describe existing methods for storing passwords and give
analyses on them. The existing research on passwords and
topics related to passwords are also provided.

B. Cryptographic hash function

A cryptographic hash function is a mathematical function
that is used to digest messages. That is, it takes any message
as its input and outputs a value known as a hash value [12].
The size of the output or message digest depends on which
algorithm is used. The common sizes include 128 bits, 160
bits and 256 bits.

One very important property of cryptographic hash func-
tion is the one-wayness property. That means it is easy
to compute a result in one direction, but very difficult or
impossible to compute a value in the reverse direction. In
other words, given a value z and a function f(), it is easy to
compute the value f(x). However, knowing the value f(z)
and the function f(), it is very difficult to find the value
x [13].

The second property of cryptographic hash function is
the collision resistance property. A collision occurs when
two different messages = and y are input to the same
cryptographic hash function h(), and the exact same hash
value is obtained as a result. Therefore, collision resistance
means that it is very difficult for any cryptographic hash
function to produce a collision.

Collisions are directly related to the security of hash
functions and password storing. If it were easy to find two
different messages that produced the same hash value, then
an attacker would not need to know what the real password
was. He or she only had to find another password that could
produce the same hash value as the original password. The
password would then be compromised.

The two most popular cryptographic hash functions that
are applied to password storing are Message Digest 5 or
MDS5 [6] and Secure Hash Algorithm 1 or SHA-1 [7]. Both
algorithms can take any message as an input and follow
similar processes when producing a hash values. The main
difference between the two is the size of the output. That is,
MDS5 produces a hash value that is 128 bits long whereas
SHA-1 produces a hash value that is 160 bits long.

C. Methods for password storing

Before proposing an improved method for storing pass-
words, it is necessary to take a look at the existing meth-
ods [14], [15], [16], [10] for doing such thing first. Let us
now go through and analyse each method in turn.

1) Plaintext passwords: The most simple way that a
password can be stored in a database is in its plaintext
form. This means that usernames and passwords are stored
in the database in a human-readable format. For example,
if a password is password, it will also be stored in the
password database as password. When a user logs into the
system, he or she enters his or her username and password,
the system will then check them against the database to see
whether or not they match. If so, the user will be allowed to
enter the system.

This is considered the worst method to store a password,
in security context. It is because if an adversary were able

to access the password database, all users’ passwords would
immediately be seen by the attacker. Hence, all passwords
would be compromised.

2) Encrypted passwords: One way to reduce the risk of
passwords being exposed, encryption has been adopted as a
possible solution. Encryption is a function that uses a secret
key to transform plaintext to ciphertext. This means that even
if an attacker were able to access the password database,
he or she would not be able to see the passwords in their
plaintext form. Only the ciphertext passwords would be seen.

This may appear secure at first glimpse. However, there is
a problem with this method. The problem is that the secret
key or the key that is used to encrypt and decrypt passwords
is usually stored in the same database as the passwords. This
means that if the password database were compromised, the
attacker would also be able to get hold of the key. Hence,
he or she could use it to decrypt all the ciphertext passwords
to obtain the passwords in their plaintext format. Therefore,
this method is also considered insecure.

3) Hashed passwords: Hashing a password is when a
password is taken as an input into a cryptographic hash
function such as MDS5 or SHA-1. It is then processed and
scrambled into an output that appears to be some random
value. For example, using the MDS5 algorithm to process
that input password, password, we obtain its correspond-
ing hash value as 5f4dcc3b5aa765d61d8327deb882cf99.
The SHA-1 hash value of the same password is
5baa6led4c9p93£3£f0682250b6cf8331b7ee68£d8.

This method is often used in password systems because
only the hash values of the passwords are stored in the
database, rather than the passwords in their plaintext format.
When a user logs into a system, the hash value of the entered
password is computed and compared with the value stored in
the database. If both values are exactly the same, the system
assumes that the password is correct, and the user will be
allowed to enter the system. If they do not match, the user
will have to give another attempt to log in.

Using a hash function to store passwords appears to be a
secure method for storing passwords. This is because even
if an attacker has an access to the password database, he
or she will not be able to see the password in the plaintext
format. However, in recent years, there have been a number
of high profile cases where large social networks had seen
their users’ passwords leaked to the public [11]. This is
possible due to an attack or technology known as a rainbow
table [8], [17] which is essentially a pre-computed hash
values of possible plaintext. This means that if hash values
of passwords are leaked, the attacker will only need to look
up the rainbow table to find the corresponding plaintext
passwords.

Having said that, not all possible passwords or plaintext
can be found in the rainbow table yet. If hash values are
not found in the rainbow table, it means that they are the
hash values of long and complex passwords or plaintext
that have not been pre-computed. However, the size of the
rainbow table is growing all the time, and more passwords
will eventually be found.

4) Multiple iterations hashed passwords: This method is
similar to the password hashing method explained earlier.
The difference is that rather than hashing a password once,
the resultant hash value is then hashed again either by the

(Advance online publication: 29 February 2016)



IAENG International Journal of Computer Science, 43:1, IJCS 43 1 04

same hash function or by a different hash function.

Even though this method makes it more difficult for the
attacker to compromise the passwords, a database similar to
the rainbow table can still be generated once the number of
hash iterations are known.

5) Salted passwords: Due to the problem of the rainbow
table, there needed to be a way to ease the concern. This
was why a salt value has been introduced [14], [18]. A salt
is a random string of letters or numbers that is added to the
beginning or the end of a password, before hashing. In other
words, instead of hashing just a password h(password), we
compute h(salt||password). In this method, a different salt
value is used for each password and is also stored in the same
password database, in clear text. That means if the salt value
and its position are known, it is still possible for an attacker
to use the rainbow table to find the plaintext password.

This method has now been adopted by many Web sites and
organisations in order to secure users’ passwords. However,
the placement of the salt value has been either at the
beginning or the end of a password. We feel that the position
of the salt value can affect the strength of password storing.
Therefore, it is necessary to find a method to place the salt
value in such a way that stored passwords become harder to
crack and the efficiency is not noticeably reduced. This is
the main objective of this research.

D. Related work

It should be re-emphasised here that the main problem
studied in this paper is to find a way to securely store pass-
words. Apart from the basic knowledge stated in previous
sections, we will take a look at what other researchers have
done to improve the security of passwords and password
storing.

First of all, it has to be stated that MD5 [6], invented
in 1991, is a cryptographic hash function that has been
used in many security applications. Of course, it has also
been a popular function used to hash passwords before
storing. This was the case until in 2005 when Wang and
Hongbo [19] proposed a modular differential technique that
could be applied to successfully find a collision in the MD5
algorithm. This has caused the research community to find
an improvement in the existing hash function so that they
can be used to make password storing more secure.

An example is the work of Chawdhury and Habib [20],
who proposed that, on a networked system, the six reserved
bits in the reserved field of the TCP header were to be
used. They suggested that a random prime number was to
be generated by a client machine and saved in the reserved
field. The number would then be used as a part of the hashing
process together with the password to obtain the resultant
hashed password. The server would follow the same process
to check whether or not the received password was correct.
Thanawat and Boonkrong [21] also proposed a similar idea,
but a random key was used instead of a random prime
number. By carrying out these proposed methods, the papers
claimed that it would make it harder for an adversary to
attack using the rainbow table.

In 2012, Zheng and Jin [13] adjusted the way MDS5 worked
so that it would take longer to process. They argued that
by increasing the processing time, the size of the rainbow

table would grow less rapidly. Hence, hash values and their
corresponding plaintext would be harder to find. One of the
methods to achieve this was to place a random value called
salt either in front of, at the back or in between a password
before hashing it. The second way was to transform the
plaintext password by using matrix and logical operations
such as XOR before hashing it. The third method was to add
some “information interference” to the plaintext password.
For example, the username and the current time could be
added to the password before inputting them into a hash
function. It was claimed that any of the three proposed
methods could make password storing more secure.

The work related to the above became an interest in the
analysis of the placement of a salt value [22]. The analysis
confirmed that using a salt value as a prefix or a suffix of a
password increased the security of the password. However,
with repeated experiments, an attacker could find a fixed
point of the salt placement. Once the position of the salt was
found, the security would be drastically reduced by, again,
the use of the rainbow table.

It can be seen that rainbow table is the main source of
attack. In 2013 [4], there was an extensive study on using
rainbow table to compromise hashed passwords. For hashing
with the MDS5 algorithm, it was found that to construct a
rainbow table for alpha-numeric passwords that were one to
seven characters long, it would take approximately five days.
Moreover, it only took around three and a half days to carry
out cryptanalysis on all possible hashed passwords in the
rainbow table.

Let us turn our attention to the work related to the strength
of the actual password. Ma et al. [23] studied the relationship
between the randomness and the quality of passwords. It was
found that the randomness was not the factor affecting the
strength or the quality of the passwords. This was because
in order to evaluate the quality of passwords, it would
be better to look at the actual time taken to crack them.
Therefore, Ma et al. proposed a password complexity index
that helped measure the password quality. As a result, they
suggested that a strong password must contain at least eight
characters, which consist of at least three special characters
and numerical values should also be present. This idea will
be applied in the design process of our proposed method for
securely storing password later on.

It can be seen from our studies that there has been no
work done on the quality of salt values and their positions
within a password. Therefore, it is our intention to propose
an algorithm to generate salt values and place them at
appropriate positions so that the passwords become more
tolerant to an attack via rainbow table.

II. PROPOSED ALGORITHM

This research investigates and designs a method for storing
passwords securely, which consists of three factors. They are
the quality of passwords, the selection of suitable salt values
and a way to place the salt values into passwords. We discuss
each factor in turn.

A. Adjusting the quality of passwords

Consider a scenario where a user registers his or her
password, it is important to inspect the quality of the entered

(Advance online publication: 29 February 2016)



IAENG International Journal of Computer Science, 43:1, IJCS 43 1 04

password before actually storing it. We suggest that this
is done in order to ensure that it is not too easy to be
compromised.

Ma et al. [23] came up with a password quality index,
which requires that a strong password should contain at least
eight characters, three of which should be special characters.
There should be some numbers in the password, too. The
criteria can be summarised in Table 1. This is what we will
use in the next step.

TABLE 1
CRITERIA FOR STRONG PASSWORD

Criterion

Number of Special Characters
Number of Numerical Values
Number of Letters

Length of Password

Property

At least 3 characters
At least 1 number
At least 1 letter

At least 8 characters

The method for adjusting the quality of the password is
practically our proposed salt generation process. That is, for
each password being inspected, a different salt value will
be generated. Which salt value is generated depends of the
quality and components of each password. For example, if
the original password lacks special characters, our algorithm
will randomly generate and add special characters. If the
password lacks numbers, our method will randomly generate
and add numbers. Also the proposed method will ensure that
the size of the password is at least of the required size.

After the inspection of the starting password, the existing
number of especial characters, numeric values and letters will
be known. A set of values will then be chosen from Table
IT in such a way that when combining it with the existing
password, it will satisfy the criteria specified in Table L.

B. Finding suitable salt sizes

As mentioned, the work of Ma et al. found that the
quality of a password could be measured by the time taken
to crack it. Furthermore, they concluded that a harder to
crack password should consist of at least eight characters
that contained three or more special characters. A better
password should contain numbers as well. These suggestions
and combinations of characters will be used in our design
experiments. The characters that will be used are shown in
Table II.

TABLE II
PASSWORD CHARACTER SETS
Type of Characters | Characters
Special Character | '@#3%*A&()-_+= “[I1{}\:7"<>.,.7
Number | 0123456789
Alphabet | abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The next step is to generate a rainbow table using an Intel
Core 17 CPU with the speed of 2.20 GHz. This is done so
that the length of the passwords that will be tolerant to the
rainbow table attack can be determined. The software that
was used to obtain the rainbow table was winrtgen version
2.9.3. It was also used to calculate the time taken to complete
the rainbow table with different password lengths. Moreover,
the time taken to generate a rainbow table of the same
password sizes using a graphical processing unit (GPU),

extracted from [24], is compared with that of the CPU. Table
IIT shows the time taken to generate a rainbow table using
the stated CPU and the GPU.

TABLE III

TIME TAKEN TO GENERATE A RAINBOW TABLE

Password
Length (Letters)

CPU Computation
Time

GPU Computation
Time

1-6 38.240 Days 47 Seconds
1-7 11.478 Years 1.14 Hours
1-8 1241.76 Years 465 Days
1-9 134069 Years 108 Years

1-10

3.108830907 * 1033
Years

2.527479675 * 1029
Years

The next step was to consider the time taken to compute
hash values of inputs of different sizes. The MDS5 algorithm
was used in our experiment with the inputs taken from [25],
which is the Web site containing ten thousand of the most
common passwords. Each password was hashed one thou-
sand times. The average time taken to complete one hash
was calculated. The results are shown in Table IV.

TABLE IV
TIME TAKEN TO HASH DIFFERENT SIZES OF INPUTS

Input Size (Bits) | No. of Printable | Computation Time
Characters (ms)
0 0 0.002707
64 8 0.002934
80 10 0.002945
128 16 0.002959
256 32 0.002982
512 64 0.003102
1024 128 0.003279

The result in Table IV can be depicted in the graph shown
in Figure 1.

Time Taken to Hash Different Sizes of Inputs
0.0034

Not attackable by rainbow table __________ >

0.0033
__0.0032
£ .
=0.0031 Time taken
3 to compute hash values
T 0003
8 |_o—"
§ 0.0029
©
g 0.0028 Suitable
= Input
= 0.0027 Size:

80 - 256 Bits
0.0026
0.0025
0 200 400 600 800 1000 1200
Input Size (Bits)
Fig. 1. Time Taken to Hash Different Sizes of Inputs

The analysis of the results in Figure 1, Table IV, together
with the Table III, provides us with an idea of suitable salt
or input sizes. In other words, it can be seen in Table III that
if the input is nine characters long or larger, then it is very
difficult to generate a complete rainbow table or the table
with all possible plaintext and hash value pairs. Moreover,
the result in Table IV shows that the time taken to hash
any inputs that are ten to thirty-two characters long took
approximately the same amount of time. Anything longer
that thirty-two characters would take longer. Therefore, we

(Advance online publication: 29 February 2016)



IAENG International Journal of Computer Science, 43:1, IJCS 43 1 04

claim here that the suitable sizes of a salt value is between
80 and 256 bits or 10 and 32 characters.

Now that the suitable sizes of a salt are known, a salt
value can be generated for each password. All we have to
do now is to find a way to integrate the salt value with the
original password in such a way that the resultant password
will satisfy the requirements in Table I.

C. Finding a pattern to place salt

This is the step where a pattern for placing the chosen salt
value is generated. Bear in mind that the pattern is dynamic
since it depends on the starting password and the chosen salt
value in the previous steps. That means a different password
and different salt value will have a different placement
pattern. Our aim is the find a pattern so that when placing
the salt into the password, the password will become stronger
and harder to attack. Here, we propose an algorithm to find
such placement pattern as follows.

First of all, the starting password is used as an input to
a hash function to obtain its hash value. For this particular
paper, MDS5 is used. Secondly, the starting password and its
hash value in converted into binary. In order to make it easier
to understand, let us give a simple example.

Suppose our starting password is password. The pass-
word is input into MD5 to obtain the hash value as
0xD41D8CD9. The password and the hash value are con-
verted into binary as follows:

TABLE V
PASSWORD AND ITS HASH VALUE

01110000 01100001 01110011 01110011
01110111 01101111 01110010 01100100
01100100 00110100 00110001 01100100
00111000 01100011 01100100 00111001

Password

Hash Value

The third step is to XOR the binary values of the starting
password and its own hash value. Here, we propose that only
the least significant bit (rightmost bit) of each byte is used
in the XOR operation.

Continue with our example, the binary values in Table
V are XORed with one another. As stated, only the least
significant bit of each resulting byte will be used as the
placement pattern. Using the example above, the value
01011001 is obtained. This is our salt placement pattern.
The next question is how this placement pattern is going to
be used.

D. Salt placement rules

In order to answer the question set in the previous section,
we need to come up with a number of rules so that the most
suitable rule can be selected. The rules for applying the salt
placement pattern are as follows.

Rule 1: If the bit value of the pattern is 0, no salt is to
be placed into the password at that position. If the bit value
of the pattern is 1, one character of salt is placed into the
password at that position. If we run out of bit values of the
pattern and there are still unused salt characters, append the
rest of the salt characters to the end of the password.

Rule 2: If the bit value of the pattern is 0, no salt is to
be placed into the password at that position. If there are
two consecutive 0 bits in the placement pattern, two salt

characters are to be placed into the password at the position.
If the bit value of the pattern is 1, one character of salt
is placed into the password at that position. If we run out
of bit values of the pattern and there are still unused salt
characters, append the rest of the salt characters to the end
of the password.

Rule 3: If the bit value of the pattern is 0, no salt is to
be placed into the password at that position. If there are two
consecutive 0 bits in the placement pattern, one salt character
is added to the front of the password. If the bit value of the
pattern is 1, one character of salt is placed into the password
at that position. If there are two consecutive 1 bits in the
placement pattern, one salt character is added to the end of
the password. If we run out of bit values of the pattern and
there are still unused salt characters, append the rest of the
salt characters to the end of the password.

Rule 4: If the bit value of the pattern is 0, one salt character
is added to the front of the password. If the bit value of the
pattern is 1, one salt character is added to the end of the
password. If we run out of bit values of the pattern and
there are still unused salt characters, append the rest of the
salt characters to the end of the password.

Rule 5: If the bit value of the pattern is 0, the final
or rightmost salt character is chosen to be placed into the
password. If the bit value of the pattern is 1, the first
or leftmost salt character is chosen to be placed into the
password. If we run out of bit values of the pattern and
there are still unused salt characters, append the rest of the
salt characters to the end of the password.

It can be seen that we have avoided putting the salt in front
of, in between and in the back of the password altogether.
This is because having it in those position is considered in
secure [22].

The next step is to find the best rule in terms of speed.
The speed was measured by taking each of the ten thousand
passwords from [25], and put it into a hash function, MD5
in this case, one hundred times. The average time was then
calculated. The results from the experiment are shown in
Table VI

TABLE VI
SPEED OF SALT PLACEMENT RULES

Rule | Time Taken (ms)
1 2.49
2 2.48
3 2.50
4 2.50
5 2.50

Table VI shows that Rule 2 is the fastest salt placement
rule as it only took 2.48 ms to complete the salt placement
process. This is followed by Rule 1, which took 2.49 ms to
complete. Rules 3, 4 and 5 took the same amount of time
at 2.50 ms. Therefore, out of all the five rules, Rule 2 was
selected as the salt placement pattern, because it provided
the highest speed. The security of this rule will be analysed
later on in the paper.

E. Resultant Algorithm

We will now summarise the algorithm for dynamic salt
generation and placement that we believe to provide a

(Advance online publication: 29 February 2016)



IAENG International Journal of Computer Science, 43:1, IJCS 43 1 04

solution towards a more secure password storing method.
The proposed algorithm can be described as follows.

A user enters a password to be registered on a system
in plaintext format. The quality of the entered password is
evaluated against the criteria suggested by Ma et al. [23] A
salt value is then chosen for the password in such a way that
its size is appropriate for that particular password. Note that
each password will be provided with a different salt value.
The objective of this step is to ensure that when combining
the password with the chosen salt value, we will end up with
a stronger password before hashing or storing it.

Once an appropriate salt value is obtained, a salt placement
pattern will be computed. This is done by XORing the
original password with its hash value. The placement pattern
will be the least significant bit of each resulting byte.

The next step is to insert the salt value into the password.
This is done in accordance to the salt placement pattern and
our chosen rule. The rule used in our proposed algorithm
states that: If the bit value of the pattern is 0, no salt is
to be placed into the password at that position. If there are
two consecutive O bits in the placement pattern, two salt
characters are to be placed into the password at the position.
If the bit value of the pattern is 1, one character of salt
is placed into the password at that position. If we run out
of bit values of the pattern and there are still unused salt
characters, append the rest of the salt characters to the end
of the password.

What will be achieved after this stage is what we believe
to be a stronger password, which will then be input to a
one-way hash function. The resultant hash value is the value
stored in the system’s password database.

The proposed algorithm and an example can be
summarised in Figure 2.

It can be seen in Figure 2 that the starting password is
password, whose quality is checked against the Ma et al.’s
criteria [23]. It turns out that the original password does not
contain any special character or number, which means that
it does not meet the strong password criteria. A salt value,
%$Q@&03UH+, is then chosen in such a way that when combining
with the password, a stronger password is achieved. The
salt placement is calculated in the next step by XORing
password with its hash value. The least significant bit of
every byte from the result is picked out to obtain 01011001,
which is the salt placement pattern. Let us now explain with
this example how to insert the salt into the password using
the proposed method.

We begin by looking at the the first character of the
password, password, and the first bit of the placement
pattern, which is 0. According to the salt placement rule,
when the placement pattern is 0, no salt is to be added at
this position, so we move to the second character of the
password and the second bit of the placement pattern.

The second bit of the placement pattern is 1, which,
according to the rule, means a salt value will be added at
this position. We, therefore, take the first character of the salt
value (we use the first character since no salt character has
been used before) and place it behind the second character
of the password to obtain pa%$ssword.

We now move to the third character of the original
password and the third bit of the placement pattern. The

Proposed Algorithm Example
Plaintext Password “password”

b |

Password Quality No special characters.

Checking No numbers.
Salt Selection %@&03U+

| l

Salt Placement
Pattern Generation

l l

pa%ss@we&or03dU+

l l

Strong Password
Hashing

l l

Hash Value Stored

01011001

Salt Insertion

H(pa%ss@w&or03dU+)

Hash Value Storing

Fig. 2. Proposed Algorithm and an Example

placement pattern now has the value of 0, which means there
is no need to add a salt character at this position.

The next character and the next bit of the placement pattern
are now considered. The placement pattern is now 1, which
means one character of the salt is to be placed at this position
to obtain pa%$ss@word.

The fifth character of the original password and the fifth bit
of the placement pattern are now looked at. The placement
pattern has the value of 1. This means one character of the
salt value will be placed behind the fifth character of the
password, which now becomes pa%$ss@wsord.

The next placement pattern is 0, so we move to the next
password character and do not insert any salt value. However,
the next bit of the placement pattern also has the value of
0. This means that we are seeing two consecutive zero bits,
which means we have to insert two salt characters here at
this position. Now we have pa%$ss@w&or03d.

We are now at the final character of the original password
and the final bit of the placement pattern. The last placement
pattern bit is 1, which means inserting one character of
the salt value at this position. pa%$ss@w&or03dU is now
obtained.

At this stage, we have run out of salt placement bits, but
there is one salt character left. The rule states that what we
have to do now is to append the remaining salt character
to the end of the current password. We, therefore, have
pa%ss@w&or03dU+ as the result.

Using the proposed rule to insert the salt value into the
password, we obtain pa%ss@w&or03dU+. This password
now meets the strong password criteria. It can now be hashed
and stored in the database.

For the proposed algorithm, even if a rainbow table is used

(Advance online publication: 29 February 2016)



IAENG International Journal of Computer Science, 43:1, IJCS 43 1 04

in an attack, a hash value is visible and a salt value is known
by an adversary, the way that the salt value is inserted into the
password is still unknown. Moreover, each password will be
associated with a different salt value. The way the salt value
is inserted into each password is also different. This makes
it more difficult to compromise the password via the use of
the pre-computed rainbow table.

In addition, by the principle of Kerckhoffs [26], even if an
adversary gets hold of the source code, there is no way that
the salt placement pattern will be known. This is because
the pattern is determined by the original plaintext password.
Therefore, the only way to figure out the placement pattern
is by knowing the original password, which is not stored
anywhere and hence cannot be known by the attacker.

III. ANALYSIS OF THE ALGORITHM

In this section, we explain the analyses of the proposed
algorithm based on two folds. The first is the speed of the
algorithm compared with that of other existing password
storing methods. The second is the attack tolerance.

Before going into the detail of the analyses and results, it
has to be stated that we developed our test application using
PHP, because all basic one-way hash functions, MDS5 and
SHA-1, were available. Apache was used to run a service
for a Web server to run the PHP script. The database used
for storing hash values and salt values was MySQL, while
PHPMyAdmin was used to manage it.

A. Speed Analysis

The experiment was done by using MD5 [6] and SHA-
1 [7] with several password storing methods. They were static
salt (salt value never changes for any passwords), dynamic
salt with different salt sizes (salt value changes for every
password but the position was fixed) and our own algorithm.

The passwords used in this experiment were taken from
a collection of ten thousand passwords from [25]. Each
password was used as an input into each password storing
method and run one hundred times before the average speed
was found for each method. The results are shown in Table
VIL

TABLE VII
TIME TAKEN TO RUN EACH METHOD

Method Salt Length | Time Taken | Time Taken
(Bits) using MD5 | using SHA-1
(ms) (ms)
Static Salt 256 2.04 2.39
Dynamic Salt 64 2.07 2.47
Dynamic Salt 256 2.09 2.49
Dynamic Salt 512 2.52 2.59
Dynamic Salt 1024 2.56 2.64
Dynamic Salt 80 - 256 243 2.53
Proposed Algorithm 80 - 256 2.48 2.56

It can be seen that it took 2.48 ms and 2.56 ms to complete
our proposed algorithm when using with MDS5 and SHA-1
respectively. This means that it is slower than the static salt
method and the dynamic salt methods with 64-bit and 256-
bit salt, but faster than the dynamic salt method with 512-bit
and 1024-bit salt. The time taken to run our algorithm is
also comparable to the dynamic salt method with variable
salt sizes.

Even though our proposed algorithm is not the fastest, we
believe that its speed still is acceptable. This is because the
difference of 0.4 ms from the fastest method is not really
noticeable to users as stated in [27] that 0.1 second is the
limit for users before feeling any latency.

B. Security Analysis

The main aim of this research is to design and develop
an algorithm for securely storing passwords by using our
dynamic salt generation and placement method together with
a one-way hash function, where the word ‘dynamic’ means
that the salt value and its placement pattern will always be
different for every password. Therefore, the security aspect
of the proposed method will need to be tested.

For the attack tolerance experiment, it was assumed that an
attacker was able to access the password database [4], [11],
which contained usernames, salt values and hash values of
passwords. The job of the attacker was to find the plaintext
passwords from the available information.

In this research, we used an application called hash-
cat [28], which is a popular application used for password
recovery and compromising passwords. Furthermore, a list
of passwords used in our analyses was divided into two cat-
egories, which were weak passwords and strong passwords.
The list of weak passwords was compiled by [29], and was
the list of the worst passwords in 2013. The list of stronger
passwords was made in such a way that they contained
special characters and/or numbers as suggested by [23]. Both
lists of passwords are shown in Table VIII.

TABLE VIII
WEAK AND STRONG PASSWORDS
Weak Password Strong Password
123456 charles&jun!0r@
password p@3$$wOrd1234
12345678 Qw3rty1234
qwerty Willi@md@ll@s
abc123 110veyOu7777
123456789 p@sswOrd1 @dmin
111111 london @midnight%
1234567 J31lyFish
iloveyou All1Black$!
adobel23 jA(kBauer
123123 wroaps9ds
admin .DoctOrHOuse.
1234567890 @damS @ndler
letmein princess @diamond!
photoshop ILov3MyPi@no
1234 JulleLovesK3vln
monkey 134tcarrOts
shadow cookie%peanut@
sunshine mOnkEyilOveyOu
12345 sh@dOwp @ $$word
password1 $un$hInE
princess PrincE$$
azerty sOpOov1otO
trustnol @zErty1234
000000 Tru$tn01

The following methods were used to compare and evaluate
the security level of our proposed method. The first method
was the no salt method, which computed a hash value directly
from a plaintext password.

The second method was the multiple iterations method.
In this method, a plaintext password was hashed more than
once. That is, the output from the hash function would be
hashed again multiple times. In this research, the passwords

(Advance online publication: 29 February 2016)



IAENG International Journal of Computer Science, 43:1, IJCS 43 1 04

were hashed three times before the results were stored on
the database.

The third method was called the fixed salt method. In this
method, a salt value that was 256 bits long was added to each
password before being hashed by a one-way hash function.
The same salt value was used for all passwords. Hence, the
name fixed salt. Note that the salt value was also stored in
the same database as the hash values of the passwords.

The fourth method was the dynamic salt method. This
method generated a new salt value for every password. The
salt value would then be concatenated to the password before
it was hashed by a one-way hash function. Note that the salt
value for each password was also stored on the password
database.

The fifth method was our proposed method. That is, a new
salt value was generated for every password. The salt position
in the password was also changed for every password as a
result of the placement pattern computed from the original
password. Note that the salt value for each password was
also stored on the same database as the hash values of the
passwords.

The next step was to simulate attack scenarios. It was
assumed that an attacker was able to access the password
database which stored usernames, salt values and hash values
of the passwords. These made up all the information available
to the attacker. The aim of the attack was to turn the hash
values into their corresponding plaintext passwords.

In this paper the hashcat application [28] was used as
an attack tool. The experiment was run by using hashcat to
attack both weak passwords and strong passwords presented
in Table VIII. We also divided our experiment into four main
attack scenarios that can be described as follows.

1) Scenario 1: Scenario 1 was to attack weak passwords
that were stored by applying the five methods. MD35 was used
as the one-way hash function. Table IX shows the results of
the first attack scenario.

TABLE IX
ATTACK RESULTS OF SCENARIO 1

Password Storing Method | Attack Success Rate
No Salt 92%
Multiple Iterations 92%
Fixed Salt 92%
Dynamic Salt 92%
Proposed Algorithm 0%

It can be seen that when using hashcat to attack 25
weak passwords that were stored using the no salt, multiple
iterations, fixed salt and dynamic salt methods with MDS5, 23
passwords or 92% of all the passwords were compromised.
However, all the weak passwords that were stored by our
proposed method were left uncompromised.

2) Scenario 2: Scenario 2 was to attack strong passwords
that were stored by applying the five methods. MDS5 was used
as the one-way hash function. Table X shows the results of
the second attack scenario.

Table X shows that even if strong passwords were chosen,
24% of all the passwords or 6 out of 25 strong passwords
were still compromised when using the no salt, multiple
iterations, fixed salt and dynamic salt methods with MDS5.
However, no passwords were compromised when stored by
using our proposed algorithm.

TABLE X
ATTACK RESULTS OF SCENARIO 2

Password Storing Method | Attack Success Rate
No Salt 24%
Multiple Iterations 24%
Fixed Salt 24%
Dynamic Salt 24%
Proposed Algorithm 0%

3) Scenario 3: Scenario 3 was to attack weak passwords
that were stored by applying the five methods. SHA-1 was
used as the one-way hash function. The attack results are
shown in Table XI.

TABLE XI
ATTACK RESULTS OF SCENARIO 3

Password Storing Method | Attack Success Rate
No Salt 92%
Multiple Iterations 92%
Fixed Salt 92%
Dynamic Salt 92%
Proposed Algorithm 0%

It can be seen that when using hashcat to attack 25 weak
passwords that were stored using the no salt, multiple itera-
tions, fixed salt and dynamic salt methods with SHA-1, 23
passwords or 92% of all the passwords were compromised.
However, no plaintext passwords were found when they were
stored by using our proposed method.

4) Scenario 4: Scenario 4 was to attack strong passwords
that were stored by applying the five methods. SHA-1 was
used as the one-way hash function. Table XII shows the
attack results of this scenario.

TABLE XII
ATTACK RESULTS OF SCENARIO 4

Password Storing Method | Attack Success Rate
No Salt 24%
Multiple Iterations 24%
Fixed Salt 24%
Dynamic Salt 24%
Proposed Algorithm 0%

Table XII shows that hashcat was able to compromise 24%
of the passwords or 6 out of 25 strong passwords when they
were stored using the no salt, multiple iterations, fixed salt
and dynamic salt methods with SHA-1. However, hashcat
was not able to compromise any of the stored passwords
when our proposed method was applied.

On the whole, it can be seen that weak passwords were
easy to crack when using the existing password storing
methods. With stronger passwords stored by existing tech-
niques, they were not as easy to crack although 24% of the
corresponding plaintext of the stored passwords were found.
However, when our proposed password storing method was
applied to both weak and strong passwords, the hashcat
application was not able to compromise any of them. Thus,
the successful attack rate on our algorithm was 0%. There-
fore, we can claim, based on the experiment results, that
the proposed method can reduce the risk of passwords being
compromised. In other words, the method can provide a more
secure function for storing passwords.

It has to be noted that we are aware that stronger crypto-
graphic hash functions such as SHA-256 do exist. However,

(Advance online publication: 29 February 2016)



IAENG International Journal of Computer Science, 43:1, IJCS 43 1 04

they were not considered in this paper. This was because
our objective is that we would like to illustrate that even
though a weaker hash function was used, our proposed salt
placement method would still provide a strong password
storing method. Hence, there would be no need for a more
computationally expensive hash function. Having said that,
any cryptographic hash function can be used in conjunction
with our proposed salt generation and placement method.

C. Mathematical Analysis

This section turns an attention to the mathematical
analysis of the proposed password storing method. We
applied a mathematical analysis on passwords using the
method provided by Fites and Kratz [30]. The authors
proposed a method for analysing and calculating the
probability of a password being cracked as follows.

L = length of time a password is valid

G = number of password guesses possible in
one second

A = number of possible characters in each password
position

M = password length

P = password space, which can be calculated by

P=MA

For our proposed method, the following values will be
used. First of all, the length of time a password is valid L
is taken to be 30 days or 2,592,000 seconds [31]. Secondly,
the number of password guesses possible in one second G is
suggested to be 100,000,000 guesses [32], using an ordinary
desktop computer. Thirdly, the number of possible characters
in each position A is 93, which comes from the number
of uppercase letters, lower case letters, numbers and special
characters. Fourthly, the password length M is the average
number of characters of weak passwords from Table VIII
plus the smallest suitable number of salt characters computed
earlier in Section II. Therefore, in this case M is 7+10 = 17.
This means that P = 179,

Fites and Kratz stated in their paper that the probability
or likelihood N that a password can be cracked is

N=(L*G)/P (1)

Therefore, the likelihood that a password will be cracked
using our proposed mechanism is N = (2,592,000 x
100,000, 000) * 17%3 which is approximately 9.591 + 10101,
The number implies that there is a very low chance that
a password stored by using the proposed method will be
cracked within the space of thirty days.

IV. CONCLUSION

Password is one of the most used methods of authentica-
tion. Although it is very convenient to carry out authenti-
cation using passwords, there is one thing that needs to be
considered. That is, how to store them securely, which is the
main focus of this paper.

We first studied and learned that existing methods of
password storing were not as secure as they should be. The
existing password storing methods studied included the no
salt, multiple iterations, fixed salt and dynamic salt methods.
All of them were vulnerable to an attack.

The main aim of this paper was, therefore, to find a more
secure way to store passwords. Our proposed method begins
by checking the quality of the original password before
randomly generating a salt value suitable for the password.
This is the first contribution of the paper. An experiment was
run and we found that in order to withstand a rainbow table
attack, the size of the salt value must be between 80 and 256
bits or 10 and 32 characters.

Once the appropriate salt value has been found, the salt
placement pattern is computed. This is the second contri-
bution of this paper. The placement pattern is the result of
XORing the original password and its hash value. The salt
value is then inserted into the password according to the
placement pattern. Next, this combination of salt value and
password is to be hashed by a one-way hash function. The
resultant hash value is the value to be stored in the password
database.

It can be seen that, by using our proposed technique, even
if an adversary gets hold of the hash value and the salt, it is
very difficult that the password will be compromised. This
is because the way the salt is placed in the password will
never be known unless the plaintext password is known.

The analyses of the proposed method was done in two
folds. The first was the speed analysis. It was found that
the time taken to complete the execution of our method was
approximately 2.50 ms, which was slower than the fixed salt
method and dynamic salt method with small salt. However,
our method performed better than the dynamic salt method
with large salt value.

The second analysis was the security analysis. This was
done by using both weak and strong passwords together with
one-way hash functions. They were then attacked by using
the hashcat application. The results showed that hashcat
was not able to crack any of the passwords stored by using
our method at all. Finally, a mathematical analysis of the
proposed method was carried out. The analysis showed that
using the proposed method, the likelihood that a password
would be compromised by either guessing or cracking was
very small. Therefore, it can be claimed that our proposed
algorithm can help store passwords more securely than any
other existing methods.

ACKNOWLEDGEMENT

A special thank will have to go to the Faculty of Informa-
tion Technology, King Mongkut’s University of Technology
North Bangkok and Rajamangala University of Technology
Phra Nakorn for providing necessary facility and equipment
for this research.

REFERENCES

[1] M. F. Hashmi, A. R. Hambarde, and A. G. Keskar, “Robust image au-
thentication based on hmm and svm classifiers,” Engineering Letters,
vol. 22, no. 4, pp. 183-193, 2014.

[2] P. A. Wang, “Online phishing in the eyes of online shoppers,” JAENG
International Journal of Computer Science, vol. 38, no. 4, pp. 378—
383, 2011.

[3] A. A. Fathima, S. Vasuhi, N. T. N. Babu, Vaidehi, and T. M. Treesa,
“Fusion framework for multimodal biometric person authentication
system,” JAENG International Journal of Computer Science, vol. 41,
no. 1, pp. 18-31, 2014.

[4] H. Kumar, S. Kumar, R. Joseph, D. Kumar, S. Singh, A. Kumar,
and P. Kumar, “Rainbow table to crack password using md5 hashing
algorithm,” in Proceedings of IEEE Conference on Information &
Communication Technologies (ICT), Jeju Island, 2013, pp. 433—-439.

(Advance online publication: 29 February 2016)



IAENG International Journal of Computer Science, 43:1, IJCS 43 1 04

[5]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27

(28]

[29]

A. P. Ratna, P. D. Purnamasari, A. Shaugi, and A. Salman, “Analysis
and comparison of md5 and sha-1 algorithm implementation in simple-
o authentication based security system,” in Proceedings of IEEE
International Conference on QiR (Quality in Research), Yogyakarta,
2013, pp. 99-104.

R. Rivest, “The md5 message-digest algorithm: Rfc1321,” Internet
Engineering Task Force, United States, 1992.

D. Eastlake, 3rd and P. Jones, “Us secure hash algorithm 1 (shal):
Rfc3174,” Internet Engineering Task Force, United States, 2001.

P. Oechslin, “Making a faster cryptanalytic time-memory trade-off,” in
Proceedings of Advances in Cryptology - CRYPTO 2003, 23" Annual
International Cryptology Conference, Santa Barbara, California, USA,
2003, pp. 617-630.

A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff.” in Proceedings of the 12" ACM Confer-
ence on Computer and Communications Security, ser. CCS °05, 2005,
pp. 364-372.

K. Theocharoulis, I. Papaefstathiou, and C. Manifavas, “Implementing
rainbow tables in high-end fpgas for super-fast password cracking,”
in Proceedings of International Conference on Field Programmable
Logic and Applications (FPL), 2010, pp. 145-150.

L. Whitney, “Millions of linkedin passwords reportedly leaked on-
line,” http : //news.cnet.com/8301 — 10093 — 57448079 —
83/millions—of —linkedin—passwords—reportedly—leaked—
online/, accessed in November 2013.

P. Li, Y. Sui, and H. Yang, “The parallel computation in one-way
hash function designing,” in Proceedings of International Confer-
ence on Computer, Mechatronics, Control and Electronic Engineering
(CMCE), vol. 1, 2010, pp. 189-192.

X. Zheng and J. Jin, “Research for the application and safety of
md5 algorithm in password authentication,” in Proceedings of the 9t"
International Conference on Fuzzy Systems and Knowledge Discovery
(FSKD), 2012, pp. 2216-2219.

R. Morris and K. Thompson, “Password security: A case history,”
Commun. ACM, vol. 22, no. 11, pp. 594-597, Nov. 1979.

P. Gauravaram, “Security analysis of salt||password hashes,” in Pro-
ceedings of International Conference on Advanced Computer Science
Applications and Technologies (ACSAT), 2012, pp. 25-30.

S. Boonkrong, “Security of passwords,” Journal of Information Tech-
nology, vol. 8, no. 2, pp. 112-117, July-December 2012.

M. Jorgensen, “Distributed rainbow table project,”
https://www.freerainbowtables.com/en/tables2/, accessed in December
2013.

D. Klein, “Foiling the cracker: A survey of, and improvements to,
password security,” in Proceedings of the United Kingdom Unix User’s
Group, London, England, 1990.

X. Wang and Y. Hongbo, “How to break mdS5 and other hash
functions,” in Advances in Cryptology - EUROCRYPT, 2005.

M. Chawdhury and A. Habib, “Security enhancement of md5 hashed
passwords by using the unused bits of tcp header,” in Proceedings
of the 11*" International Conference on Computer and Information
Technology, 2008.

T. Matuamphan and S. Boonkrong, “An authentication system using
md5 with random key,” Tech. Rep., March 2011.

S. K. Sood, A. K. Sarje, and K. Singh, “Cryptanalysis of password
authentication schemes: Current status and key issues,” in Proceedings
of International Conference on Methods and Models in Computer
Science (ICM2CS 2009), 2009, pp. 1-7.

W. Ma, J. Campbell, D. Tran, and D. Kleeman, ‘“Password entropy and
password quality,” in Proceedings of the 4*" International Conference
on Network and System Security (NSS), 2010, pp. 583-587.

J. Atwood, “Speed hashing,” http://blog.codinghorror.com/speed-
hashing/, accessed in December 2013.

B. Mark, 10,000 most common passwords
https://xato.net/passwords/more-top-worst-passwords/,

in January 2014.

F. A. P. Petitcolas, “Kerckhoffs’ principle.” in Encyclopedia of Cryp-
tography and Security (2nd Ed.), H. C. A. van Tilborg and S. Jajodia,
Eds. Springer, p. 675.

R. Miller, “Response time in man-computer conversational trans-
actions,” in Proceedings of the December 9-11, 1968, Fall Joint
Computer Conference, Part I, ser. AFIPS *68 (Fall, part I), 1968, pp.
267-2717.

Kali, “How to crack passwords using hashcat - the visual
guide,” http://uwnthesis.wordpress.com/2013/08/07/kali-how-to-crack-
passwords-using-hashcat/, accessed in January 2014.

D. Kevin, “The 2013 list of worst
http://splashdata.com/press/worstpasswords2013.htm,

January 2014.

list,”
accessed

passwords,”
accessed in

[30] P. E. Fites and M. P. J. Kratz, Information Systems Security: A
Practitioner’s Reference. New York, USA: Van Nostrand Reinhold
Co., 1993.

[31] G. Spafford, “Security myths and passwords,” USA, Tech. Rep., 2006.

[32] Openwall Community Wiki, “John the ripper benchmarks,”
http://openwall.info/wiki/john/benchmarks, accessed in July 2015.

Sirapat Boonkrong is an assistant professor and an associate dean of
academic affairs and research at the Faculty of Information Technology,
King Mongkut’s University of Technology North Bangkok (KMUTNB),
Thailand. He received his B.Sc. and Ph.D. in Computer Science from the
Department of Computer Science at the University of Bath, UK. His main
area of research is information and network security. He is currently a full-
time lecturer at the Faculty of Information Technology, KMUTNB and is
also supervising several Ph.D. students all of whom are in the field of
information and network security.

Chaowalit Somboonpattanakit received his B.Sc. in Information Systems
from Rajamangala University of Technology Phra Nakorn, at which he is
now a computer and network specialist. He is currently studying for his
M.Sc. in Information Technology at the Faculty of Information Technology,
King Mongkut’s University of Technology North Bangkok (KMUTNB),
Thailand. Chaowalit has also got Cisco CCNA and several Microsoft
certificates to his name.

(Advance online publication: 29 February 2016)





