TAENG International Journal of Computer Science, 43:1, IJCS 43 1 09

Intrusion Detection System Using PCA and Kernel
PCA Methods
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Abstract—The network traffic data used to build an intrusion
detection system is frequently enormous and redundant with
important useless information which decreases IDS efficiency.
In order to overcome this problem, we have to reduce as much
as possible this meaningless information from the original high
dimensional data. To do this, we have compared the perfor-
mance of two features reduction techniques namely, Principal
Component Analysis (PCA) and Kernel Principal Component
Analysis (KPCA). After the step of dimension reduction, data
samples are classified using k nearest neighbor (K-NN) or
decision tree algorithm in order to check whether these samples
are normal or anomalous network connection. In this paper, the
two well-known KDDcup99 and NSL-KDD databases have been
used for testing the proposed approaches. Experimental results
show that KPCA with the power kernel performs better than
many other types of kernels, especially once we have used the
KNN classifier. Additionally, we have noted that KPCA method
also overcomes PCA in detecting denial of service (DOS) and
probing attacks. Lastly, when we have employed a decision tree
classifier, KPCA with the spherical kernel takes the advantage
over the same kernels used with KNN.

Index Terms—Network security, Intrusion detection system
(IDS), PCA, KPCA.

I. INTRODUCTION

HE security of a computer network is compromised

when an intrusion takes place. An Intrusion Detection
System (IDS) is an important mechanism that attempts to
identify any set of actions or malicious activities which can
compromise network security policy. Practically, there are
two main intrusion detection techniques: misuse detection
and anomaly detection. The misuse detection recognizes a
suspicious behavior by comparing it to a specific attack
signature that has been already stored in a database of attacks
signatures; unfortunately it cant detect new attacks. STAT [1]
and Snort [2] are examples of IDS using misuse detection
techniques. On the other side, anomaly detection defines
normal behavior as a model, and tries to check any deviation
from the model and thus decides to generate or not the corre-
sponding alert. Anomaly detection was originally introduced
by Anderson [3] and Denning [4] and then implemented in
some IDS like IDES [5] or EMERALD [6].

Many concepts have been developed for the anomaly-
based IDS, such as machine learning, data mining, neural
networks, statistical methods. All of them have been applied
directly on the rough high dimensional data without any
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dimension reduction technique. It can be considered as one
of the principal factors contributing in IDS inefficiency.

The main idea behind our proposed work is to reduce
original features of database connection records by extracting
its relevant information. A simple technique to extract the
relevant information contained in a collection of TCP/IP
connections is to capture the variance in these connection
records. Thus, the extracted information will be used to
classify these network connections as normal or attack.

Mathematically speaking, we want to find the principal
components of the connection records distribution. To do
this, the approach extracts the relevant information using
the eigenvectors of the covariance matrix of all connection
records [7]. These eigenvectors can be defined as a set
of features used to deduce the variation between record
connections. Indeed, each connection is expressed using only
the eigenvectors with the largest eigenvalues given by the
most variance within the set of connection records. The new
subspace spanned by these eigenvectors is constructed using
the Principal Component Analysis (PCA) which has proven
to be efficient in intrusion detection [9][10][11][12].

However, PCA allows only a linear dimensionality reduc-
tion [8]. So, if the data has more complicated nonlinear
structures, which cannot be well represented in a linear
subspace, standard PCA will not be very helpful. As a solu-
tion to this weakness, KPCA (Kernel Principal Component
Analysis) was introduced to extract principal components
by adopting a non-linear kernel method [13] and has also
shown a satisfactory results in the field of intrusion detection
[14][15][16].

On the other hand, we have noted that the most researchers
use KPCA with conventional kernels such as polynomial
or Gaussian kernel. In this paper, we propose new kernels
namely spherical and power kernel that have not been used
before with KPCA.

This paper is organized as follows: Section II is dedicated
to present briefly the two dimensionality reduction methods
PCA and KPCA with special attention to the proposed
kernels. Section III presents the proposed model for IDS.
In Section IV, we will describe and discuss the experimental
results. Finally, Section V gives the concluding remarks and
outlines our future works.

II. PCA AND KERNEL PCA

In this section, we present a modeling concepts and
theoretical analysis of PCA and KPCA methods

A. PCA

Principal component analysis (PCA) is a mathematical
technique that transforms a number of correlated variables
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into a number of uncorrelated variables called principal
components (PCs). Generally, the number of these principal
components is less than or equal to the number of original
variables. The main goal of PCA is to reduce dimensionality
of the initial variables, while retaining as much as possible
the variance present in these samples. This is achieved by
taking only the first few PCs [8].

Suppose we have a training set of M vectors
w1, wa, ...,wp; each vector contain n features. To get n’
(n’ << n) principal components of the training set the
procedure is based on the following steps:

1) Compute the average o of this set :

L M
o= (M)Zwi (1
=1

2) Subtract the mean o from w; and get p; :

pi=wW; —0 2)
3) Compute the covariance matrix C' where :
1 XM
_ T _ T
Crxn = (M)Z;pmi = AA 3)
and 1
Ansm = (—=)pi “)

VM

4) Let Uy be the k" eigenvector of C corresponding to

the Ay associated eigenvalue and U,, x,,» = [U1, ..., Up/]
the matrix of these eigenvectors, so we have
CUi, = AUy, &)

5) Sort the eigenvalues in decreasing order and choose
the first corresponding eigenvectors, those eigenvectors
are called principal components (PC;). Practically, the
number of the principal components chosen depends
on the precision explicitly expressed by

=121 (6)

This ratio defines the information rate kept from the
whole rough input data, by the corresponding n eigen-
values.

Finally, the projection of a new column vector sample
Tnew ON the space constructed by principal components
can be obtained as

t; = PC;T(Em—:w @)

B. Kernel PCA

Kernel PCA allows us to generalize PCA to nonlinear
dimensionality reduction. This can be done by a nonlinear
mapping function @, that transform all samples input into a
higher-dimensional feature space F' as follows:

b:weR"— P(w;) eF
M
Where ®(w;) is a sample of F and > ®(w;) = 0. The

i=1

mapping of w; is simply noted as ®(w;) = P, and the

covariance matrix of this sample in the feature space F' can
be constructed by

M

1

C= (M) izzl((bi — mean)(®; — mean)” (8)
M

Where mean = %. The covariance matrix C' can be

i=1
diagonalized with nonnegative eigenvalues A\ satisfying
Cv=M\v )

Its easy to see that every eigenvector v of C' can be linearly

expanded by
M

V= Z(O&zq),)

=1

(10)

To obtain the coefficients «;, a kernel matrix K with size
M x M is defined and its elements are determined as follows

Kijj=®]®; = ,.0; = k(w;, w;) (11)
Where k(w;, w;) =< ®;,®; > is the inner product of two
vectors in F. If the projected dataset ®(w;) does not have
zero mean, we can use the Gram matrix K’ to substitute the
kernel matrix K using

K/:Kflij*KlM#*lMKl]u (12)

such that 1p; = (1/M)prxar. In order to solve the eigen-
value problem in (9), we can reformulate this equation as
[13]

K'a= M (13)

Let column vectors «; be the orthonormal eigenvectors of
K’ corresponding to the p largest positive eigenvalues \; >
A2 > .. > A, Hence the orthonormal eigenvectors v; of C
can be expressed as

( 1

Vi = (—=
VA
For a new column vector sample x,.,,, the mapping to the

feature space F is ®(z,,.) and then the projection of e,
onto eigenvectors v; is:

)i (14)

t= (UlaU27~~~vvp)Tq)(xnew) (15)

The i*" KPCA transformed feature ¢; can be obtained by
1
Vr

It should be noted that the kernel matrix could be directly
constructed from the training dataset. The common kernel
functions mostly used are :

ti = UiT(I)(xnew) =( )O‘?k(wi’]"”WJ) (16)

* Gaussian kernel :

k(z,y) = el eimma) (17)
* Polynomial kernel :
k(z,y) = (2Ty + 1) where de N (18)

In this paper, we propose to use other kernels which have
not received much attention from the scientific community.
These kernel functions are:

~ Power kernel :

k(z,y) = |lz — y|* where d > 1 (19)
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* Rational Power kernel :

klx,y) = ||z — y||d where 0 <d <1  (20)
* Log kernel :
k(z,y) = —log(|z —y|* + 1) where d > 1 (21)
* Spherical kernel :
3 ||z — 1, ||z —
ko) = 1- 2 e vllye s o)

2 d 2 d

III. PROPOSED MODEL FOR IDS

The architecture and the main idea of our IDS have been
shown in the Fig 1. There are different phases in the proposed
architecture for an efficient network IDS.

Firstly, one database (KDDcup or NSL-KDD) is selected
during this phase. Secondly, we randomly split the original
dataset into two parts, training subset and testing subset.
These two parts of raw dataset are preprocessed in order
to have a standard feature format.

Qriginal
database
KDDcupga /
NSL KDD

Training subset

4

Testing subset

4

Preprocessing step

Feature dimension reduction
(PCATKPCA)

v v

Transformed
Testing subset

.

-

Transformed
Training subset

L.

KMM or
Decision tree
Classifier

Fig. 1: The diagram flow of the proposed IDS.

MNormal
connection

In the training phase, a feature reduction method is
used to extract the optimal features from the original high-
dimensional data and get a new training subset. During the
testing phase, features which were selected in the training
phase will be required to obtain a new testing subset.

Finally, in the classification phase, thanks to the training
subset and the employment of a classifier (KNN [17] or
Decision trees [18]) the IDS will decide whether the testing
samples are normal or not.

A. Selection of suitable Dataset

1) KDDcup99: The KDDcup99 dataset is the most popu-
lar database that has ever been used in the intrusion detection
field. It has been widely used in many contest [19] in order
to present a predictive model able to recognize legitimate
(normal) and illegitimate (called intrusion or attacks) con-
nections in a computer network. The entire training dataset
contained about 5,000,000 connection records. In this paper
we work only with the 10% training dataset consisted of
494,021 records which contain 97,278 normal connections
(i.e. 19.69%). Each TCP connection record is composed
of 41 different attributes that describe the corresponding
connection, and the value of the connection is labeled either
as an attack with one specific attack type, or as normal. Each
attack type falls exactly into the following four categories:

1) Probing: surveillance and other probing, e.g., port

scanning;

2) DOS: denial-of-service, e.g. syn flooding;

3) U2R: unauthorized access to local superuser (root)

privileges, e.g., various buffer overflow attacks;

4) R2L: unauthorized access from a remote machine, e.g.

password guessing.

The test database is composed of 311,029 connections. It
is important to note that the test data includes some specific
attack types which doesn’t exist in the training data. In
details, there are 4 new U2R attack, 7 new R2L attack types,
4 new DOS attack, and 2 new Probing attacks types in the
test dataset that are not present in the training dataset.

2) NSL-KDD: This dataset has been suggested to solve
some of the inherent problems of the KDDcup99 dataset [20].
The advantages of NSL-KDD over the original KDDcup99
can be resumed as follows :

1) It does not include redundant records in the training
set, so the classifiers will not be biased towards more
frequent records.

2) There is no duplicate records in the proposed test
dataset; therefore, the performance of the learners are
not biased by the methods which have better detection
rates on the frequent records.

3) The number of selected records from each difficulty
level group is inversely proportional to the percentage
of records in the original KDD data set. As a result,
the classification rates of distinct machine learning
methods vary in a wider range, which makes it more
efficient to have an accurate evaluation of different
learning techniques.

4) The number of records in the training and testing
datasets are reasonable, which makes it affordable to
run the experiments on the complete set without the
need to select a small portion. Consequently, evaluation
results of different research works will be consistent
and comparable

B. Preprocessing step

The datasets are defined by continuous and discrete at-
tributes values. We have transformed the discrete attributes
values to continuous values by applying the transformation
concept used in [9]. Let’s describe this process briefly: If
a discrete attribute i has k values. we correspond i to k
coordinates composed of one’s and zero’s. After that, we will
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DR(%)

have one coordinate for every possible value of the attribute.
For instance if we consider the protocol type attribute which
can take the following discrete attributes tcp, udp or icmp.
According to the idea, there will be three coordinates for this
attribute. As a consequence, suppose a connection record
contains a tcp (resp. udp or icmp) then the corresponding
coordinates will be (1,0,0) (resp. (0,1,0) or (0,0,1)). With
this technique, each connection record in the datasets will
be represented by 125 coordinates.

IV. EXPERIMENTS AND DISCUSSION

This section is dedicated to evaluate the results obtained
when applying the two dimensionality reduction methods
PCA and KPCA in combination with K-NN and decision
tree classifiers. In order to show the effectiveness of the pro-
posed approaches, we have conducted extensive experiments
using both KDDcup99 and NSL-KDD datasets previously
presented. For KDDCup99, as a training set, we have selected
randomly 1000 normal, 100 DOS, 50 U2R, 100 R2L and 100
PROBE from the 10% training dataset. The test samples is
composed of 100 normal data, 100 DOS data, 50 U2R data,
100 R2L data and 100 PROBE randomly selected from the
test dataset. For NSL-KDD, the simulation settings are the
same as those used in KDDcup99, nevertheless the training
and testing sets are selected from the same original dataset.

The performance of an IDS is evaluated by its ability to
make correct predictions. To examine the performance of the
proposed system we have used two measures: detection rate
(DR) and false positive rate (FPR) defined as follows:

DR — TPZiPFN % 100 (23)
FPR— FPF+7PTN x 100 24)
655
oa]
o
G1'50 2 10

P
k nearest neighbors

(a) KDDcup99

(b)
Fig. 2: Detection rate (%) vs. number of principal components (PC) for two datasets: (a) KDDcup99 and (b) NSL-KDD

Where true positives (TP) correspond to intrusions correctly
predicted. False negatives (FN) refer to intrusions wrongly
classified; false positive (FP) are normal instances wrongly
classified, and true negatives (TN) are normal instances
successfully predicted. Hence, based on these performance
indicators, an efficient IDS should have a high DR and a
low FPR.

In the first experiment, we have performed PCA on
training samples and hence we have obtained the princi-
pal components (PC). The number of PC determines the
dimension of the new reduced samples. Then, we project
the test samples on the subspace spanned by these principal
components, varying their numbers. The objective of this
experiment is to seek the optimal number of PCs which
contribute significantly in increasing detection rate (DR). Fig
2 shows that, only the first three principal components give
a highest detection rate with inertia ratio 7 > 0.99 (equation
(6)) for both datasets.

A second experience tries to determine the number of
neighbors (i.e., k) that yields the best detection rate. To do
that, we have fixed the number of Principal Components at
three and we have varied the number of nearest neighbors
from a wide range of values. For KDDcup99, as shown in
Fig 3a, we can choose k = 3 nearest neighbors which gives
the optimal detection rate. Whereas, for NSL-KDD we take
only one nearest neighbor (Fig 3b) to achieves a maximum
detection rate for PCA. According to the first and the second
experience, we have fixed the number of PCs and the number
of nearest neighbors at their adequate values and try to find
the optimal rate in detecting every type of attacks (DOS,
U2R, R2L, and PROBE). From the Table I, we can see
that for KDDCup99, the two categories of attacks DOS and
PROBE are detected with a rate of 95,13 % for DOS and

a
k nearest neighbors

(b) NSL-KDD

Fig. 3: Detection rate (%) vs. number of nearest neighbors on two datasets
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Fig. 4: Detection rate (%) of KPCA versus different kernels parameters

TABLE I: Attacks detection rate (%) of PCA

Database DOS U2R R2L PROBE
KDDCup99 | 95,1333 | 8,1333 | 3,5667 | 69,8667
NSL-KDD 87,95 98,80 93,85 80,15

69,8 % for PROBE. However, the U2R and R2L attacks are
not well detected with only 8,13 % and 3,5 %, respectively.

In the other hand, the results changed when it comes to
NSL-KDD as shown in Table I. We can note that DOS and
PROBE attacks are highly detected with a rate of 87,95 %
and 80,15 %. Furthermore, in contrast to the first dataset,
U2R and R2L are also well identified as attacks with 98,80
% and 93,85 % respectively.

In the second part of our experiments, we will show how
we can tune Kernel PCA to be more efficient. For that,
we have evaluated the effectiveness of KPCA in intrusion
detection system by executing many steps. Firstly, we im-
plement six kernels, described by equations (17), (18), (19),
(20), (21), (22). Secondly, we try to pick up the maximum
detection rate for KPCA by varying the different kernels
parameters. As illustrated in Fig 4a, the results which concern
KDDcup99 reveal that we can take the following optimal
values for the different kernels parameters: degree d = 2
for polynomial, power and log kernels, d = 0.2 for rational
power, sigma = 10000 for Gaussian kernel and d = 8 for
spherical kernel. On the other side, from Fig 4.b, the best

L oA

r =
S

Power kernel
581 Gaussian kernel
Polynomial kernel
57H —¥— Rational kernel
Log kernel
[}~ Spherical kernel
0 > a4 6 8 10
K nearest neighbors

(a)

values for kernels parameters which give the maximum DR
for KPCA on NSL-KDD are: d = 2 for polynomial and
power kernel, d = 3 for log kernel, d = 0.8 for rational
power, stgma = 9000 for Gaussian kernel and d = 4 for
spherical kernel.

A next step seeks to identify the best kernel for KPCA. To
achieve this goal, we exploit the previous results and fix the
kernels parameters to their optimal values. From Fig 5, we
can observe that the power kernel has a higher detection rate
for the two databases in comparison with other kernels. Once

TABLE II: Attack’s detection rate (%) of KPCA

Database DOS U2R R2L PROBE
KDDcup99 | 96,133 | 9,9333 | 3,4667 | 73,2667
NSL-KDD 93 99 95,30 89.05

the appropriate kernel for KPCA method is found, a next
experiment will compare this method to the classical PCA
on the both database. For KDDCup99, it can be easily seen
that KPCA with the power kernel outperforms PCA when
number of nearest neighbors is between 1 and 4 (Fig 6a).
However, PCA gives fewer false positive alarms (Fig 6c¢). For
the other NSL-KDD database, it is observable that the same
kernel maintains it superiority over PCA in term of attacks
detection (Fig 6b) and also in producing less false positives
(Fig 6d). To further demonstrate the efficiency of KPCA,
Table II illustrates the detection rate for every type of attacks

100

90

80

70F

DR (%)

60+

—&— Power kernel
—#— Gaussian kernel
50 Polynomial kernel
—&r— Rational kernel
Log kernel
Spherical kernel

4% 2 4 6 8 10
K nearest neighbors

(b)

Fig. 5: Detection performance of KPCA using different kernels for the (a) KDDCup and (b) NSL-KDD datasets.

(Advance online publication: 29 February 2016)



TAENG International Journal of Computer Science, 43:1, IJCS 43 1 09

64
62
|-
—~ 60
=X
o
O 58
56
—}— KPCA with Power kernel
=¥—PCA
54 KNN
0 2 4 6 8 10
k nearest neighbors
(a) KDDcup
3
KPCA with Power kernel
PCA
KNN
2.5¢
< 27
=
ol
o
b 1.5¢
1 L
O'50 2 4 6 8 10
k nearest neighbors
(c) KDDCup

100 :
—8— KPCA with Power Kernel
—e—PCA
KNN
95
— 90
=
[a'g
O gsf
1
b
80
"% 2 4 6 8 10
K nearest neighbors
(b) NSL-KDD
4.5
—a— KPCA
- PCA
a4l KNN
3.5
3
e 3
o
(S
2.5+
7
2+ »
1 '50 2 4 6 8 10
K nearest neighbors
(d) NSL-KDD

Fig. 6: Detection rate (%) and FPR (%) of KPCA, PCA and KNN methods with different neighbor number.

(DOS, U2R, R2L and PROBE), and tells us that the two
categories of attacks DOS and PROBE are well detected with
a rate of 96,13% for DOS and 73,8% for PROBE attacks.
Furthermore, we can conclude that these detection rates are
better than those found with PCA (95,13% and 69,8%). In
the other hand, U2R and R2L attacks are not well detected
with only 9,93% for U2R (slightly better than PCA which
gives 8,13%) and just 3,46%. Moreover, we note that for
NSL-KDD the identification of attacks is also more accurate
than those found with PCA.

In this stage of our experiments, instead of using KNN
classifier we work with decision trees classifier and we look
for the kernel which gives highest DR. So, like what we have
done with KNN, we compare the performance of the kernels
at their best and the result is illustrated in Fig 7. We can
see clearly that the spherical kernel outperforms all the other

bz

d=6 d=5  gigma=10000
601 d=4

DR (%)

(a) KDDCup99

TABLE III: Attack’s detection rate (%) of PCA and KPCA

Database The method | DOS U2R R2L PROBE
PCA 81,7 21,6 2,3 70,5
KDDcup99
KPCA 93,7 13,7 3,15 78
PCA 90,35 | 93,6 87,2 85,15
NSL-KDD
KPCA 90,2 92,6 | 87,25 85,45

kernels for KDDcup99 but for NSL-KDD the power kernel
still the best one. To go deeper in detection attacks we expose
in TABLE III the detection of every type of attacks for PCA
and KPCA. It is shown that the detection rates of KPCA
for DOS and PROBE attacks are globally the best compared

d=2

o _d=2 d=2

sigma=900

90}
.80
=
o
& 70
60|
50
o~ oy o > o> =
@ ‘Z}Qe: Q’,~°0 Q}°® Q},\\e e}(\e»
&S & &S
S 52 N & N3 o
<© & & & 3
TS < R
(b) NSL-KDD

Fig. 7: Performance comparison of various kernels for KPCA
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Fig. 8: Detection rate (%) and FPR(%) of KPCA and PCA methods under different dimensionality

to those of PCA, even if the detection rate of U2R is not
acceptable.

In the last experience, using decision tree classifier, we
have compared the DR and FPR for the two algorithms.
From Fig 8a and Fig 8b, which summarizes the comparison
of KPCA and PCA performance, we retain that KPCA on
KDDCup99 with spherical kernel outperforms PCA when we
vary the number of principal components from one to ten.
Otherwise, KPCA with power kernel give nearly the same
results as PCA on NSL-KDD. Unfortunately, in comparison
with PCA, KPCA method has a worse false alarm rate even
if it has a better detection rate especially for KDDCup (Fig
8¢).

V. CONCLUSION

The main idea behind the work presented in this paper is
to reduce the original features that represent all connection
records stored in a dataset for the purpose of intrusion
detection. The proposed work shows, how we can extract
relevant information using PCA and KPCA in order to
build a robust IDS with the maximum detection rate and
minimum false alarms. Experimental results show that KPCA
with the power kernel performs better than many other
types of kernels, especially once we have used the KNN
classifier. Additionally, we have noted that KPCA method
also overcomes PCA in detecting denial of service (DOS)
and probing attacks. Lastly, when we have employed a
decision tree classifier, KPCA with the spherical kernel takes
the advantage over the same kernels used with KNN. Our
future works will be oriented towards advanced dimension
reduction techniques in order to improve the performance of
an IDS, particularly for the CPU time consuming.
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