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Abstract—In various gene expression repositories such as for
Saccharomyces Cerevisiae, it is a usual occurrence that cell cycle
genes are not assigned with biological functions. This is due to
current researches focus on gene function discovery using wet
laboratory which is time consuming and tedious. This research
will focus on the identification of genes’ biological functions
of yeast, Saccharomyces Cerevisiae involved in cell cycle using
time series gene expression data. A method for identifying gene
functions that uses Nonmetric Multidimensional Scaling with
confidence intervals of 95% and confidence ellipse of 95% is
proposed of the computing method for identifying the goodness
of fit per group. The results are cross validated as a comparison
with the three known databases of Saccharomyces Cerevisiae,
Comprehensive Yeast Genome Database of Munich Information
Center for Protein Sequences, Kyoto Encyclopaedia of Genes
and Genomes and protein Basic Local Alignment Search Tool of
National Center for Biotechnology Information. Using sensitiv-
ity analysis of result of identified candidate biological function
group compared with the three databases. This method shows
a good identification of genes biological functions based on
the main characterization of biological phase, using sensitivity
analysis associated with confidence interval. The method were
able to give candidate biological function groups to 97.77%,
175 of the 179 unclassified genes.

Index Terms—Gene expression, Biological function, nMDS,
Confidence Interval, Saccharomyces cerevisiae.

I. INTRODUCTION

CEll cycle is associated with numerous biological
changes, making it an attractive model for the genome

wide regulation of gene activity. The development of mi-
croarray technology has supplied a large amount of data
to the field of bioinformatics. This technique is a key
technology that facilitates the genome wide analysis of gene
expression levels for gene function discovery and biomedical
applications. However, this huge amount of data has no
meaning without doing significant data mining and other
exploratory techniques. Identification of gene functions is
carried out by doing specific laboratory techniques which
are often very tedious.

Studies have been made identifying sets of genes that are
periodically expressed at specific phases of cell cycle in yeast
and the cell cycle phase at each time point[4], [20]. The
group of Cho[4] identified the cell cycle phase based on the
size of the buds, the cellular position of the nucleus and
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standardization to more than 20 transcripts whose mRNA
fluctuations are used as reference.

Yeast genome have been subjected to a number of
high throughput investigations such as gene expression
analysis[1], [6], [13], [25], computational methods for es-
timating cell cycle distribution[17], functional analysis [18]
and identification of cell cycle regulated genes by microarray
hybridization[20] and identification of cell cycle phases using
gene expression by[3] among others.

Gene based clustering is the most common technique
used in clustering gene expression data. The most common
techniques used are: K-means, self-organizing map (SOM),
hierarchical clustering, graph-theoretical approach, model
based clustering, and density based hierarchical approach[6],
[25].

Genes are the basic hereditary unit of living organisms and
are encoded in the chromosomes of an individual and dictate
the biological processes which are carried out by proteins in
a cell. Protein synthesis is dependent on the gene expression
of an organism and gene expressions are measured using
deoxyribonucleic acid (DNA)[24] microarrays.

The gene expression data is highly dependent on the state
of the sample. The state may be the current cell cycle phase,
phenotypic trait, or the tissue where the samples are taken.
A sample may have different gene expressions through time,
and this sample leads to the analysis of time series gene
expression data.

The amount of gene expressed dictates how much pro-
teins are synthesized and therefore responsible for the bio-
chemical interactions taking place inside the cell and gene
expression[24] analysis results are highly dependent on basic
information about samples and not all available time series
gene expression data include these information. This research
endeavoured to develop a method for identifying the candi-
date biological functions of unclassified yeast Saccharomyces
cerevisiae genes.

II. BASIC DEFINITION AND NOTATIONS

A. Gene Function

In this research gene function refers to the genes biological
function as characterized by Cho[4] in his study. The genes
biological functions are: cell cycle regulation (CCR), direc-
tional growth (DG), DNA replication (DNAR), mating path-
way (MP), glycolysis replication(GR), biosynthesis (BIO),
chromosome segregation (CS), repair and recombination
(RR), transcriptional factors (TF) and miscellaneous (MIS).
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B. Data Set

This study will focus on the 384 x 17 normalized data set
of Saccharomyces cerevisiae from the data set of Yeung[25]
as the reduced yeast cell cycle(RYCC).

The group of Cho in 1998[4] were able to characterized
genes to thier cell cycle phases. The characterized genes
are further classified according to their biological functions
as discussed in Section II-A and summarized in Table I.
There are 179 unclassified gene from the 384 normalized
data set[25].

TABLE I: Summary of unclassified and biologically charac-
terized genes in each biological functions for all cell cycle
phases.

No. of No. of No. of No. of No. of
Biological Function Genes Genes Genes Genes Genes Total

Early G1 Late G1 S G2 M
Characterized/Classified
Cell Cycle Regulation (CCR) 3 7 0 1 4 14
Directional Growth (DG) 1 8 1 6 3 19
DNA Replication (DNAR) 6 17 4 0 1 28
Mating Pathway (MP) 3 5 0 0 2 10
Glycolysis Respiration (GR) 9 1 1 0 2 13
Biosynthesis (BIO) 3 3 8 5 2 21
Chromosome Segregation (CS) 0 10 12 3 6 31
Repair and Recombination (RR) 0 13 1 1 1 16
Transcription Factors (TF) 0 3 8 1 5 17
Miscellaneous (MIS) 5 14 5 7 4 35
Total Characterized/Classified 30 81 40 24 30 205
Total Unclassified 37 54 35 28 25 179

C. Non-metric Multidimensional Scaling

The motivation of using the dimensionality reduction tech-
nique called Non-metric Multidimensional Scaling (nMDS)
is from article of Yeung[25] and Taguchi[23]. Taguchi in his
study[23] uses nMDS to analyse the cell cycle periodicity
of the human fibroblast serum and showed the effectiveness
of this technique in visualizing the temporal patterns of
gene expression level. nMDS is used for the purpose of
visualizing a highly dimensional data in a two dimensional
or three dimensional space. Projecting the data into a lower
dimension makes it easy for domain experts in analysing
thier data.

1) Algorithm: Let O be the set of n objects and E be the
Euclidean space. The goal of nMDS is to find a mapping
from O to E such that the dissimilarity between the objects
in O are consistent as much as possible with the distances
of the objects in the Euclidean space.

The distance between two object in O, say xi and xj
such that 1 ≤ i, j ≤ n is computed to obtain the data set’s
dissimilarity matrix D, let that be defined in the set O x O.
Each object in D is computed using the Euclidean distance.

[D]ij = δ2ij

δ2ij = (xi − xj)T (xi − xj)

From the dissimilarity matrix D, define an inner product
matrix B = XTX , where each element in B is

[B]ij = xTi xj

From the known squared distances in D, find the inner
product matrix B, and then from B to the unclassified
coordinates X . Since B is symmetric, positive semi-definite,
with rank p therefore B has p non-zero eigenvalues and
n−p zero eigenvalues. Given the properties of B we can get

X from B using its spectral decomposition[5]. An iterative
implementation of nMDS minimizes the stress, the minimum
stress computed serves as its goodness of fit.

D. Confidence Intervals

1) Confidence Band: A confidence interval with a confi-
dence coefficient (1 - α), 0 ≤ α ≤ 1, is random interval
whose endpoints are statistics called confidence limits. A
100 (1 - α) % confidence interval is given a 100 (1 - α)
% confidence to contain the true value of the parameter
estimated.

The confidence intervals may be extended to curve estima-
tion where the confidence limit for every value of α on the
curve is plotted along with the estimated curve. A confidence
band encloses an area that one can be 100 (1 -α) % certain
contains the true curve. It gives a visual sense of how well the
data define the best-fit curve. The best-fit curve is constructed
with the confidence band is extended above and below the
curve by

√
c

√
SS

DF
tα(DF )

where c = G |x x σ x G′|x, G|x is the gradient vector of the
parameters at a particular value of x, G′|x is the transposed
gradient vector, σ is the variance-covariance matrix, SS is
the sum of squares for the fit, DF is the degrees of freedom,
and tα (DF ) is the value x’s t critical value based on the
confidence level and the degrees of freedom DF .

2) Confidence Ellipse: Confidence ellipse is another plot
related to the confidence band. It uses intervals for both X
and Y . The interval is projected horizontally and vertically
respectively. The confidence ellipse is formed by the follow-
ing equation

Z̄ ±R x I

where Z̄ is the mean of either X or Y , R is the range of
either X or Y , I is the confidence level 1-α. These form the
minor and major axes of the ellipse. The ellipse is given a
100(1-α)% confidence to contain the data points it bounds.

E. Characterizing Classes of Outliers

The paper[19], described potential outliers as points found
near or at the periphery of a region occupied by a cluster
in the 2-dimensional visualization. The potential outliers are
classified into (1) absolute potential outliers; (2) valid po-
tential outliers; and (3) ambiguous potential outliers through
the use of confidence bands and confidence ellipses.

1) Absolute potential outliers.
An absolute potential outlier is a point lying outside
the confidence band and confidence ellipse. This point
is no longer bounded by the confidence ellipse and is
not represented by fitted curve.

2) Valid potential outliers.
A valid potential outlier is a point lying outside the
confidence ellipse but is still within the confidence
band. This point is no longer bounded by the confi-
dence ellipse but is still represented by fitted curve.

3) Ambiguous potential outliers.
An ambiguous potential outlier is a point that is
bounded by two different confidence ellipses or two
different confidence bands, or a point that is within
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the confidence ellipse but outside the confidence band.
It is unclear as to which cluster should this point be
identified with.

F. Sensitivity of Implementations

The sensitivity is used in statistics to describe diagnostic
tests, and include medical tests, medical signs or symptoms
[27]. The terms used with the description of sensitivity are
true positive (TP ) and false negative (FN ). TP is consid-
ered if a disease is proven present in a patient, the given
diagnostic test also indicates the presence of the disease. The
true positive and true negative are also considered as standard
of truth. FN is considered if the diagnosis test suggest the
disease is absent for a patient with disease.

Sensitivity =
TP

(TP + FN)

=
Number of true positive assessment

Number of all positive assessment

The numerical values of the sensitivity represents the
probability of a diagnostic test identifies positive test. The
higher the numerical value of the sensitivity, the less likely
it returns a false-positive results. The numerical value of
accuracy represents the proportion of the true positive results
in a given population.

III. COMPUTING FRAMEWORK

In this study, the set of classified genes with known
biological functions is used for the analysis especially in
validating and assessing the quality of our visualizations for
the unclassified genes. The RYCC will be used as a data set.

A. Identification of gene biological function groups

The computing framework for the identification of can-
didate gene function group of yeast biological functions
will have these steps and begin by identification of groups
cell cycle phases, followed by computing framework for
identification of genes candidate group biological function:

1) Compute for the nMDS to have a 384 x 2 data matrix
for its appropriateness on projecting the characteristics
of the normalized gene expression as discussed in
Section II-C1.

2) Visualize the result of 384 x 2 data matrix using
a scatter plot graph for each cell cycle phases per
biological funtion GEpb, where GE is a set of genes,
p = (1, 2, ..., 5) is a set of phases and b = (1, 2, ...,
9) is a set of biological functions, with genes based
on Table I, periodic genes classified as discussed in
Section II-A and II-B. Set the input as active input for
graph analysis, graph using 2D scatterplot SPpb, where
SPpb = (SP11, SP12 ,...,SP59) set the variable of for 2
as nMDS y, graph type as regular, no computation for
regression band and fit. Each point in SP12 represents
a gene.

3) Build a confidence ellipse, with 95% level of con-
fidence as discussed in Section II-D per biological
functions Epb , b = 1, 2, 3,...,10, identified in Table I,
and confidence bands as discussed in Section II-D1 of
95% level of confidence for both linear and polynomial
to compute for the goodness of fit.

4) For the fitted curve Cf , compute for the linear Cl,
quadratic Cq , cubic Cc, quartic Cq4 and quintic Cq5.

5) Compute for the root mean squared (RMSD) of all
fitted curve C, and compare for the least RMSD.

6) Identify the best goodness of fit based on least RMSD.
Construct the best fit curve, and the confidence band
above and below the curve.

7) Identify the genes GE that are at its true function
GEtf , genes that are within one confidence ellipse and
band.

8) Identify the genes that are potential outliers and clas-
sify accrording to absolute potential outliers GEab,
valid potential outliers GEv and ambiguous potential
outliers GEam as described Section II-E.

9) Compare the results of the identified genes function
groups with 3 known databases as a cross validation.
The 3 databases are CYGD of MIPS [11], KEGG [14]
and BLAST of NCBI [22], a validation based on the
results generated on the study.
In CYGD MIPS, the gene name is used to search the
database with its functional classification.
In KEGG, the gene name is used to search the
database, where the primary gene name shown first
can be used as an alternative identifier (in place of
the accession number) to retrieve the entry. And the
hierarchical classification of gene functions according
to the KEGG Ontology (KO) system, in which the
third level corresponds to each KEGG pathway map
or BRITE functional hierarchy. The BRITE hierarchy
link will display additional hierarchies, especially for
protein families.
In PBLAST, Standard protein-protein BLAST (blastp)
is used for both identifying a query amino acid se-
quence and for finding similar sequences in protein
databases. Like other BLAST programs, blastp is de-
signed to find local regions of similarity. When se-
quence similarity spans the whole sequence, blastp will
also report a global alignment, which is the preferred
result for protein identification purposes. The AA seq,
the number of amino acids and the sequence data
is used from [14]. The AA seq link generates the
sequence data in the FASTA format. The DB search
link is used for sequence similarity search by BLAST
or FASTA against various databases, and copied for
search in [11].

a) Set the entry sequence (FASTAsequence). In-
sert sequence data (FASTAsequence) from
KEGG[14].

b) Set the search to database reference proteins to
(refseq protein).

c) Based the program selection algorithm to protein-
protein BLAST (blastp).

d) Algorithm parameters, is set to max target
sequences, the scoring parameters matrix to
BLOSUM62.

e) Identify using the descriptions on sequences pro-
ducing significant alignments in the query of
100% and maximum identity of 100%.

10) Measure the sensitivity of the methods used by com-
paring the results of the MIPS search with the can-
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didate biological functions identified and discussed in
Section II-F.

IV. RESULTS AND DISCUSSION

This research classified the set of previously identified
unclassified genes as shown in Table I with respect to
their functional classification from [4] and from the MIPS
[11], KEGG[14] and BLAST database[22], then relate the
extracted functions of genes to its classification based on the
criteria set in the methodology. The number of data set per
biological function are identified for analysis with respect
to the confidence ellipse and confidence bands. Biological
functions with number of identified genes lower than 3 are
excluded from analysis since at least 3 points are needed to
compute for the confidence ellipse. And biological functions
with number of classified genes lower than 4 are excluded
from analysis since at least 4 points are needed to compute
for the goodness of fit.

The visualization of the normalized data set using nMDS
per biological function per cell cycle phase is shown in
Section IV-A. IV-B, IV-C, IV-D and IV-E. Table II shows the
number of classified true functions identified on all phases of
cell cycle. The 23.46% of the previously unclassified genes
as of year 2006[26] were given a candidate true functions for
classification. And 133 are considered as potential outliers,
74.30% are considered ambiguous genes, since this set of
genes were identified in multiple biological functions accord-
ing to the criteria set. And there are 97.77% of previously
unclassified genes in[25], were given a candidate biological
functions based on the methods discussed in III-A as shown
in Table III as of May 2014 with respect to the 3 databases.
Assessed the given method using the defined criteria in
sensitivity based on the paper of Zhu[27] as discussed in
Section II-F.

TABLE II: The number of candidate true functions genes
identified on each cell cycle.

Phases No. of Identified No. of
True Functions Unclassified

Early G1 16 37
G1 2 54
S 7 35

G2 12 28
M 5 25

Total 42 179

TABLE III: The summary of the number of candidate iden-
tified biological functions per cell cycle phases.

Phases No. of No. of Total No. of
one Ambiguous Genes with

Candidate & Valid Outliers Candidate
Early G1 16 18 34

G1 2 51 53
S 7 28 35

G2 12 16 28
M 5 20 25

Total 42 133 175

A. Candidate Biological Functions for Early G1

The visualization of early G1 of the classified gene, that
have enough number of genes to generate a confidence ellipse

(a) CCR (b) BIO

(c) MP (d) GR

(e) DNAR

Fig. 1: nMDS visualization of RYCC data set with 95%
confidence ellipse and 95% goodness of fit of classified genes
with unclassified genes in early G1, (a) Cell cycle regulation
(b) Biosynthesis (c) Mating pathway (d) Glycolysis respira-
tion and (e) DNA replication.

and regression bands, with respect to the unclassified genes
of the RYCC data set[26] as discussed in Section II-B and
Table I. The nMDS visualization of RYCC data set with 95%
confidence ellipse and 95% goodness of fit of classified genes
with respect to the unclassified genes in early G1 are shown
in Figure 1. Table IV shows the candidate biological function
of genes based on the classification as discussed in Section
III-A for the true candidate functional classification.

TABLE IV: The identified candidate true biological functions
of unclassified genes during the early G1 phase of cell cycle,
using 95% confidence ellipse and 95% confidence band.

No. Gene Name Candidate Gene True Classification
1 YML109w BIO
2 YBR054w BIO
3 YPR002w GR
4 YBR158w BIO
5 YDL117w BIO
6 YPL066w BIO
7 YBR052c BIO
8 YHR022c BIO
9 YBR053c BIO
10 YKL163w GR
11 YDR511w MIS
12 YLR254c MIS
13 YBR231c MIS
14 YDR368w MIS
15 YLR050c MIS
16 YLR051w MIS

B. Candidate Biological Functions for the First Growth
Phase (G1)

The visualization of G1 of the classified genes, that have
enough number of genes to generate a confidence ellipse
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(a) CCR (b) BIO

(c) DG (d) CS

(e) DNAR (f) RR

Fig. 2: nMDS visualization of RYCC data set with 95%
confidence ellipse and 95% goodness of fit of known genes
with respect to the unclassified genes in G1. (a) CCR (b)
BIO (c) DG (d) CS (e) DNAR (f) RR

and regression bands, with respect to the unclassified genes
of the RYCC data set[26] as discussed in Section II-B and
Table I. The nMDS visualization of RYCC data set with
95% confidence ellipse and 95% goodness of fit of classified
genes with respect to the unclassified genes in G1 are shown
in Figure 2. Table V shows the candidate biological function
of genes based on the classification as discussed in Section
III-A for the true candidate functional classification.

TABLE V: The identified candidate biological functions of
unclassified during the G1 phase of cell cycle, using 95%
confidence ellipse and 95% confidence band.

No. Gene Candidate Gene Classification
1 YJR043c MP
2 YDR493w BIO

C. Candidate Biological Functions for Synthesis (S)

The visualization of S of the classified genes, that have
enough number of genes to generate a confidence ellipse
and regression bands, with respect to the unclassified genes
of the RYCC data set[26] as discussed in Section II-B and
Table I. The nMDS visualization of RYCC data set with
95% confidence ellipse and 95% goodness of fit of classified
genes with respect to the unclassified genes in S are shown
in Figure 3. Table VI shows the candidate biological function
of genes based on the classification as discussed in Section
III-A for the true candidate functional classification.

D. Candidate Biological Functions for the Second Growth
Phase (G2)

The visualization of G2 of the classified genes, that have
enough number of genes to generate a confidence ellipse

(a) DNAR (b) BIO

(c) CS (d) TF

Fig. 3: nMDS visualization of RYCC data set with 95%
confidence ellipse and 95% goodness of fit of known genes
with respect to the unclassified genes in S phase (a) DNAR
(b) BIO (c) CS (d) TF .

TABLE VI: The identified candidate biological functions of
unclassified during the synthesis phase of cell cycle, S using
95% confidence ellipse and 95% confidence band.

No. Gene Candidate Gene Classification
1 YOL019w DNAR
2 YDR252w CS
3 YMR048w BIO
4 YGR189C BIO
5 YFR026C BIO
6 YKL066W BIO
7 YNL072W BIO

(a) DG (b) BIO

(c) CS

Fig. 4: nMDS visualization of RYCC data set with 95%
confidence ellipse and 95% goodness of fit of known genes
with respect to the unclassified genes in G2 phase (a) DG
(b) BIO (c) CS.

and regression bands, with respect to the unclassified genes
of the RYCC data set[26] as discussed in section II-B and
Table I. The nMDS visualization of RYCC data set with
95% confidence ellipse and 95% goodness of fit of classified
genes with respect to the unclassified genes in G2 are shown
in Figure 4.

E. Candidate Biological Functions for Mitosis (M)

The visualization of M of the classified genes, that have
enough number of genes to generate a confidence ellipse
and regression bands, with respect to the unclassified genes
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TABLE VII: The identified candidate biological functions of
unclassified during the G2 phase of cell cycle, using 95%
confidence ellipse and 95% confidence band.

No. Gene Candidate Gene Classification
1 YIL131c DG
2 YDR451c DG
3 YCR085w DG
4 YMR003w DG
5 YOR073w DG
6 YLL047w DG
7 YDR366c DG
8 YCR086w DG
9 YDR325W DG

10 YKL069W DG
11 YPL264C DG
12 YKL053W MIS

(a) CCR (b) DG

(c) CS (d) TF

Fig. 5: nMDS visualization of RYCC data set with 95%
confidence ellipse and 95% godness of fit of known genes
with respect to the unclassified genes in M phase (a) CCR
(b) DG (c) CS (d) TF.

of the RYCC data set[26] as discussed in section II-B and
Table I. The nMDS visualization of RYCC data set with 95%
confidence ellipse and 95% goodness of fit of classified genes
with respect to the unclassified genes in M are shown in
Figure 5. Table VII shows the candidate biological function
of genes in G2 based on the classification as discussed in
Section III-A for the true candidate functional classification.
Table VIII shows the candidate biological function of genes
in M based on the classification as discussed in Section III-A
for the true candidate functional classification.

TABLE VIII: The identified candidate biological functions
of unclassified during the M phase of cell cycle, using 95%
confidence ellipse and 95% confidence band.

No. Gene Candidate Gene Classification
1 YGL201c CCR
2 YOL137w CCR
3 YPL186c CCR
4 YOL014w MIS
5 YGR230w MIS

F. Sensitivity of the computing framework

The true positives were identified and compared from the
unclassified genes of [4] in 1998 and [25] in 2001, with
the database search in MIPS[11] as of May 2014. The true
positives and false positives of the result in the candidate

biological functions identified by the methods used are shown
in summary in Table IX. The rating for each phases are sum-
marized. The numerical values of the sensitivity represents
the probability of a diagnostic test identifies positive test. The
higher the numerical value of the sensitivity, the less likely
it returns a false-positive results.

TABLE IX: The summay of true positive and false negative
identified on cell cycle phases.

Phases No. of No. of Total No. of Rate of
True Positive False Positive Subjects Sensitivity

Early G1 15 6 21 0.7143
G1 26 8 34 0.7647
S 10 12 22 0.4545

G2 9 6 15 0.6000
M 2 0 2 1.0000

Total 62 32 94 0.7067

V. CONCLUSION

This research was able to develop a method to identify
candidate genes biological functions group using regression
and visualization for unclassified genes. Cross validation
was achieved through comparison to verify the correctness
of the identified candidate biological functions with the
three known databases in yeast; with CYGD of MIPS[11],
KEGG[14] and BLASTP of NCBI[22].

From the methods and tools used, this research was able
to achieve the following:

1) The identified genes through the confidence interval
ellipse and confidence bands, exhibit similarity of
biological functions based on the defined biological
functions per phase as enumerated in Section II-B and
tabulated in Section IV.

2) Identified in unclassified genes are proteins that has not
yet been isolated and its amino acid sequence is pre-
dicted from the DNA sequence available and suggested
biological functions start characterizing these genes.

3) The methods are able to give candidate biological
functions to 97.77%, 175 of the 179 unclassified genes
in (Cho,1998).

4) Based on the sensitivity rating of 0.7067 of the meth-
ods used, this can be increased since most genes can
exhibit one or more biological functions.

VI. RECOMMENDATIONS

With the results of this research and through domain expert
validation, we recommend that:
• Further analysis of domain experts on the set of outlier

genes detected to the set of genes with proteins of
unknown functions from [4] and MIPS database.

• A set of wet laboratory be done on possible identifica-
tions of biological functions for genes for Tables IV, V,
VI, VII and VIII.

• Consider visualizing another gene expression data in
time series using nMDS visualization.
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