
 


 

Abstract—Due to the constant technological advances and 

massive use of electronic devices, the amount of data generated 

has increased at a very high rate, leading to the urgent need to 

process larger amounts of data in less time. In order to be able 

to handle these large amounts of data, several techniques and 

algorithms have been developed in the area of knowledge 

discovery in databases, which process consists of several stages, 

including data mining that analyze vast amounts of data, 

identifying patterns, models or trends. Among the several data 

mining techniques, this work is focused in clustering spatial 

data with a density-based approach that uses the Shared 

Nearest Neighbor algorithm (SNN). SNN has shown several 

advantages when analyzing this type of data, identifying 

clusters of different sizes, shapes, and densities, and also 

dealing with noise. This paper presents and evaluates a new 

extension of SNN that is able to deal with repeated objects, 

creating aggregates that reduce the processing time required to 

cluster a given dataset, as repeated objects are excluded from 

the most time demanding step, which is associated with the 

identification of the k-nearest neighbors of a point.  The 

proposed approach, SNNagg, was evaluated and the obtained 

results show that the processing time is reduced without 

compromising the quality of the obtained clusters. 

 
Index Terms—Spatial Data, Spatio-Temporal Data, 

Clustering, Density-based Clustering, SNN. 

 

I. INTRODUCTION 

N 1996, [1] claimed that “There is an urgent need for a 

new generation of computational theories and tools to 

assist humans in extracting useful information from the 

rapidly growing volume of digital data”. Several years have 

passed and several computational theories and tools 

emerged to improve the capability to handle large amounts 

of data. However, due to the ever-increasing volume of data 

that organizations are able to collect, there is still the need 

for new algorithms with increased performance.  

Clustering is an unsupervised learning method that 

constitutes a cornerstone of an intelligent data analysis 

process [2], being capable of grouping a set of objects in 

classes of similar objects [3]. From the several clustering 

approaches, the density-based one showed to be especially 
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appropriated for the analysis of spatial data [4]–[7]. In 

particular, the Shared Nearest Neighbor (SNN) algorithm, 

which presents as main advantages the capability of 

identifying clusters of different sizes, shapes, and densities, 

as well as being able to deal with noise [8]. 

Although several improvements have been made to the 

SNN performance [5], [6], which is constrained by the 

identification of the k-nearest neighbors of an object, new 

developments are still needed as the volume of data that 

needs to be processed continues to grow. 

This paper presents a new extension of the SNN 

algorithm, which is able to exclude repeated objects from 

the clustering process, thus reducing the number of points in 

the most demanding step, being able to add those points to 

the obtained clusters, without compromising the quality of 

the results. The proposed approach is named SNNagg (SNN 

with aggregates) due to the fact that a given point may 

represent an aggregate of points in the clustering process, 

assuming that huge datasets may include a relevant number 

of repeated points.  

The obtained results show that the time needed to process 

the dataset decreases, also presenting results that do not 

compromise the analytical task, as the identified clusters are 

able to properly represent the expected reality, here 

evaluated using synthetic datasets where the results are 

previously known, and real datasets where the results are 

evaluated by previously defined quality measures.    

The outline of this paper is as follows. Section III briefly 

describes clustering approaches and emphasizes the 

advantages of a density-based approach in the analysis of 

spatial data, as well as presents in more detail the SNN 

algorithm. Section II introduces the related work about SNN 

and its several extensions or variants. Section IV describes 

the new approach proposed in this paper, the SNNagg (SNN 

with aggregates), while Section V discloses the quality of 

the obtained clusters and evaluates the processing time and 

the impact of the number of repeated objects in the 

clustering results. Section VI summarizes the presented 

work and reveals directions for future work. 

II. CLUSTERING AND THE SNN ALGORITHM 

This section provides an overview on clustering 

approaches and describes the SNN algorithm, the basis for 

the work here presented. 

A. Clustering Approaches 

Clustering is the process of grouping large datasets where 

objects in the same group should be as similar as possible 

and different to objects in other groups. It is known as 

unsupervised learning as no a priori information about the 

data is required [3]. Clusters emerge naturally from the data 

under analysis using some distance function used to measure 

the similarity among objects. This technique is classified in 
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four main categories [3], [9]: Partition Clustering, 

Hierarchical Clustering, Density-based Clustering and Grid-

based Clustering. 

In the first category (Partition), the dataset is decomposed 

into a set of clusters, being the number of clusters defined 

by a k number, which is a parameter given by the user. Each 

cluster must contain at least one object and each object 

belongs to exactly one or none group. Most partitioning 

methods are distance-based and can be divided into two 

groups: Centroid-based or Representative Object-based 

techniques. The first one defines the centroid of a cluster as 

the mean value of the points within the cluster, being k-

means one of the most well-known centroid-based 

algorithms [10]. The second technique derives from the first 

one. The way the cluster is characterized is defined from a 

measure (for example, average distance) between a point 

and the point that defines the cluster. Some of the algorithms 

used in this technique are k-Medoids, PAM (Partitioning 

Around Medoids), CLARA (Clustering Large Applications) 

and CLARANS (Clustering Large Applications based on 

Randomized Search) [3]. 

The hierarchical clustering category groups the data 

objects into hierarchies or “trees” of clusters, following two 

different approaches: divisive algorithms or agglomerative 

algorithms. In divisive, the algorithm starts by considering 

that all the objects are in one group and, after that, it starts to 

successively divide this group into two or more groups if 

necessary. This iterative process stops when the maximum 

number of clusters is reached or the adopted metric indicates 

that the obtained set of clusters is the best possible solution. 

The second strategy is the opposite of the first one. It starts 

by considering that each object is a group and then 

successively integrates clusters to form new clusters. The 

most cited algorithm that uses divisive techniques is CURE 

(Clustering Using REpresentatives) while some algorithms 

that use agglomerative techniques are BIRCH (Balanced 

Iterative Reducing and Clustering using Hierarchies), 

Chameleon and ROCK (RObust Clustering using linKs) [9]. 

Unlike partitioning and hierarchical methods, density 

based algorithms identify clusters independently of their 

shape. Typically, they classify dense regions as clusters and 

classify as noise regions with low density of objects. Some 

density-based algorithms are SNN, DBSCAN (Density-

Based Spatial Clustering of Applications with Noise), 

OPTICS (Ordering Points to Identify the Clustering 

Structure) and DENCLUE (DENsity-based CLUstEring) 

[3]. 

The last category is the Grid-based clustering in which the 

space is divided into a finite number of cells creating a grid 

structure. After that, all the operations for clustering are 

performed in each cell. Some of the algorithms used in this 

category are STING (Statistical Information Grid), 

WaveCluster and CLIQUE (CLustering In QUEst) [9]. 

After reviewing the several categories of clustering and 

considering that this work aims to analyze spatial data, 

density-based approaches were selected as these algorithms 

can handle noise, outliers and can create clusters of different 

sizes and shapes. Moreover, other advantages have been 

pointed, including [9], [11]–[14] that previous knowledge of 

the data set is not required (there is no need for the number 

of clusters as an input parameter) and that it is possible the 

identification of an arbitrary number of clusters with 

different densities to better fit the data under analysis. 

Density-based algorithms usually require a set of input 

parameters like the radius of the neighborhood or the 

number of neighbors, which can be used to control the type 

of expected result, from less clusters with more points, to 

more clusters with less but more similar points [4], [15].  

B. Shared Nearest Neighbor (SNN) 

The SNN algorithm is a density-based clustering 

algorithm proposed by [8]. It has the capability of 

identifying clusters of different shapes, sizes and densities, 

as well as the ability to deal with noise, which makes it 

particularly suited for the analysis of spatial data. The 

algorithm computes a list of the k-nearest neighbors for each 

point using a distance function, usually the Euclidean or the 

geographical distance. The SNN is based on the notion of 

similarity and defines this similarity between points by 

calculating the number of nearest neighbors that two points 

share. The density of a point is the number of neighbor 

points within a given radius. Points with high density are 

classified as core points and points with low density will 

become noise points [9]. This similarity definition between 

points allows the algorithm to deal with datasets of variable 

density, being able to identify clusters with those different 

densities [8]. 

This algorithm needs three input parameters: k, Eps and 

MinPts. K is the number of neighbors, Eps defines the 

threshold density and MinPts is the minimum density that a 

point has to have to be considered a core point [8]. 

The most important input parameter is k (neighborhood 

list size) because it strongly influences the granularity of the 

clusters. If k is too small, even a uniform cluster will be split 

into several clusters and because of that, the algorithm will 

have a tendency to find many small, but tight, clusters. On 

the contrary, if k is too high, the algorithm will find only a 

few large, well separated clusters [8]. 

The main steps of the SNN algorithm can be briefly 

summarized as [8]: 

1. Compute the similarity matrix. This is a similarity 

graph in which objects are represented as nodes and 

whose edges include a weight that define the 

similarity between objects; 

2. Sparse the similarity matrix by keeping only the k 

most similar neighbors of a point. Keep only the k 

strongest links of the previous similarity graph; 

3. Construct the shared nearest neighbor graph from 

the sparse similarity matrix. In this step we can 

apply the similarity threshold and find the connected 

components to obtain the clusters [16]; 

4. Find the SNN density of each point. Using the user-

defined parameter Eps, find the number of points 

that have a SNN similarity equal or greater than Eps 

to each point. This is the SNN density of the point; 

5. Find the core points. Using other user-defined 

parameter MinPts, find the core points, meaning all 

points that have a SNN density equal or greater than 

MinPts; 

6. Form clusters from the core points. If two core 

points are within the radius of Eps of each other, 

they are placed in the same cluster; 
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7. Discard all noise points. All non-core points that are 

not within a radius of Eps of a core point are 

discarded; 

 Assign all the other points to clusters: non-noise and 

non-core points are assigned to the nearest core 

point.  

 

Considering these 8 steps and the need of 3 input 

parameters (k, Eps, and MinPts), the SNN algorithm is now 

represented as in Fig.  1, where k is used to set the number 

of nearest neighbors that need to be identified for each point, 

Eps for filtering points attending to the calculated densities 

and MinPts to identify the core points used in the clusters 

construction. The representation will be later used to 

identify the steps added by the SNNagg approach. 

 

 
Fig.  1. SNN main steps 

 

For measuring the distance between points, a distance 

function is needed. In the context of this work, given two 

objects or data points, < 𝑥1, 𝑦1 >  and p2 (< 𝑥2, 𝑦2 >), 

the distance between them is measured using Equation 1, 

which considers the Euclidean distance between the points. 

 

𝐷𝑠 𝑝1, 𝑝2 =   𝑥1 − 𝑥2 
2 +  𝑦1 − 𝑦2 

2

 
As will be seen in the following section, this distance 

function can integrate more dimensions of analysis, as the 

time dimension or semantic attributes, which enrich the 

analyses that can be done over a dataset. 

III. RELATED WORK 

First introduced by [16] and then extended by [8], the 

SNN algorithm has been used due to its capability of 

identifying clusters with convex and non-convex shapes, 

having different sizes and densities, as well as its ability to 

deal with noise. 

Several works were undertaken in order to improve SNN 

performance or to understand its behavior in what concerns 

the influence of its input parameters. As already mentioned, 

SNN has three input parameters, which values strongly 

influence the results that can be obtained.  

 To understand the behavior of the input parameters and 

their influence on the results, [17] identified an heuristic 

that, in an automatic way, finds a set of adequate input 

parameters. In this work, a strong correlation between k and 

MinPts was found and, also, it is mentioned that Eps is a 

less sensitive parameter, due to the wide range of values it 

can adopt for a pair of k and MinPts values. Although being 

Eps less sensitive, the authors show that it is possible to 

obtain better results for specific Eps values [18]. These 

values rely on the average number of arcs per node in the 

SNN graph, a value that depends of k. In terms of input 

parameters, the authors propose that k must be between 0,7 

and 1% of n, being n the number of objects in the dataset. 

MinPts must have a value between 92% and 94% of k and 

Eps must be 18,5% of MinPts. The obtained values can be 

used as initial values for starting a clustering process with 

SNN. For a more detailed analysis of the influence of the 

input parameters in the clustering results, please see [17-18]. 

For improving the SNN performance, [6] implemented 

two versions of SNN that make use of metric data structures 

to improve the search in the k-nearest neighbors list. These 

two implementations benefit from different metric data 

structures: the kd-tree, which works on primary memory, 

and the df-tree, which works on secondary memory. 

Although the results from applying the df-tree were not 

impressive, the performance results for the primary memory 

implementation showed an effective improvement of the 

SNN performance. Also, the work of [5] presented an 

extension of the SNN, the Fast-SNN (F-SNN) approach, 

which divides the space into a matrix that optimizes the 

search for the k-nearest neighbors of a point, as the authors 

identified an heuristics that, depending on the used distance 

function, is able to limit the search space to the cells that can 

have possible neighbors. This approach emerged from the 

identification of the most inefficient step of the algorithm, 

which is the calculation of neighbors’ list with a complexity 

of O(n2), due to the need of calculation of the similarity 

matrix between all points [19]. The obtained results showed 

an impressive decrease in the needed processing time. 

Other extensions to the SNN include the work of [20], 

where improvements are made making available an 

incremental clustering approach that does not require the 

processing of all algorithm’s steps every time new objects 

need to be added to the previously identified clusters. The 

SNN++, an incremental version of SNN, maintains most of 

the SNN steps, with the advantage that new objects are 

included in previous existing clusters without the need to 

recalculate the nearest neighbor list, and consequently, to 

redo all the clustering process. Afterwards, this incremental 

version was extended to automatically adapt the input 

parameters following the [17] heuristics and also to be able 

to consider several dimensions in the distance function [21], 

like the spatial, temporal and one or more semantic 

dimensions, with a dynamic incremental version of SNN for 

clustering spatio-temporal data [7]. Considering the distance 

function expressed by Equation 1, this function is an 

instance of a more generic distance function defined by [21] 

and used by [7], in which more than 4 dimensions of 
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analysis can be simultaneously considered. In this approach, 

4D+SNN, and considering two objects, <

𝑥1, 𝑦1, 𝑡1, 𝑎1 >  and p2 (< 𝑥2, 𝑦2, 𝑡2, 𝑎2 >), the distance 

between them is measured using Equation 2. Typically, x 

and y are the spatial coordinates, t the timestamp and a an 

additional attribute. 

 

4𝐷 𝑝1, 𝑝2 = 𝑤𝑠 ∗
𝐷𝑠(𝑥1 ,𝑥2 ,𝑦1 ,𝑦2)

𝑀𝑎𝑥𝑆
+ 𝑤𝑡 ∗

𝐷𝑡(𝑡1 ,𝑡2)

𝑀𝑎𝑥𝑇
+  𝑤𝑎 ∗

𝐷𝑎(𝑎1 ,𝑎2)

𝑀𝑎𝑥𝐴
   (2) 

 

In the 4D function, the user can use any distance function 

(Ds, Dt and Da) to calculate the differences (respectively, 

spatial, temporal and semantic attribute) between the points. 

ws, wt and wa are used to assign a weight to each one of 

these components (spatial, temporal and semantic 

dimensions). To guarantee that these weights are an 

effective way for controlling the dimension’s relative 

importance in the distance function, it is necessary that the 

range of values for all distance components are on the same 

order of magnitude. One way to achieve that is by 

normalizing the computed values Ds, Dt and Da, in such a 

way that Ds/MaxS, Dt/MaxT, Da/MaxA become values of 

the same order of magnitude when the algorithm is 

calculating the k-neighbours lists. Without this 

normalization process, the integrated distance function may 

become strongly dependent of a single distance component 

if their values are excessively high, causing the other 

distance components to become irrelevant.  In [21], a 

method for extracting MaxS, MaxT and MaxA from the 

dataset is proposed. Using this approach, the user can 

control the pretended results attending to the analytical 

context.  

Besides all the improvements already made around SNN, 

there is still the need to optimize the analysis of vast 

amounts of data, as the size of the datasets continue to 

growth. In that sense, other works focus their attention in the 

aggregation of data using the hubness concept, as some 

points, in high density datasets, appear as neighbors in the 

neighbors’ list more often than other points in the dataset 

[22-23]. This concept of hubness points recall for the need 

of reducing the number of points to cluster without 

compromising the quality of the clustering results. This was 

done by [23] with a two-steps methodology for clustering at 

different granularity levels, with a multi-granular 

hierarchical model where the datasets are generalized to 

obtain less detailed representations. With this approach, the 

clustering process can be first applied to a less detailed 

dataset and then be extended, to the objects that were 

filtered in the first step, without losing precision. 

Following the principles of hubness and a clustering 

process that can filter out data points without compromising 

the clustering results, this paper presents an approach that 

removes repeated objects from the dataset to cluster, being 

able to add them latter to the obtained clusters without 

compromising the clustering results. This approach is 

presented in the next section. 

IV. SNNAGG (SNN WITH AGGREGATES)  

As the volume of data increases, also increases the 

similarity between the objects of those datasets. The main 

objective of this work is to improve the SNN performance 

on large datasets taking into consideration two premises: (1) 

the execution time needs to be reduced; (2) the number of 

objects in the dataset is also reduced introducing the notion 

of repeated objects. As the number of different objects to 

cluster decreases, also decreases the time needed to process 

those objects. In this work, the input dataset is analyzed in 

order to identify those repeated objects, to exclude them 

from the clusters’ construction step, being those points later 

added to the identified clusters without compromising the 

clustering results.  

As mentioned, when the size of a dataset grows, it is 

expected that the number of equal or similar objects 

increases. In this work, we are interested in repeated objects, 

as for similar objects an analogous approach can be 

followed as long as a similarity function is defined. 

 Removing repeated objects from the dataset would 

optimize the search for the k-nearest neighbors of an object, 

as fewer objects need to be tested, improving the overall 

SNN performance. We started our developments by 

removing repeated objects in the beginning of the clustering 

process, adding them at the end to the obtained clusters. The 

proposed approach was named SNNr&r (SNN Remove and 

Replace) and is shown in Fig.  2. Two steps were added to 

the scenario previously presented in Fig.  1, namely steps 

1.1 (for removing repeated objects) and 5.1 (for adding the 

repeated points to the identified clusters). Moreover, and 

besides the file with the clustering results, another file is 

created to store the processing time, is order to verify the 

performance of this approach. 

 

 
Fig.  2. Main steps for the SNNr&r approach  

  

The reading of a dataset (Fig.  2 – step 1) is a sequential 

process in which a new attribute is added to each object to 

store the information about the number of repeated objects it 

has. By default, this new attribute (NumberOfObjects) has 

the value of 0, being incremented by 1 each time a repeated 

object is found. All objects with a NumberOfObjects greater 
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than 0 are called representative objects, as they will 

represent all the repeated ones. As we can see in Fig.  3, and 

taking into consideration a spatial dataset where five 

repetitions were introduced in a very specific area, the 

NumberOfObjects presents a summary of the dataset, giving 

a clear overview of the number of repeated objects that will 

be removed in step 1.1. 

 

 
Fig.  3. Repeated objects spatial representation 

 

After the identification and removal of all repeated 

objects, the clustering process proceeds as usually with a 

reduced dataset. The clusters are identified and for each 

representative object, all the repeated objects are assigned to 

the cluster where the representative is located (Fig.  2 – step 

5.1).  

The preliminary results obtained with this approach were 

very promising, showing in all tests a reduction of the 

processing time, being more efficient as more repeated 

objects are present in the analyzed dataset. However, when 

analyzing the quality of the results in terms of the clusters 

constitution, several differences were identified with regard 

to the Original SNN algorithm, mainly when the density of 

the datasets is supposed to affect the clustering results in the 

formation or merging of different clusters. Taking into 

consideration the sample dataset shown in Fig.  3, we can 

see that running the Original SNN the obtained result is 

different from the SNNr&r. While the first identified 

different clusters in the area where repeated objects were 

introduced (Fig.  4 a)), it also identified a new cluster were 

no changes were made to the original distribution of the 

points. In terms of the SNNr&r, it was unable to detect a 

denserest area, as the density of the points was not 

considered in the clustering process (Fig.  4 b)). In all the 

presented clustering results, points identified as noise are 

plotted in black. 

 Although the results do not need to be exactly the same, 

as the user may accept to have different results, as long as 

they are considered good enough for the analytical task in 

hands, this approach can be improved if the number of 

repeated objects has impact in the clustering process, as the 

nearest neighbors’ lists are severely affected by the repeated 

objects. Although this and other tested datasets will be 

introduced in more detail in section V, it is worth 

mentioning that this dataset integrates in its original version 

8000 points and that, in this case, 2872 repeated objects 

were randomly introduced in the area identified in Fig.  3.  

In terms of the input parameters for each run of the SNN, 

either for the Original one or the SNNagg, it is important to 

mention that all of them were calculated considering the 

heuristics identified in the work of [17]. Although 

afterwards a specific section is dedicated to the comparison 

of the different approaches, for analyzing the results in 

terms of the expected clusters, each approach uses its 

specific n, the number of objects that are processed in the 

clusters construction step that, in the case of the SNNagg, 

excludes the number of repeated objects. Only when 

performance is in examination, both approaches are 

compared using the same input parameters.  

 

 
a) Original SNN (k=92, MinPts=88, Eps=17) 

 
b) SNNr&r (k=68, MinPts=64, Eps=12) 

Fig.  4. Spatial representation of the clustering results 

 

To overcome the mentioned drawback, the SNNr&r 

approach advanced to the SNNagg (SNN with Aggregates), 

in which a new task is taking care of incrementing the 

density of the representative points, considering this way 

more dense regions of objects and how this needs to affect 

the process of clusters construction (Fig.  5 - step 3.1). For 

representative objects, their density value corresponds to the 

number of repeated objects they represent. The main steps 

of the SNNagg approach can now be summarized as: 

1) Read objects from the dataset; remove all the 

repeated ones and increment the representative 

objects; 

2) Identify the nearest neighbors’ lists without 

considering repeated objects. Each object in this 

list has the information of the number of 

repeated objects it represents; 

3) Calculate the density of the points. It starts by 

being the same as the original SNN, being later 

updated for representative points. An increment 

of 1 is added for each repeated object; 

4) Classify core objects attending to the density 

threshold; 
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5) Identify the clusters only considering non-

repeated objects and the representative objects. 

Add to the obtained clusters the previously 

removed objects, considering the respective 

representative objects. 

With the SNNagg, the clustering results, although not 

being the same as the original SNN, are the expected ones if 

we consider that, without the addition of the repeated points, 

6 clusters are expected, one for each geometric figure. After 

the addition of the repeated points, and as this was randomly 

made in a specific area, it is expected that this area gives 

origin to a new cluster, which is properly identified by 

SNNagg as can be seen in Fig.  6, and was not identified by 

the Original SNN, as shown in (Fig.  4 a)). 

 

 
Fig.  5. Main steps for approach SNNagg 

 

 
Fig.  6. Spatial representation of the clustering results with SNNagg (k=68, 

MinPts=64, Eps=12) 

 

To evaluate in more detail the results that can be obtained 

by the SNNagg approach, next section presents the proposed 

quality indicators as well as the obtained values. 

V. EVALUATION AND RESULTS 

As it was possible to see at the end of the previous 

section, the visual analysis of the results can provide useful 

hints about the quality of the clusters a specific approach is 

able to provide. However, this is a subjective evaluation. In 

order to make available objective measures about the quality 

of the results, the measures proposed in [24], and used in 

[25] are adopted and updated, including: (1) the Intercluster 

metric, (2) the Intracluster metric, and (3) the ModelQuality 

metric.  

Next sections present how each one of these metrics are 

calculated as well as the datasets used to test the quality of 

the results. This section ends with the presentation and 

discussion of the obtained results, and the trend verified in 

terms of the number of repeated objects the approach is able 

to consider. 

A. Model Quality 

The Intracluster metric evaluates the similarity inside 

each cluster and its value is obtained by calculating the 

average distance of the objects to the cluster’s average point. 

This means that for each cluster, the number of points of 

that cluster divides the sum of the distances to the average 

point inside the cluster. This process is repeated for each 

cluster, adding all values and dividing them by the number 

of clusters, allowing the calculation of the Intracluster of a 

model. In equation (3), t is the number of clusters, l is the 

number of objects inside cluster i, o stands for an object in 

cluster i and m is de average point of cluster i. The distance 

function (Fdist) must be the same as the used in the 

clustering process (in the case of this work, it is the 

Euclidean distance). The average point of each cluster is 

calculated as the arithmetic mean of all objects inside the 

cluster.  

 

 

𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =
 

 𝐹𝑑𝑖𝑠𝑡 𝑜𝑗 , 𝑚𝑖 
𝑙
𝑗=1

𝑙
𝑡
𝑖=1

𝑡
 

(3) 

  

The Intercluster metric, shown in equation 4, evaluates 

the similarity between pairs of clusters and is calculated by 

the sum of the similarity between all objects from pairs of 

clusters (Fig.  7), values that then divided by the number of 

pairs of objects. This process is repeated for all pairs of 

clusters, being the sum of all these values divided by the 

number of clusters of a model. In equation 4, t represents the 

number of clusters, 𝑙𝑖  is the number of objects inside 

clusters i, while 𝑙𝑗  is the number of objects inside cluster j. 

Fdist stands for the distance function and, again, must be the 

same as the used in the clustering process. The objects 𝑜𝑦  

and 𝑜𝑧  represent the objects inside clusters y and z, 

respectively.  

 

 

𝐼𝑛𝑡𝑒𝑟𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =

  
  𝐹𝑑𝑖𝑠𝑡(𝑜𝑦 , 𝑜𝑧)

𝑙𝑗
𝑧=1

𝑙𝑖
𝑦=1

𝑙𝑖 ∗ 𝑙𝑗
𝑡
𝑗=𝑖+1

𝑡−1
𝑖=1

𝑡
 

(4) 

 

 

 
Fig.  7. Pairs of distances used for the calculation of the Intercluster metric 
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The ModelQuality metric is the absolute difference 

between the Intracluster and Intercluster values, as shown 

in equation 5. This metric gives an objective value of the 

quality of a clustering result, although in analytical contexts 

the best model may depend on the users’ needs and may 

vary from user to user. 

 

 𝑀𝑜𝑑𝑒𝑙𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =  𝐼𝑛𝑡𝑟𝑎𝑐𝑙𝑢𝑠𝑡𝑒𝑟 − 𝐼𝑛𝑡𝑒𝑟𝑐𝑙𝑢𝑠𝑡𝑒𝑟    (5) 

 

The analysis of the Intracluster and Intercluster measures 

shows that the best clustering results usually emerge when 

there is a balance between these two metrics. A high 

Intercluster value means that clusters have a low similarity 

between pairs, while a low Intracluster value means that 

similarity is bigger inside each cluster. As the number of 

clusters increases, the Intracluster similarity decreases, as 

objects inside those clusters are more similar to each other, 

while the Intercluster similarity increases as more clusters 

allow more distinction between clusters. Although it cannot 

be defined as a rule, the best clustering results seem to 

emerge for lower ModelQuality values. 

B.  Artificial Datasets  

In this paper, and for the evaluation of the proposed 

approach, several artificial datasets were used. The option 

for artificial datasets is justified by the need of knowing, 

beforehand, the expected results. The selected ones are the 

four artificial Chameleon datasets, presented in Fig.  8, 

integrating from 8000 to 10000 distinct objects. As these 

datasets do not include, in their original versions, any 

repeated objects, new datasets were created randomly 

introducing repeated objects.  

  

 
a) t7.10k (10000 points) 

 

 
b) t8.8k (8000 points) 

 

 
c) t5.8k (8000 points) 

 

 
t4.8k (8000 points) 

 

Fig.  8. Spatial representation of datasets Chameleon 

 

In a first stage, and to test how points are randomly 

generated and what the distribution of the repeated objects 

is, three versions of the t4.8k dataset were created adding 

2000 repeated objects. As can be seen in Table 1, for the 

three tests, the distributions are equivalent so different 

random processes would probably lead to the same 

clustering results.  

Having checked this, and for all the four artificial 

datasets, new datasets with repeated objects were created. In 

particular: i) for the t4.8k, three new versions, with 25%, 

50% and 100% of repeated objects, now named as 

t4.8k+25%ro, t4.8k+50%ro and t4.8k+100%ro, respectively; 

ii) for the t5.8k, t7.10k and t8.8k, with 100% of repeated 

objects, now named as t5.8k+100%ro, t7.10k+100%ro, and 

t8.8k+100%ro, respectively. The results obtained with the 

clustering of these datasets are presented in the following 

subsection. 

 
Table 1. Number of repeated objects by test 

Type Test 1 Test 2 Test 3 

1 Object 6239 6234 6232 

2 Repeated objects 1541 1553 1548 

3 Repeated objects 201 193 209 

4 Repeated objects 19 19 10 

5 Repeated objects 0 1 1 

 

C. Obtained Results 

To evaluate the obtained results, the processing time of 

the Original SNN and the SNNagg approaches are 

compared, as well as the number of expected clusters. For 

comparing processing times, both algorithms use the same 

input parameters, as the k value highly influences their 

performance. When analyzing the expected clusters, the 

input parameters of the SNNagg approach must consider a 

lower k, as fewer objects are present in the processed dataset 

when looking for the k-nearest neighbors and, as 

consequence, the k value must be adapted to this scenario.  

Starting by the t4.8k+25%ro dataset, Table 2 shows in its 

first line that the number of obtained clusters (NC) is the 

same, but that the ModelQuality (MQ) metric is lower in the 

SNNagg approach, meaning that probably the points are 

more adjusted in the obtained clusters. However, SNNagg 

needs more processing time (Time), as new steps were 

added to the algorithm. When the number of repeated 

objects starts to growth, the processing time of SNNagg 

starts to be lower than the Original SNN, decreasing 

substantially. For comparing the obtained clusters and their 

quality metrics, Table 3 presents the obtained results taking 

into consideration the number of objects effectively 

processed in the clusters construction step. Taking as an 

example the t4.8k+25%ro dataset, with the adjusted 

parameters, SNNagg continues to identity the 6 expected 

clusters, with a lower value for the ModelQuality (Fig.  9).  

 
Table 2. Original SNN vs. SNNagg with the same input parameters 

  

Original SNN 

 

SNNagg 

 
    Time MQ NC Time MQ NC 

t4 

25% 18,45 539,880 6 18,87 468,323 6 

50% 38,05 668,966 8 28,27 448,940 6 

100% 99,21 501,179 6 59,52 513,284 6 

t5 100% 90,87 946,665 7 55,05 756,090 6 

t7 100% 167,31 1144,048 10 115,38 570,960 5 

t8 100% 97,72 1197,971 9 57,46 588,144 6 
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Table 3. SNNagg results with k calculated without repeated objects 

  

SNNagg 

 
    Time MQ NC 

t4 

25% 12,42 411,214 6 

50% 13,17 517,704 6 

100% 13,55 527,534 6 

t5 100% 12,33 717,441 6 

t7 100% 23,35 1217,795 10 

t8 100% 13,55 1093,475 8 

 

 

 
a) Original SNN (k=85, MinPts=80, Eps=15) 

 

 
b) SNNagg (k=68, MinPts=64, Eps=12)  

 

Fig.  9. Spatial representation of the clustering results for t4.8k+25%  

  

Looking now to the t5.8k+100%ro dataset, the Original 

SNN identified one more cluster, as previously seen in 

Table 2 and also depicted in Fig. 10. Visually, we are 

expecting the same 6 clusters unless the density of the points 

justifies the creation of another cluster. Although the two 

approaches may present different results, a visual analysis of 

the density was done using a new representation of these 

results with 90% of color transparency (Fig.  11). By the 

analysis of the figure it does not seem to exist a relevant 

change in the density of the two clusters, mainly in the 

transition area, but a detailed analysis of the density of the 

points would be needed before taking any conclusions. 

For the dataset t7.10k+100%ro, the time results present in 

Table 2 are very relevant with about 1/3 of time saving. The 

quality comparison is made between the Original SNN 

approach in Table 2 and SNNagg in Table 3. Both 

approaches produced the same number of clusters, with 

SNNagg presenting a slightly higher measure for the 

ModelQuality. Although this difference, both results in 

terms of visual analysis are equivalent, as Fig.  12 shows.  

 

 

 
a) Original SNN (k=136, MinPts=128, Eps=24) 

 
b) SNNagg (k=68, MinPts=64, Eps=12) 

 

Fig.  10. Spatial representation of the clustering results for t5.8k+100%  

 

 

 
Fig.  11. Spatial representation of the clustering results for t5.8k+100%, 

with 90% of transparency, Original SNN (k=136, MinPts=128, Eps =24)  

  

 

 
a) Original SNN (k=170, MinPts=160, Eps=30) 

 

 
b) SNNagg (k=85, MinPts=80, Eps=15) 

 

Fig.  12. Spatial representation of the clustering results for t7.10k+100% 

 

For the t8.8k+100%ro dataset, and looking to Table 2, the 

gain in terms of processing time is about 40% using the 

SNNagg approach. While the Original SNN identifies 9 

clusters (Fig.  13 a)), SNNagg identifies 8 using the input 

parameters adapted to the number of different objects (Table 

3). In both cases, the algorithms failed to correctly identify 

one of the geometric figures (the inverted Y). Besides this, 

the SNNagg joins two different clusters, plotted in red in 

Fig.  13 b).  
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a) Original SNN (k=136, MinPts=128, Eps=24) 

 

 
b) SNNagg (k=68, MinPts=64, Eps=12)  

 

Fig.  13. Spatial representation of the clustering results for t8.8k+100%  

 

To understand the joining of these two clusters by the 

SNNagg approach, a representation of the points with 90% 

of transparency was done (Fig.  14), allowing the visual 

verification of a high number of repeated objects in the 

boundaries of the two merged clusters, being this probably 

the reason for the merging of the clusters. In the opposite 

way, the inverted Y cluster, a variation on the density of the 

repeated objects may explain the identification of two 

different clusters. 

 

 
Fig.  14. T8.8k+100% spatial representation of clustering process with 90% 

of transparency, SNNagg (k=136, MinPts=128, Eps =24) 

 

To conclude this subsection, it is important to mention 

that SNNagg can reduce the processing time by the 

elimination of the repeated objects during the clustering 

process, being able to add them to the identified clusters 

without compromising the clustering results. This can be 

achieved considering the repeated objects in step 3 (Density 

calculation). However, this reduction in terms of processing 

time is only verified when the number of repeated objects 

starts to grow. To evaluate when the clustering results, in 

terms of quality, start to be affected by the increasing 

number of repeated objects, next section tries to answer the 

question: how many repeated objects the SNNagg approach 

is able to support without compromising the results? 

D. Impact of the number of repeated objects 

To evaluate the impact of the number of repeated objects 

in the quality of the clustering results, an increasing number 

of repeated objects were added to the t4.8k and to the t7.10k 

datasets. Starting by the t4.8k dataset, four new datasets 

were created with more 500%, 750%, 1000% and 2000% of 

repeated objects. As all the datasets were created with 

random distributions, it is expected the same number of 

clusters, in this case 6. As can be seen in Fig.  15 a), for 

500% of repeated objects, SNNagg still identifies the 6 

expected clusters. For 750% (Fig.  15 b)), the approach 

starts to aggregate clusters, downgrading the quality of 

results. This can also be seen for 1000% (Fig.  15 c)), where 

previously noise points start to be integrated in existing 

clusters or give origin to new, very small, clusters. When we 

reach the 2000% dataset (Fig.  15 d)), the tendency of 

aggregation of clusters is intensified, as the number of 

repetitions is so high that the algorithm is unable to detect 

transitions. 

  

 
a) More 500% of repeated objects  

 

 
b) More 750% of repeated objects 

 

 
c) More1000% of repeated objects 

 

 
d) More 2000% of repeated objects 

 

Fig.  15. Evolution of clustering results for t4.8k with different amounts of 

repeated objects, SNNagg (k=68, MinPts =64, Eps=12) 
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To have a clearer overview of the number of repeated 

objects, Fig.  16 presents a histogram with the distribution of 

the number of repeated objects considering the several 

created datasets. As can be seen in this figure, as we 

increase the number of repeated objects, this number starts 

to be superior to Eps, the input parameter used to separate 

zones of high and low density of points.   

 

 
Fig.  16. Distribution of the number of repeated objects for t4.8k 

 

For Eps, and considering the extensive work done in [18] 

for understanding the SNN input parameters, the authors 

show that although Eps is a less sensitive input parameter, 

different values can provide different valid results, with 

several degrees of quality. In the case of the t4.8k dataset, 

and due to the increasing number of repeated objects, Eps 

can be increased in order to allow the algorithm the 

separation of the zones of high and low densities. Looking 

to the histogram in Fig.  16 and having into consideration 

the normal distribution of the 2000% dataset, and Eps of 32 

was tested providing the results shown in Fig.  17. Though 

the results are not excellent, the algorithm is able to separate 

again some of the clusters, although some probable noise 

points are not detected as such. 

 

 
Fig.  17. Clustering results for t4.8k for 2000% of repeated objects, 

SNNagg (k=68, MinPts =64, Eps=32) 

 

The other dataset tested was the t7.10k, mainly because of 

the difference in the number of objects (10000 original 

points). Once again we have created four new datasets with 

more 250%, 500% and 2000% of repeated objects. In this 

case different repetitions were made as the density of the 

repeated points started to affect sooner the clustering results. 

As can be seen in Fig.  18 a), 250% of repeated objects still 

allow the identification of the 9 expected clusters, well 

formed with high separation from noise. As the number of 

repeated objects starts to increase, the clusters start to be 

merged, finishing in Fig.  18 c) with only 3 clusters and with 

an increasing number of previously noise points as non-

noise points. 

 

 

 
a) More 250% of repeated objects 

 
b) More 500% of repeated objects 

 

 
c) More 2000% of repeated objects 

 

Fig.  18. Evolution of clustering results for t7.10k with different amounts of 

repeated objects, SNNagg (k=85, MinPts =80, Eps=15) 

 

Once again (Fig.  19), it is possible to see the curves with 

the normal distributions of the number of repeated objects 

for the several considered datasets.  

 

 
Fig.  19. Distribution of the number of repeated objects for t7.10k 

 

In this case it is also necessary to change the Eps 

parameter, considering the number of repeated objects that 

is verified. Once again, looking at the distribution to see that 

a value higher than 32 is necessary, the one that provided 

better results was 40, as can be seen in Fig.  20, with the 9 

expected clusters.   
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Fig.  20. Clustering results for t7.10k for 2000% of repeated objects, 

SNNagg (k=85, MinPts =80, Eps=40) 

 

The presented results show that SNNagg is able to 

remove repeated objects, adding them latter to the obtained 

clusters. However when the number of repeated objects 

starts to increase, the Eps input parameter also needs to be 

increased. As in any clustering process, the tuning of the 

input parameters may help to improve the clustering results.  

VI. CONCLUSION 

Clustering with SNN is a very demanding task in terms of 

processing time, mainly when searching for the k-nearest 

neighbors of the objects. With the increasing size of the 

datasets, the time needed to obtain the results is even more 

critical. 

This paper presented an approach for dealing with 

repeated objects, SNNagg, which is able to remove the 

repeated objects in the beginning of the clustering process, 

being able to add those repeated objects to the identified 

clusters. SNNagg showed important gains in the reduction 

of the processing time, mainly with increasing numbers of 

repeated objects. In terms of quality of the results, and for 

the used artificial datasets used, depending on the number of 

repeated objects present in the dataset, the results can range 

from the expected ones to approximate results that can be 

acceptable if the user is able to have those approximations 

as long as they are obtained in a short period of time.  

As future work, the notion of repeated object can be 

extended to the notion of similar object, where a function to 

measure the similarity between objects is needed. Also 

important is to verify the impact of the repeated objects in 

the input parameters, mainly in the Eps value.  
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