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of the Direct and MDEV Inversion Algorithms in
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Abstract—Magnetic resonance elastography (MRE) utilises
an inversion algorithm to create maps of material properties
(elastograms) from displacements caused by mechanically in-
duced shear waves. This study aimed to assess the accuracy of
measurements from multi-dual elasto-visco (MDEYV) inversion
in comparison to direct inversion (DI) in simplistic geometries.
Finite element analysis (FEA) was used to simulate wave
propagation in cuboid geometries with embedded cylindrical
inserts. Accuracy of both algorithms was dependent upon insert
length, diameter and shear modulus. Whilst MDEV reduced
artefacts in the elastograms in comparison to DI it was unable
to improve accuracy of the measurements.

Index Terms—magnetic resonance elastography, finite el-
ement analysis, multi-frequency dual visco-elastic inversion,
direct inversion.

I. INTRODUCTION

AGNETIC resonance elastography (MRE) is a tech-
nique developed to measure mechanical properties of
tissue in vivo non-invasively [1], [2]. Typically a motion-
encoding gradient is used to characterise the propagation of
shear waves induced by an external harmonically oscillating
source. An inversion algorithm is then utilised to attain the
material properties from these displacements typically pre-
sented in the form of a spatial map known as an elastogram.
Currently the clinical use of MRE is confined to the
diagnosis of hepatic fibrosis where it is able characterise
a significant increase in shear stiffness of diseased liver
in comparison to the healthy liver and increasing stiffness
throughout the various stages of the disease [3]. The tech-
nique has been shown as more diagnostically accurate than
ultrasound elastography and biopsy, the current gold standard
technique [4]. Research into the technique now also focuses
on a varied range of tissues including the kidneys [5], muscle
[6], heart [7] and aorta [8]-[10].

Inversion of the displacement data can be performed in a
number of different ways. Direct inversion (DI) [11] utilises
the Laplace operator obtaining good resolution at the expense
of low-signal-to-noise ratio [12]. Derivation of DI is based
upon several key assumptions; that the medium is homoge-
neous, linearly elastic and isotropic [13]. These assumptions
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imply that in reality, measurements using DI are also depen-
dent upon the geometry of the medium under investigation
[14]. An extension of DI more recently introduced is the
multi-frequency dual elasto-visco (MDEV) inversion [15].
Again this utilises the Laplacian but combines information
acquired at multiple frequencies to reduce frequency de-
pendent artefacts and achieve increased spatial resolution.
This approach has been shown to improve image quality
[16], however the ability of the technique to accurately
resolve material properties in comparison to DI has not been
assessed.

This paper aims to investigate whether MDEV is able to
achieve greater accuracy of material property measurements
than DI in a variety of simplistic geometries. To achieve this
finite element analysis (FEA), a commonly used technique in
the field [17]-[19], has been employed. Since the methods of
assessing newly developed software varies across the litera-
ture, the 3-D datasets from the models used in this study have
been made publicly available with the intention that future
developers can utilise these and compare the performance of
their software with the other available techniques.

II. METHODS

FEA has been performed using Abaqus/Explicit (Dassault
Systeme Simulia Corp., Providence, Rhode Island, USA)
(figure 1).
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Fig. 1. Modelling workflow. (a) Creation of the geometry. (b) Assign the

material properties. (c) Application of the load and assignment of boundary
conditions. (d) Extraction of data from 2-dimensional plane.

A. Geometries

Models consisted of a cylindrical insert placed in an
100x80x80 mm> cuboid background material. In order to
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investigate the effects of out-of-plane geometries, the radius
of the insert was maintained at 10 mm whilst the length was
varied from 2-100 mm. To investigate the effects of in-plane
geometry the length of the insert was fixed at 100 mm whilst
the radii was varied from 5-30 mm (figure 2).

Fig. 2. Representation of the geometries used in this study. The length,
[, and diameter, d, were varied to investigate the effect of out-of-plane and
in-plane geometries respectively.

B. Material Properties

All materials used in this study were defined as viscoelas-
tic using the Kelvin-Voigt model of viscoelasticity. The shear
modulus of the background material was maintained at 3 kPa
for all simulations whilst the insert was varied from 4-9 kPa.
A shear viscosity of 1 Pa-s and density of 1047 kg-m™ were
defined throughout all materials which were assumed near
incompressible with a Poissons ratio of 0.49.

C. Loading and Boundary Conditions

Vibrations were applied in the z-direction via a concen-
trated force acting upon a region of nodes on the upper
surface ( at y=80 mm) of the model. Frequencies of 50, 70
and 100 Hz were used. Displacements for all boundaries in
the model excluding the surface upon which the load was
applied were fixed in the y-direction. In all models the insert
and background regions of the model were merged together
as a single part.

D. Data Analysis

Data was extracted from 5 parallel slices 1 mm apart
with pixel sizes in each slice of 1x1 mm?. All three spatial
directions were extracted independently of one another. The
data was imported into Matlab where it was stored as three
4-D objects with the first three dimensions corresponding to
x,y and z respectively and the fourth dimension correspond-
ing to time. Each 4-D object corresponded to a different
displacement direction.

Two approaches were used to invert the data. Firstly DI
was performed in 3-dimensions using the direct solution to
the Helmholtz equation:

u

G* — _ 2
P g

6]

where p represents the density, w is the angular fre-
quency of excitation and u is the complex displacement
field. G* represents a complex number consisting of G’,
the storage modulus, and G”, the loss modulus, such that
G* = G' +iG"”. When represented using polar co-ordinates
in the complex plane (figure 3) this implies that:
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such that:
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Fig. 3. Illustration of the complex plane for G*.

The second approach used was MDEV which utilises
the Helmholtz equation but includes a summation over the
frequencies to calculate |G*| [15]:
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for N frequencies and the three spatial directions. In this
way MDEYV represents |G*| and ¢ as frequency independent
variables [20].

Masks were applied to the background and insert regions
and the mean value within this region measured (figure 4). In
order to assess the accuracy of each algorithm the fractional
error of the measured G’ and G” values to the assigned
values was then calculated.
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Fig. 4. Examples of the masks used to calculate mean |G*| values. A)
and B) represent the masks used to calculate the background and insert
respectively in models with an insert of radius 10 mm whilst C) and
D) represent the masks to calculate the background and insert regions
respectively in models with insert of radius 30 mm. The white represents
the region of interest.

E. Wave Decomposition

In deriving the direct inversion algorithm, the influence
of the compressional wave is often ignored. The validity of
this assumption has, however, been the subject of dispute
[21]. The influence of the compressional wave upon u can be
approximated using Helmholtz decomposition, which states
that the displacement field can be decomposed such that [22]:

u=VxU¥+Vo (6)

Here W and & represent vector and scalar potential fields
corresponding to the shear and compressional waves respec-
tively. Since the curl of the gradient function is equal to 0,
as is the divergence of curl, this implies that:

Vxu=Vx(VxW)

V-.u=V®o (7)

For simplicity, let:

P =Vx(VxVU)

¢ =V (8)
Application of these two operators does not, however, pre-
serve the properties of the wavefield and resultantly the am-
pltiudes of the potentials are not comparable to one another
[23]. This can be addressed by considering the velocities of

the compressional and shear waves, with a balancing factor,
«, to be defined as [24]:
a=2 ©)
Ve
where vs and v, are the velocities of the compressional and
shear waves respectively. Assuming a linear elastic medium,
the velocities are calculated as follows:

1/ G 4
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(10)
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Although the medium is viscoelastic, and the velocity is
also variable spatially in a non-uniform finite medium, these
equations allow for an estimation of « throughout the model.
As such, the fractional contribution, f, of the compressional
wave to the total displacement can be approximated as:

9|
aly+ 19|

for each pixel in the complex wave image. This implies
that if the wavefield is a pure shear field, the fractional
contribution will be equal to 0, whereas if the field is purely
compressional, the value will be equal to 1.

f= Y

F. Convergence and Meshing

Convergence studies were performed on all geometries
used here. Since the shear modulus calculated by DI is
a function of the displacement, the convergence criteria is
based upon these measurements, with convergence assumed
to have been achieved if the measured values in both
the background and insert change by less than 2% for a
decrement in element size. For consistency all simulations
were meshed using 1.25 mm? C3D10M elements, since this
element size was within the convergence criteria for all
geometries.

III. RESULTS

Fractional errors for the storage modulus of the insert were
large for the smaller length and smaller diameter inserts.
Increasing the length or radius resulted in an initial decrease
in the fractional error, before these errors plateaued (figures
5 and 7). The length or diameter at which this plateau
occurred and the fractional error itself were dependent upon
the frequency and the shear modulus of the insert: the
plateau occurred at larger radii and lengths for higher shear
modulus and for DI at 50 Hz. Measurements of G’ in the
background were largely independent of the radius of the
insert. The fractional error for the background measurements
at 100 Hz was variable for insert length. Inspection of both
the real and imaginary components of the complex wave
image showed non-planar wave propagation below the insert
which corresponded to large artefacts in the G’ elastogram.
MDEV improved the quality of the G’ elastograms with
reductions in the size and number of artefacts (figures 6
and 8). MDEV was not however capable of achieving more
accurate measurements than all three frequencies, with the
fractional error typically falling between the lowest and
highest fractional error through DI.

Fractional errors were typically larger for the loss modulus
than the storage modulus, with large overestimations typi-
cally occurring in both the background and insert regions at
50 Hz (figures 5 and 7). Increasing the insert length had little
impact upon the fractional error in the background region,
but caused an increase in the error insert region. This increase
was more pronounced for higher prescribed insert shear
moduli and at 50 Hz in comparison to the other frequencies
inverted with DI. Increasing the radius of the insert increased
the size of the fractional error in the background region;
again this effect was pronounced at 50 Hz . Fractional
errors varied largely with radius, though in all cases there
were large overestimations for the 5 mm radius insert. G”
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Fig. 5. Examples of the fractional errors for variations in insert length. a) and b) represent

by using MDEV in comparison to DI.
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the fractional errors in the background and insert measurements
respectively for a 4 kPa 10 mm radius insert whilst ¢) and d) represent the fractional errors in the background and insert measurements respectively for a
9 kPa 10 mm radius insert. Both measurements of G’ and G’ in the insert are dependent upon the length of the insert: whilst measurements of G’ in the
insert become more accurate with increasing length, the opposite is true of the measurements of G’/. Accuracy of the measurements was not improved
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Fig. 6. Real and imaginary components of the complex displacements and the G’ and G"’ elastograms for the 4 and 9 kPa inserts for the 10 mm radius,

100 m length insert. The quality of both the G’ and G”’ elastograms are improved by MDEV in comparison to DI, which suffer from frequency dependent
artefacts.
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Fig. 7. Examples of the fractional errors for variations in insert radius. a) and b) represent the fractional errors in the background and insert measurements
respectively for a 4 kPa 100 mm length insert whilst ¢) and d) represent the fractional errors in the background and insert measurements respectively for
a 9 kPa 100 mm length insert. Typically the fractional error in both G’ and G’ decreases with increasing radius, although there is an increase in the
fractional error in G’ at 50 Hz. Large diameter inserts result in large fractional errors for the background G’ and G”/ measurements at 50 and 70 Hz.
MDEYV was unable to improve the accuracy of the measurements in comparison to DI.
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Fig. 8. Real and imaginary components of the complex displacements and the G’ and G’ elastograms for the 4 and 9 kPa inserts for the 30 mm radius,
100 m length insert. Whilst MDEV typically improved elastogram quality, artefacts at the boundary remained in the G’/ elastogram. Frequency dependent
artefacts were greatly reduced in the elastograms, but not always removed altogether. This is demonstrated well by the 9 kPa G’ elastogram, where the
frequency dependent artefact from the 50 Hz DI is also clearly present following MDEV inversion.
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elastograms constructed with DI were characterised by large
artefacts (figures 6 and 8). The position of these artefacts was
typically frequency dependent, however, an artefact appeared
at the boundary between the background and the insert
at all frequencies. Whilst MDEV reduced the frequency
dependent artefacts, it was often unable to remove them
all together. Artefacts at the background-insert boundary
remained prominent following MDEV inversion. As with
the storage modulus, fractional errors in the loss modulus
from MDEV were typically between the lowest and highest
fractional errors from DI for that region of interest.

The mean fractional contribution of the compressional
wave to the displacement was typically in the range 0.1-
0.25. This appeared to be largely independent of the length
or diameter of the insert, with the exception of the 2 mm
length insert model, where the mean fractional contribution
was approximately 0.4 for all three frequencies. Inspection
of the maps of the fractional contribution demonstrated that
high values were typically associated with troughs in the x-
component of the curl (figure 10).
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Fig. 9. Graphs demonstrating the mean fractional contribution of the

compressional wave to the displacement throughout the model. In all cases
the displacement is dominated by the contribution from the shear wave.

IV. DISCUSSION

All frequencies analysed individually by DI showed arte-
facts associated with scattering, reflections and viscoelas-
tic damping [12]. Previous studies have demonstrated that
since the positions of these artefacts are frequency indepen-
dent, combining information from several frequencies using
MDEYV reduces their impact and results in improved quality
of the elastograms [15], [16], [20], [25]. Both the G’ and
G" elastograms created in this study typically support this
theory showing reduced artefacts following MDEV inversion

50 Hz

(7 xu),

o—

e

N e
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Fig. 10.  Maps showing the estimated fractional contribution of the
compressional wave for the 100 mm length inserts of 10 mm radius, with
a prescribed shear modulus of 9 kPa when vibrated at 50 and 100 Hz. The
displacements are typically dominated by shear waves with high fractional
contribution values occuring at the troughs for the z-component of the curl.

in comparison to DI. MDEV was not though, able to remove
artefacts completely: in instances where the artefact at a
single frequency through DI was particularly prominent, such
as in the G” elastograms at 50 Hz (figure 8), this artefact
was also present in the MDEV elastogram. It is likely that
utilising more frequencies in the MDEV inversion would
counter this problem, however, whilst there is no theoretical
limit to the number of frequencies used in MDEYV, this
presents a practical limitation in vivo where increasing the
number of frequencies increases scan time.

Despite improving image quality the data here suggested
that MDEV is unable to improve accuracy in comparison
to all three frequencies when analysed independently using
DI. Moreover, it was not able to accurately resolve smaller
inserts, both in terms of their diameter and radius, better than
DI. In these regards it suffers from the same limitations as DI,
since it is derived from the same basic assumptions [15]: both
DI and MDEYV utilise the Laplace operator which functions
over a limited voxel range, thereby automatically assuming
that local wave propagation is dependent upon the local
material properties alone. Comparison of the displacements
and corresponding G’ elastograms from various length inserts
demonstrate that this is not the case (figure 11).

Previous studies have suggested that the compressional
wave is likely to have an impact on the accuracy of the
inversion [21], [26]. Estimations of the contribution of the
compressional wave to the overall displacement demonstrate
that contribution of the shear wave was dominant in all
simulations. Furthermore, the compressional wave is often
discounted from the inversion algorithm because its wave-
length is so much greater than that of the shear wave, thus
the contribution to the overall displacement term is negligible
in comparison. Typically there was little spatial correlation
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Fig. 11.  Real component of the displacements and corresponding G’
elastogram for the 2 mm, 10 mm and 50 mm length inserts of radius 10 mm
and prescribed shear modulus 9 kPa for the 100 Hz vibrations. Although
in the selected slice through the model the material properties are the same
for all three insert lengths, there are clear differences in the displacement
maps and corresponding elastograms. This demonstrates breaking of the
local homogeneity assumption used in the derivation of the DI algorithm.

between artefacts in the elastogram and high fractional
contribution of the compressional wave, with correlations
only occuring in a small number of models. In these instances
the correlations were towards the lower regions of the model,
and outside the regions of interest defined in this study. This
suggested that inaccuracies in measurements made by the
inversion algorithm were largely down to factors other than
the compresssional wave. Whilst the compressional wave
may have limited effect on the accuracy of the inversion
algorithm in silico, it is recognised that there is likely to be
greater scattering and mode conversion at interfaces in vivo
that will increase the influence of the compressional wave.

The simulations used in this study suggest that the min-
imum length that can accurately be resolved is 20 mm,
whilst the minimum radius is 10 mm, though these values
are dependent upon the frequency of the induced vibrations
and the shear modulus of the insert. It should however be
recognised that the sizes at which accurate resolution can be
achieved are likely to be greater in vivo for several reasons.
Firstly, to reduce the impact of discretisation errors from the
inversion algorithm [14] a pixel size of 1 mm, lower than can
typically be achieved in MRE, was utilised. Additionally,
since the aim of the study was to test the inversion algo-
rithms alone, and because synthetic data created with FEA
does not suffer from noise, bandpass filters have not been
applied to the data. As such, whilst previous research using
MDEV has demonstrated excellent detail in the elastograms,
measurements from smaller regions should be treated with
caution.

The material properties utilised in this study were selected
to allow a direct comparison between DI and MDEV. It is
however recognised that material properties in vivo are likely
to correspond to more complex material models [27], which
limit the applicability of MRE in the clinic. Whilst MDEV
aims to address this issue by reducing these complex models
to two frequency independent parameters, further research
is warranted to investigate the relationship between these
MDEV parameters and the material model.

V. CONCLUSION

MDEV reduces frequency dependent artefacts to produce
higher quality elastograms in comparison to DI but is unable

to improve accuracy of the material property measurements.

APPENDIX

The datasets used in this study are publicly available at:
https://github.com/lyamhollis/wave_library

The waves for each simulation are stored in .mat files
each containing three 4-D (x,),z,¢) objects: wx, wy and
wz corresponding to the displacements in the x-, y- and
z-directions respectively.
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