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Abstract—Traceability relations are used to understand the
dependencies between the artifacts created during the devel-
opment of a software system. In model driven Engineering
(MDE), traceability relations may be generated implicitly or
explicitly. When changes occur to the models, it is necessary
that the traceability links must be maintained and must be
evolved. The purpose of this paper is to propose an approach
for the maintenance of trace links when a transformation was
completely or partially invoked.

In this paper, we have firstly described how traceability links
can be stored and how can they be used in an MDE framework.
Then we have proposed a traceability maintenance solution
based on three main phases: (1) the model comparison phase,
(2) the changes detection and classification phase, and (3) the
evolution links phase. The proposed approach improves the
process of maintaining traceability information in two major
ways. First, traces are generated automatically by transforma-
tions. This makes the process of establishing traces faster and
less error prone compared to manually assigning traces. Second,
the (semi-) automated update of traceability relations over time
as the software system evolves reduces the manual effort for
maintaining traceability relations.

Index Terms—Model Evolution, Artefacts Co-evolution,
Trace Links.

I. INTRODUCTION

DURING a Model-Driven Engineering (MDE) process,
the relationships between the artefacts are created both

automatically and manually. The relationships between mod-
els are often called trace links [1]. To maintain and control
these relations, a traceability solution should be a part of
every MDE framework [2].

Traceability links are among others used (a) to validate the
implementation of requirements, (b) to analyze the impact
of changing requirements, and (c) to support regression tests
after changes. To ensure all these benefits it is necessary to
have a complete and correct set of traceability links between
the established artifacts during the software life-cycle. Fully
automatic identification of traces without human intervention
is impossible. Even in the relatively formal context of model
driven software development, establishing and maintaining
traceability links is still an issue [3].

In an MDE process, the traceability relations are tightly
coupled with software artefacts (models). Trace links are
usually stored in the form of tracing models produced by
transformations. When changes occur to the artifacts, it is
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necessary to understand the impact of the development ac-
tivity on the traceability links and attempts to keep these links
in synch with the models. Manual maintenance of traceability
can be time-consuming and error-prone due to the large
number of potential relationships that exist even for small
software systems. In this paper, we provide an approach for
the maintenance of trace links when a transformation was
completely or partially invoked.

The proposed solution is based on three main phases:
(1) the model comparison phase; in which the differences
between two model versions are determined, (2) the changes
detection and classification phase; that consist of providing
information about all the necessary changes to traceability
relations, and (3) the evolution links phase; that consist of
identifying the updates needed to evolve the trace links.

The remainder of this paper is organized as follows. In
Section 2 we describe how traceability links can be stored
and used in an MDE framework. The topic of traceability
maintenance is discussed in Section 3. Section 4 describes
related work in traceability links evolution. Section 5 pro-
vides the architecture and process of evolving trace links.
An evaluation of the approach is described in Section 6. We
end the paper with a summary of related and future work.

II. TRACEABILITY IN MDE

In software Engineering, traceability often refers to the
ability to trace the different stages in the software develop-
ment process, i.e. trace the evolution of a system from start to
finish. The IEEE Standard Glossary of Software Engineering
[4] defines traceability as follows:

The degree to which a relationship can be
established between two or more products of the
development process, especially products having a
predecessor-successor or master-subordinate rela-
tionship to one another; for example, the degree
to which the requirements and design of a given
software component match.

The above definition is strongly influenced by the originators
of traceability: the requirements management community [5].
Traceability in requirements engineering is the ability to
link project requirements to corresponding design artefacts,
resulting software, and associating test cases. However, in
MDE a broader definition is required. In [6], traceability is
considered as any relationship that exists between artefacts of
the software development life-cycle. To support traceability
in MDE, it is necessary that the relation between each
requirement, its representation in the models and the resulting
code sections can be captured, managed, and analyzed [7].

The general consensus amongst the research community is
that traceability is mainly used for the following use cases:
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• Change impact analysis that provides better understand-
ing of the impact of a change to the cost, schedule and
technical aspects of the project.

• Coverage analysi that allows validation of which re-
quirements have been fully implemented in the system
and which ones are not.

• Guard against gold platting which provides a mecha-
nism to make sure that all the features that are present
in a system actually correspond to a requirement; as
opposed to being unnecessary features that raise the cost
and risk of the project.

• Trade off analysis is applied when different imple-
mentation options exist. Traceability facilitates a trade
off analysis by allowing a comparison between the
different repercussions of each option. This provides the
foundation for further cost-benefit analysis.

A. Storing Traceability Information

Following [8], there are two strategies to storing and
managing traceability links. In the first, links are embedded
inside the models they refer to in the form of new model
elements, while in the second, traceability links are stored in
separate models.

1) Intra-model Storage of Traceability Links: Under this
approach, traceability links are embedded in the models they
refer to in the form of new model elements. Despite its
human-friendliness as it represents traceability links as visual
model elements that people can easily inspect and navigate,
embedding growing amounts of traceability links inside a
model causes ”pollution” of the model. We have to bear
in mind that traceability is only one of the many concerns
when modeling and embedding information relevant to all
concerns inside the model can render it overcrowded with
elements of secondary importance and can make it difficult
to understand and maintain. Another issue is uniformity; in
an MDE environment models have their own representations
and semantics [9]. Therefore, it is very difficult to distinguish
the traceability information from the other model artefacts.
As a result, automatic processing of traceability information
becomes very challenging.

2) External Storage of Traceability Links: In this strategy,
traceability information is stored externally to the models
they refer to (i.e. in a separate model). A major advantage of
this approach is that source and target models remain clean.
In addition, storing traceability links in a model that con-
forms to a metamodel with clearly defined semantics makes
automatic analysis by tools much easier. A requirement
of this approach, is that the various model elements have
unique identifiers (e.g. xmi.id identifier provided by Meta
Object Facility (MOF) and Eclipse Modeling Framework
(EMF)), so that the related traceability links can be resolved
unambiguously.

B. Generating Traceability Information

Depending on the transformation engine used, the trace
links may be generated implicitly or explicitly.

The first approach is often used internally by transforma-
tion engines like Queries Views Transformation QVT [10]
and Atlas Transformation Language (ATL) [11] to keep
track of a transformation [12]. The major advantage of

implicit trace link generation is the fact, that no additional
effort is necessary to obtain trace links between input and
output models, the trace links are generated automatically in
parallel to the model transformation. A disadvantage is, that
developers have little control of how and when traceability
information is created. This means that it is difficult to add
additional semantics to the trace links, and means that the
traceability information is limited to that defined by the tool.

In [12], the author suggests that with the help of any
transformation language supporting two or more output
models, like the ATL, it is possible to treat traceability as
a regular output model of the transformation and incorpo-
rate additional transformation rules to generate it. What he
suggests is that in addition to creating mappings from the
target model to a source model, there should also be a
mapping creating instances of the traceability metamodel,
thus creating a traceability model containing information
about the transformation. This does however require the
existence of a metamodel that describes the external trace
model to be created, in the same way as one need a meta-
model describing the source and target model of any other
transformation. This is a simple solution, and it does not
require any additional functionality extending what is already
part of the transformation language. One would simply have
to create additional ”output patterns” in the mapping rules,
that describe the elements of the traceability model to be
created. It would however require the developers to create
the mapping to a trace model each time they created a
mapping. This would make the development process more
cumbersome, thus increasing the possibility that someone
forgets to do it or does not care to do it, and even more
likely; makes errors while doing it.

C. Traceability Maintenance

Providing traceability for a project is not a trivial matter;
different activities are necessary to create, maintain and use
traceability relations (links).

In [13], Murta et al. characterize the problem of traceabil-
ity maintenance between architectural elements and source
code as follows: ”given an initial set of established trace-
ability links, and given that both an architecture and its im-
plementation can evolve independently, how can traceability
links be updated with the addition of new links, removal
of existing links, and changes in existing links to ensure
that each architectural element is at all times accurately
linked to its corresponding source code configuration items,
and vice versa?” Without maintenance, traceability relations
between elements, i.e. trace links, get lost or represent false
dependencies.

Model-based development processes promote the use of
models expressed in terms of problem domain concepts (e.g.
Entities, Services) as the prime artifact to develop software.
These models, to which we refer as high-level models, are
used as input for a Model Transformation Chain (MTC). An
MTC is a sequence of transformation steps that converts the
high-level model, which is rooted in the problem domain,
into a low-level model that is rooted in the solution domain
(e.g., Java, C#). If this multiphase transformation process is
carried out only once, entering each phase only when the
preceding phase has been completed, it is a waterfall-like
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process [14]. Most problems nowadays are too complex to
be solved in this manner and mainly development processes
are iterative and incremental [15].

A major problem that arises in model-based software
development is ensuring that related models evolve con-
sistently while the development proceeds [16]. Maintaining
consistency between evolved and affected elements creates
many interesting and difficult research problems. Traceability
can support this issue by propagating changes that happen to
an element in one model to all its related elements in other
models [5].

Such changes to referenced model elements can also
necessitate maintaining the relationships, i.e. trace links,
to reflect all the dependencies between the evolved model
elements after the change. Two types of impact can be
distinguished:
• The change with no impact on traceability. For example,

renaming an attribute in an UML class.
• The change that have impact on traceability. For exam-

ple, creating a new class.
There are two main approaches for maintaining trace link

integrity: event-driven and state based approaches [17]. In
the former approach, the elementary changes of the various
model elements are constantly monitored and change events
are generated based upon these elementary changes. This is
achieved by utilizing a set of rules for recognizing the events
as constituent parts of intentional development activities.
Once these activities have been identified, traceability links
related to the changing model elements can be updated
automatically. In the second approach, the detection of model
changes takes place by comparing different versions of the
models and impacted links are found based on the identified
changes. If model changes are detected, the trace links,
which refer to those models, should be updated. If there are
predefined policies associated with the detected changes, then
the link maintenance can be done automatically.

III. RELATED WORK

This section describes the related work in the area.
In [18], Cleland-Huang et al. present an approach that

can help maintain traceability called event-based traceability
(EBT). In this method, requirements and other traceable
artefacts of the development process are linked through
publish-subscribe relationships. The main components of the
system are the requirements manager, the event server, and
the subscriber manager. The requirements manager handles
the requirements and it is responsible for triggering change
events as they occur. The event server manages subscriptions,
receives event messages, customizes event notifications ac-
cording to the process model and subscriptions, and forwards
task directives in the form of event notification messages to
the subscribers. The subscriber manager is responsible for
receiving event notifications and handling them in a manner
appropriate to both the artifact being managed and the type
of message received. This work discusses a sophisticated
change propagation mechanism, enabled by traceability and
change recognition (i.e., informing the owner of a related ar-
tifact with a detailed message about the changes occur in the
requirements specification). The EBT approach presents the
event generation, but does not discuss the actual maintenance
of impacted traceability relations.

Spanoudakis et al. [19] present a rule-based approach for
the automatic generation of traceability relations between
documents, which specify either requirement statements or
use cases (in structured natural language) and analysis object
models. The generation of traceability relations is based on
two different types of rules. A first kind of rule, Requirement-
to-object-model rules, and a technique based on informa-
tion retrieval are used to automatically establish traceability
relations between requirements and analysis object models.
A second kind of rule, inter-requirements traceability rules,
is used to trace requirement and use case specification
documents to each other. The proposed approach requires the
representation of all supported artifacts into the eXtensible
Markup Language (XML) format. Due to the use of infor-
mation retrieval, there is uncertainty within the recognized
relations and limited support for developers with false recog-
nition. The approach, in its current form, does not appear to
support the maintenance of traceability relations following
artifact evolution explicitly, but the approach proposes two
interesting ideas. First, the use of extensible and customizable
rules that describe properties of expected artifacts in an
abstract way. Second, the idea of organizing rules in the style
of event, condition, action and to store these rules in the open
XML format to facilitate their customization by the user [20].

In [13] [21], the authors describe an approach called
ArchTrace. Murta describes how a policy based system of
rules can automatically manage traceability links between
requirements/architecture to source code. Instead of recon-
structing the traceability links after a certain amount of
changes or time, ArchTrace updates these links after every
commit operation from a user. ArchTrace is only capeable
of maintaining existing traceability links, which means that
they have to be created manually by the developers or by
a traceability recovery method. The ArchTrace tool assume
the use of the extensible Architecture Description Language
(xADL) for the description of software architectures and
the use of Subversion for the versioning of source code.
ArchTrace relies on an infrastructure for identifying change
events in the architecture models and continuously updating
the trace links based on the change events and a set of
policies. The policy rule-set has to be configured by the
developer to be more accurate in the managing of traceability
links. A conflict arises if more than one policy or no policy
is triggered by an update. This has to be resolved manually
by the developer.

A state-based approach is proposed by Sharif and Maletic
[22]. In this approach a difference tool such as EMFCompare
is used to identify syntactic differences between different
versions of a model. Based on these differences and user
input the links are evolved. The authors do not discuss how
to update the impacted traceability relations, but the evolution
of traceability links by using fine-grained differencing of
artifacts that has inspired the approach discussed in this
paper.

Inspired by the event generation aspect of the EBT
approach, Mder and Gotel [20] present an approach that
supports the (semi-)automated update of traceability rela-
tions between requirements, analysis and design models
of software systems expressed in the UML. It can update
traceability relations by analyzing elementary change events
that have been captured while working with UML model-
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Fig. 1: Traceability Metamodel

ing tool. Within the captured flow of events, development
activities comprised of several events are recognized. These
are matched with predefined rules gives directive to update
impacted traceability relations to restore consistency. While
the approach supports the (semi-)automated update of trace-
ability relations, It maintains existing traceability relations
whether they are semantically correct or not. It is not possible
to find out about the correctness of relations or even to
improve their quality via the approach. This means that it
requires a reasonable set of initial traceability relations to
make the approach useful.

In [23], Uronkarn et al. present an approach that uses
the business process change patterns that exist between two
versions of a business process model to drive the traceability
impact analysis in the presence of business process change.
They associate the business process model with traceability
information that links the model to other software artifacts,
i.e., requirements, use cases, design classes, and programs.
When a new version of the business process model is
designed to incorporate changes in business requirements,
the two versions are compared to determine the types of
changes, and identify the affected activities. The developed
tool reports the impacted activities in the old version of the
BPMN, change patterns that are applied to them, and each
kind of software artifacts that are affected.

IV. OVERVIEW OF THE APPROACH

The approach is concerned with incremental changes
to a set of traceability relations. So the maintenance of
traceability relations impacted by model evolution. In our
approach, trace links are stored in a tracing model. This
model represents the relationships between source elements
and the target elements generated by the transformation.

A. Trace Links Generation

Tracing models must conform to a tracing metamodel.
A simple tracing metamodel is presented in figure 1 [12].
This metamodel has two main metaclasses: TraceLink and
TracedElement. The first metaclass represents a tracing link
that relates a set of source elements with a set of target
elements. The second metaclass represents any element that
is used by the transformation as a source or any element that
is generated by the transformation.

The following example illustrates the trace links gen-
eration with a simple example of simplified bank system
described as UML diagrams. The example is defined using
Eclipse Modeling Framework (EMF). The simplified bank
system describes a model-to-model transformation that trans-
forms the bank model into a Java model. This transformation
is implemented by the Atlas Transformation Language (ATL)
[24]. ATL is one of the most widely used transformation
languages in the MDE community. It is a hybrid approach
language, with both declarative and imperative constructs.

Fig. 2: Bank Model

The source model (Figure 2) is a class diagram of a
simplified banking system. The bank model is transformed
into a Java model that conforms to a Java metamodel that
contains concepts such as Class, Field and Method.

Trace links between input and output model elements are
produced by transformation and stored in trace model that is
conform to the Trace metamodel presented in figure 1. The
approach was introduced in [12].

As an example, Listing 1 shows an ATL transformation
rule extended with the tracing generation logic (lines 13-
18). An additional target model is specified in transformation
header (line 2) to store trace links.

Listing 1: ATL Transformation Rule with Trace Generation
1 module UML2JAVA;
2 c r e a t e OUT : JAVA, t r a c e : TRACE from IN : UML;
3 . . .
4 r u l e C2C {
5 from
6 a :UML! C l a s s
7 t o
8 b : JAVA! J a v a C l a s s (
9 name<−a . name ,

10 i s A b s t r a c t <−a . i s A b s t r a c t ,
11 s u p e r J a v a C l a s s<−a . s u p e r C l a s s ,
12 package<−a . namespace ) ,
13 t r a c e L i n k :TRACE! TraceL ink (
14 ruleName <− ’C2C ’ ,
15 t a r g e t E l t s <− Sequence{b } )
16 do {
17 t r a c e L i n k . r e f S e t V a l u e ( ’ s o u r c e E l t s ’ ,

Sequence {a } ) ;
18 }
19 }

Figure 3 presents in XMI an excerpt of the input and
output models. The dependencies between input elements
(Figure 3a) and output elements (Figure 3b) are specified by
the trace links in figure 3c. For example, The first trace link
(marker 1) specifies that the java class Customer is obtained
from the uml class Customer by applying the transformation
rule named C2C.

B. Link Evolution Architecture

As depicted in figure 4, our work is based on three main
phases:
• Phase 1 (models comparison): a difference model con-

taining elementary changes was generated by comparing
two model versions.
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(a) Bank Model

(b) Java Model

(c) Trace Model

Fig. 3: Trace Links Generation

• Phase 2 (Changes detection and classification) con-
sists of providing information about all the necessary
changes to traceability relations.

• Phase 3 (Evolve links) updates the trace links related to
the changed model elements.

1) Model Comparison: In the first step, the original and
evolved models was compared. All differences between the
two versions are stored in a difference model [25]. This
difference model can contain all kinds of changes of Ecore

Fig. 4: Trace Links Evolution Architecture

elements such as additions, deletions, renaming or move-
ments of model elements or other updates of model element
properties such as the cardinality of an attribute. In our
approach, we consider three fundamental change types:

• Adding a new element (Add): This change enhances
a model by adding a new element. The new model
element can be used by transformations to generate new
artifacts and may require the creation of new traceability
relations that will be added to the trace model.
Required traceability update: After adding a new ele-
ment, it might be necessary to re-execute the transfor-
mations in order to generate the corresponding elements
of the associated models. The trace links generated
implicitly or explicitly by transformations specifies what
elements are linked to the new element, so it is possible
to evolve the trace model by creating one or more
traceability relations on the new element.
Impact on existing traceability: This change type has
no impact on the existing traceability relations but, new
relations will be added to the existing relations within
the trace model to ensure the completeness of trace
links.

• Deleting an element (Delete): An element may be
removed from a model. While removing an element,
its relations will also be deleted, so trace links from the
trace model are removed.
Required traceability update: If an element has been re-
moved it is necessary to remove its traceability relations
from the trace model.
Impact on existing traceability: The deletion of trace-
ability relations has no impact on relations to indepen-
dent elements. If target elements are linked to other el-
ements, it is necessary to check whether these elements
are still valid and required or not.

• Modifing an Element (modify): The modification may
affect the names of elements (e.g., renaming a package,
a class, an attribute, an association or an operation) or
the values of their properties (e.g., the lower bound of
an association).
Required traceability update: If an element has been
modified it is necessary to maintain all traceability
relations of the renamed model element on the trace
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Fig. 5: Evolved Version of the UML Class Diagram for the
Bank System

model.
Impact on existing traceability: This change type has
no impact on the existing traceability relations.

Figure 5 presents an evolved version of the UML class
diagram for the bank system described in the previous sec-
tion. The modifications introduced are (1) the deletion of an
attribute (balance), (2) the modification of Transaction class
name by BasicTransaction, (3) the introduction of a new
class (Bank), a new method (newAccount), a new association
(manage) connects the Bank and the Account classes, and a
new attribute (amount) is added to the Account class.

The computation of the differences between model ver-
sions is performed with The Eclipse plug-in EMF Compare
[26]. This tool provides algorithms to calculate the delta
between two versions of a model and visualizes them using
tree representations. In Figure 6 it is depicted the computed
difference model between two versions of the bank model.

The computing of differences between the two model
versions is illustrated in listing 2. The comparison process is
divided in 2 phases: matching and differencing. In the match-
ing phase the elements that belong together are determined
(line 21). The differencing step (line 23) creates the list of
changes based on the input models and the previously created
match.

Listing 2: Model Comparison with EMF Compare
1 import org . e c l i p s e . emf . compare . d i f f . metamodel .

D i f f E l e m e n t ;
2 import org . e c l i p s e . emf . compare . d i f f . metamodel .

Di f fModel ;
3 import org . e c l i p s e . emf . compare . d i f f . s e r v i c e .

D i f f S e r v i c e ;
4 import org . e c l i p s e . emf . compare . match . metamodel .

MatchModel ;
5 import org . e c l i p s e . emf . compare . match . s e r v i c e .

M a t c h S e r v i c e ;
6 import org . e c l i p s e . emf . compare . u t i l . M o d e l U t i l s ;
7 import org . e c l i p s e . emf . e c o r e . EObjec t ;
8 import org . e c l i p s e . emf . e c o r e . r e s o u r c e . R e s o u r c e S e t ;
9 import org . e c l i p s e . emf . e c o r e . r e s o u r c e . impl .

R e s o u r c e S e t I m p l ;
10 p u b l i c c l a s s compare {
11 p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws

IOExcept ion ,
12 I n t e r r u p t e d E x c e p t i o n {
13 / / Load t h e two i n p u t models
14 R e s o u r c e S e t r e s o u r c e S e t 1 =new R e s o u r c e S e t I m p l ( ) ;
15 R e s o u r c e S e t r e s o u r c e S e t 2 =new R e s o u r c e S e t I m p l ( ) ;
16 URI u r i 1 =URI . c r e a t e F i l e U R I ( ” model / BankV1 . e c o r e ” ) ;
17 URI u r i 2 =URI . c r e a t e F i l e U R I ( ” model / BankV0 . e c o r e ” ) ;
18 EObjec t model1= M o d e l U t i l s . l o a d ( u r i 1 , r e s o u r c e S e t 1 ) ;

Change type: Change 

Attribute name in BasicTransaction has changed from Transaction to 

BasicTransaction 

 

Change type: Addition 

org.eclipse.emf.ecore.impl.EClassImpl@e49d67c (name: Bank) 

(instanceClassName: null) (abstract: false, interface: false) has been added 

 

Change type: Addition 

org.eclipse.emf.ecore.impl.EAttributeImpl@97494c8 (name: amount) (ordered: 

true, unique: true, lowerBound: 0, upperBound: 1) (changeable: true, 

volatile: false, transient: false, defaultValueLiteral: null, unsettable: 

false, derived: false) (iD: false) has been added 

 

Change type: Deletion 

org.eclipse.emf.ecore.impl.EAttributeImpl@203fa5ac (name: balance) (ordered: 

true, unique: true, lowerBound: 0, upperBound: 1) (changeable: true, 

volatile: false, transient: false, defaultValueLiteral: null, unsettable: 

false, derived: false) (iD: false) has been removed 

Fig. 7: Differences between the Compared Models

19 EObjec t model2= M o d e l U t i l s . l o a d ( u r i 2 , r e s o u r c e S e t 2 ) ;
20 / / Matching
21 MatchModel match= M a t c h S e r v i c e . doMatch ( model1 , model2 ,

C o l l e c t i o n s<S t r i n g , Objec t>emptyMap ( ) ) ;
22 / / Compare t h e two models
23 DiffModel d i f f = D i f f S e r v i c e . d o D i f f ( match , f a l s e ) ;
24 M o d e l U t i l s . s ave ( d i f f , ” model / d i f f x m i ” ) ;
25 / / L i s t o f d i f f e r e n c e s
26 L i s t <Dif fE lemen t>d i f f e r e n c e s = d i f f . g e t D i f f e r e n c e s ( ) ;
27 f o r ( D i f f E l e m e n t d i f f E l e m e n t : d i f f e r e n c e s ) {
28 System . o u t . p r i n t l n ( ” Change t y p e : ”+ d i f f E l e m e n t .

ge tKind ( ) ) ;
29 System . o u t . p r i n t l n ( d i f f E l e m e n t . t o S t r i n g ( ) ) ; }
30 }
31 }

Figure 7 illustrates the results of applying the comparison
process to our case study. In this figure it is possible to see
the following changes:
• The element Transaction is renamed.
• The elements Bank and amount are added
• The element balance is deleted.
2) Changes detection and classification: Once changes

have been properly detected and represented, they are added
to an update list which eventually provides information about
all the necessary changes to traceability relations. These
changes have to be classified into one of two categories:
• Changes that require traceability updates. In our case,

the changes (1) the deletion of element ”balance” and
(3) the addition of elements ”Bank”, ”newAccount”,
”manage”, and ”amount” are classified in this category.

• Changes without impact on existing traceability rela-
tions. For example, the change (2) the modification of
element ”Transaction” is classified in this category.

3) Evolve links: The changes obtained as results of the
previous phase are used to identify the updates needed to
evolve the trace links after model evolution. Correlating to
the changes types discussed in the subsection above, the
following changes and associated traceability updates to the
trace model are possible:
• The update action for relations on the update source(s)

is defined to stay if the source element still exists.
• If the element has been removed during the evolution

activity, all trace links connecting any element with the
deleted item should be removed.

• If new source element is added, new relations in the
trace model are defined to be created.

• All existing relations of all modified elements are de-
fined to stay. These relations are not impacted by the
evolution activity.

The basic structure of the evolution rule is illustrated in
listing 3. Each evolution rule has a name (line 1) and a
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Fig. 6: Difference Model

description (line 2) revealing what the evolution rule is used
for. (line 4) specifies which conditions have to be fulfilled
by a model difference to lead to the execution of the action
part. The condition part is a boolean expression. In each
condition part, multiple conditions can be combined such as
boolean expressions can be combined in Java using logical
operators. For each type of model change which can be found
in the model comparison activity , we offer one predefined
condition, which checks whether the particular type of model
change occurred. For example, the condition addAssociation
indicates, whether the currently considered difference model
represents the addition of an association.

Listing 3: Basic Structure of an Impact Rule
1 e v o l v e R u l e ”<name>” {
2 d e s c r i p t i o n = ” . . . ”
3 e v o l v e {
4 (< c o n d i t i o n p a r t> => <a c t i o n p a r t >)
5 }
6 }

V. EVALUATION

A. Objective and Research Questions

The objective of our case study is to validate the appli-
cability of our approach with respect to the manual effort
that can be saved and quality that can be reached with
the maintained traceability while implementing changes to a
software development project. For this purpose, we derived
the following research questions.
• Research question 1: manual effort: Does the use of

the approach reduce the manual effort necessary for
generating and maintaining traceability relations? The
manual effort for traceability maintenance refers to the
time the developer spends on this task. It comprises
navigating within the evolved models and performing
the required changes to update the impacted traceability
relations.

• Research question 2: maintenance quality: Are the qual-
ities of traceability relations performed by the approach
comparable or better to those maintained manually? To
determine the quality of a set of traceability relations
depends upon having an agreed baseline. Three types
of changes to the traceability relations are then distin-
guished:
4c Changes that have been performed correctly accord-
ing to the baseline.
4i Changes that have been performed incorrectly.
4m Changes that have not been performed (missing
changes).
To be able to compare the number and the quality of the
changes we compute two measures that are commonly
used to evaluate approaches dealing with uncertainty
in recognition processes, precision and recall. Precision
relates correct changes to all performed changes and
tells us about the quality of performed changes:

QP = 4c/(4c+4i)

Recall relates correct changes to all required changes
and tells us about the number of necessary changes
performed:

QR = 4c/(4c+4m).

B. Design and Subject of the Study

We decided to apply our approach on the example pre-
sented in section IV-A. The system artifacts included models
on two levels of abstraction: class diagram and java diagram.
The class diagram contained 7 classes, 11 attributes, and 28
methods. The initial set of trace links was generated by trans-
formation and stored in a trace model that is conforming to
a trace metamodel. The set of traceability relations obtained
for this software system contained 47 trace links.

In order to answer the first research question, we mea-
sured the execution times of applying the approach on the
UML class diagram, as described before. On that one, we
performed 23 change operations, covering all types of UML
class diagram changes. Based on a pilot study with two
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TABLE I: Traceability Links Evolution

Correctly Incorrectly Lost Total
performed performed

Traceability Links 48 8 4 60
% 80% 13% 7% 100%

Fig. 8: Quantitative Analysis

master students, it was estimated that it would take 1-2 hours
to manually maintain the traceability relations.

To answer the second research question, 60 UML class
diagram elements were added, renamed, or removed. The set
of traceability links evolved by our approach are compared
with the set of ideal traceability links detected manually.

C. Results and Discussion

The first phase of the study showed that the complete
time for performing trace links evolution by using our
approach was 40 minutes on average. This time includes
links generation, model comparisons, and links evolution.
The undetected changes or those detected with ambiguity
require a decision from the user. Taking into account the
time that the user spends to resolve the changes untreated
by the approach, the difference is statistically significant.

In the second phase of the study, the trace model evolution
analysis allowed us to find out correct, incorrect and missing
changes to the set of traceability relations. A summary of the
obtained results is shown in Table I.

Figure 8 presents the results of the analyses, illustrating
that, our approach correctly performed 80% of traceability
links and 13% of links were incorrectly performed. More-
over, 7% traceability links were lost. These links were lost
when elements were created with the same properties of
those that had been removed. This sequence of change
operations usually generates a ”rename” change type, instead
of the two change types, ”delete” and ”add”.

To put these figures in perspective, we borrow two metrics
from the information retrieval field: precision and recall. The
computed precision QP and recall QR provide information
about the correctness and completeness of changes to the link
set. These two metrics apply here in the sense that we can
use precision to show the percentage of actually identified
traceability links that are correct (QP = 86%; showing that
86% of changes have been correctly detected and performed
by the approach and 14% of the traceability links that were
found are inaccurate) and recall to show the percentage of
ideal traceability links that were actually identified (QR =
92%; showing that we missed merely 8% of the traceability
links that should have been found).

VI. CONCLUSION AND FUTURE WORK

This paper has presented a new approach for managing the
evolution of traceability links when a model-to-model trans-
formation was completely or partially invoked. The proposed
approach is based on three phases. (1) A difference model
containing elementary changes was generated by comparing
two model versions; (2) The changes detected in the previous
phase are added to an update list which eventually provides
information about all the necessary changes to traceability
relations. (3) Once the model changes are identified, a set
of updating operations must be performed to maintain the
traceability relations.

Our approach improves the process of maintaining trace-
ability information in two major ways. First, traces are
generated automatically by transformations at a very low
cost. Second, our approach has to detect each model change
operation and automatically update traceability relations.

While our approach significantly improves the evolution
of traceability links, our work to date also highlights that
further work remains to be done. First and foremost, we
recognize that achieving 100% precision and 100% recall
is the ultimate result to be achieved by our approach. This,
however, may or may not be unrealistic. Secondly, we plan
to introduce other types of model changes.
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