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Abstract—This paper is devoted to the development and
application of two high-order numerical methods for solv-
ing one-dimensional (1D) Burgers’ equations, which are both
fourth-order accurate in both time and space. One of them is
based on the uses of Crank-Nicolson (CN) method combined
with Richardson extrapolation method for temporal integration
and fourth-order compact finite difference approximation for
spatial discretization. Additionally, a combination of fourth-
order time stepping method based on Padé approximation
for temporal discretization with fourth-order compact finite
difference method for spatial approximation yields the other
fourth-order method. Using matrix analysis methods, we study
their stability. Numerical experiments illustrate the accuracy
and efficiency of new algorithms.

Index Terms—Burgers equation; Hopf-Cole transformation;
Compact finite difference scheme; Padé approximation; Stabil-
ity;

I. INTRODUCTION

In this article, we consider the numerical simulations
of 1D Burgers’ equation with nonhomogeneous boundary
conditions as follows





∂u

∂t
+ u

∂u

∂x
= γ

∂2u

∂x2
, (x, t) ∈ [a, b]× [0, T ],

u(a, t) = c, u(b, t) = d, t ∈ [0, T ],

u(x, 0) = φ(x), x ∈ [a, b],

(1)

where γ, a, b, c and d are all constants and γ is the
coefficient of kinematic viscosity. This equation was first
found by Bateman [1] and later applied to model free
turbulence by Burgers [2], [3]. Since then, it is extensively
referred to as Burgers’ equation [1]–[6], which has became
a very important nonlinear evolution equation because of its
importance in various fields such as gas and fluid dynamics,
traffic flow, heat conduction, wave propagation in acoustics
and hydrodynamics, etc. Consequently, considerable atten-
tion has been paid on the study of Burgers equation. For
example, using Hopf-Cole transformation, we can obtain
exact solutions in terms of infinite Fourier series for given
initial condition, which fail to converge for relatively small
γ, such as γ < 0.01. Moreover, several classes of special
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analytic solutions can also be obtained by using homotopy
perturbation method and differential transformation method
[7] and tanh function expansion method [8], etc. However, it
is very difficult to find the useful expression of exact solution
to Burgers with arbitrary initial and boundary conditions.
Thus, over the years, numerical studies for initial-boundary
value problem (IBVP) (1) have attracted widespread atten-
tion. Many numerical methods including finite difference
methods (FDMs) [9]–[15], finite element methods (FEMs)
[16], [17], local discontinuous Galerkin methods [18], [19],
spectral methods [20], [21], collocation method based on the
Laplace transform [22], meshless approach [23] and differen-
tial quadrature methods [24], [25] have been developed and
applied to solve IBVP (1).

Recently, high-order compact (HOC) FDMs, which have
been widely used to deal with various computational prob-
lems arising from a wide range of applied fields due to their
high accuracy, compactness and better resolution for high-
frequency waves [26]–[29], have been proposed for solving
Burgers equation. For example, a HOC FDM, which is
second-order temporally accurate and fourth-order spatially
accurate, has been developed in [9]. A sixth-order com-
pact FDM combined with explicit third-order total variation
diminishing (TVD) Runge-Kutta method (RKM) has also
been developed in [13]. They were both directly constructed
for IBVP (1) without the use of Hopf-Cole transformation.
Whereas, another two HOC FDMs were established for linear
diffusion equation obtained using Hopf-Cole transformation
to Burgers equation in [11], [14], respectively. HOC methods
stated above have been limited to the use of small time
steps due to low-order accuracy in time, or strong stability
restriction. Besides, low-order accuracy at boundary results
in the increase of global error. For example, in the case
of nonhomogeneous boundary, HOC FDM in [14] has only
second-order accuracy at boundary, thus reducing resolution
of numerical solutions.

Recently, a class of combined schemes, which consist of
high-order time stepping methods based on Padé approxima-
tions and second-order centered difference for spatial vari-
able, have been derived for linear diffusion equation obtained
using Hopf-Cole transformation to Burger’s equation (see
[15]). Although they are high-order accurate in time and
unconditionally stable, they have only second-order accuracy
in space. Therefore, they may generate numerical solution
of poor quality if the spatial mesh is not refined sufficiently.
However, mesh refinement may lead to a large number of
arithmetic operations.

More recently, a unconditionally stable fourth-order nu-
merical method, which combines fourth-order time stepping
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methods based on Padé approximations with fourth-order
compact FDM for spatial variable, have been proposed for
convection-diffusion equation [30]. Numerical results testify
high-performance and usefulness of that algorithm.

In this paper, enlightened by the work of [30], we derive
two fourth-order numerical methods for Burgers equation.
First, IBVP (1) is transformed into a linear diffusion equation
with mixed boundary conditions by using the Hopf-Cole
transformation. Secondly, a compact FDM which has fourth-
order accuracy at both interior and boundary points has
been derived for linearized equation, thus resulting in an
initial value problem (IVP), which can be solved exactly
using Duhamel’s principle. Thirdly, using [1,1]-Padé to ap-
proximate matrix exponential function results in a second-
order CN scheme, which can be improved to fourth-order
accuracy in time by Richardson extrapolation method and the
application of [2,2]-Padé approximation to matrix exponen-
tial function generates a fourth-order time-stepping scheme.
Finally, the use of Simpson’s integrable formula to Hopf-
Cole transformation in subinterval [xj−1, xj+1] (see Section
2) yields fourth-order approximate solution of IBVP (1)
according to fourth-order numerical solution of linearized
equation. The new methods overcome some deficiencies of
those algorithms proposed in [9], [11], [13]–[15].

This paper is organized as follows. Construction and
stability analysis of numerical algorithms are studied for
IBVP (1) in Section 2 and Section 3, respectively. In Section
4, five examples are carried out to test the performance of
our algorithms. Final section focuses on concluding remarks.

II. FOURTH-ORDER NUMERICAL METHODS

This section concentrates on the derivation of new numer-
ical methods.

A. Notations and auxiliary Lemmas

∆t = T/K, tk = k∆t, 0 ≤ k ≤ K. Moreover, h =
(b − a)/n represents grid spacing. The spatial grid nodes
xj = a + jh, j = 0, 1, . . . , n form the following sets Ω̄h =
{xj |0 ≤ j ≤ n}. On Ω̄h, we define grid function space
Sh = {w|(w0, w1, . . . , wn−1, wn)T } and introduce centered
difference operator δ2

xwj = (wj+1 − 2wj + wj−1)/h2. To
make this paper self-contained, we first give two lemmas
used later.
Lemma 1 (cf. [30]) Assume that w(x) ∈ C5[a, b], then

w
′
(x0) =

w(x1)− w(x0)
h

− 5h

12
w
′′
(x0)

− h

12
w
′′
(x1)− h2

12
w(3)(x0) +O(h4),

w
′
(xn) =

w(xn)− w(xn−1)
h

+
5h

12
w
′′
(xn)

+
h

12
w
′′
(xn−1)− h2

12
w(3)(xn) +O(h4).

Lemma 2 (cf [30]) If ∀ z ∈ C and has non-positive real
part, then the following inequalities

∣∣∣2 + z

2− z

∣∣∣ ≤ 1,

∣∣∣∣
1 + z/2 + z2/12
1− z/2 + z2/12

∣∣∣∣ ≤ 1

hold.

III. ESTABLISHMENT OF NUMERICAL METHOD

Applying Hopf-Cole transformation to the Burgers’ Eq.
(1):

u(x, t) = −2γ
vx(x, t)
v(x, t)

, (2)

Eq. (1) can be rewritten equivalently as




∂v

∂t
= γ

∂2v

∂x2
, (x, t) ∈ (a, b)× [0, T ],

2γvx(a, t) + cv(a, t) = 0,

2γvx(b, t) + dv(b, t) = 0, t ∈ [0, T ],

v(x, 0) = exp
{
−

∫ x

a

φ(s)
2γ

ds
}

, a ≤ x ≤ b,

(3)

In this paper, Vj(t) and V k
j denote the approximations to

v(xj , t) and v(xj , tk), respectively, whereas the approxima-
tion to u(xj , tk) is represented by Uk

j . Clearly, corresponding
vectors Vk(t), Vk and Uk belong to Sh.

First of all, we develop fourth-order spatial discretization
at boundary nodes. Using Lemma 1, it is not difficult to find
that

∂v(x0, t)
∂x

=
v(x1, t)− v(x0, t)

h
− 5h

12
∂2v(x0, t)

∂x2

− h

12
∂2v(x1, t)

∂x2
− h2

12
∂3v(x0, t)

∂x3
+O(h4),

(4)

∂v(xn, t)
∂x

=
v(xn, t)− v(xn−1, t)

h
+

5h

12
∂2v(xn, t)

∂x2

+
h

12
∂2v(xn−1, t)

∂x2
− h2

12
∂3v(xn, t)

∂x3
+O(h4).

(5)

By Eq. (3), we have that

vxx(x0, t) =
1
γ

vt(x0, t), vxx(x1, t) =
1
γ

vt(x1, t),

vxxx(x0, t) =
1
γ

vtx(x0, t) = − c

2γ2
vt(x0, t).

(6)

Inserting above equations (6) into Eq. (4) yields
( 5

12
− ch

24γ

)
vt(x0, t) +

1
12

vt(x1, t)

= (
c

2h
− γ

h2
)v(x0, t) +

γ

h2
v(x1, t).

(7)

Using the technique similar to that used in the derivation of
(7), it holds that

( 5
12

+
dh

24γ

)
vt(xn, t) +

1
12

vt(xn−1, t)

=
γ

h2
v(xn−1, t) + (− d

2h
− γ

h2
)v(xn, t).

(8)

Secondly, the application of fourth-order compact finite
difference method to discretize second-order spatial deriva-
tive for Eq. (3) at interior nodes gives that

vt(xj , t) = γ
δ2
x

1 + (h2δ2
x)/12

v(xj , t) +O(h4)

j = 1, 2, . . . , n− 1,

(9)

which can be equivalently written as

(1 +
h2δ2

x

12
)vt(xj , t) = γδ2

xv(xj , t) +O(h4)

j = 1, 2, . . . , n− 1.

(10)
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Finally, we introduce two tri-diagonal matrices of order
n + 1 as follows,

A =




5
12 − ch

24γ
1
12

1
12

5
6

1
12

. . . . . . . . .
1
12

5
6

1
12

1
12

5
12 + dh

24γ




(n+1)×(n+1)

,

B =




η1
γ
h2

γ
h2 − 2γ

h2
γ
h2

. . . . . . . . .
γ
h2 − 2γ

h2
γ
h2

γ
h2 η2




(n+1)×(n+1)

.

, where η1 = c/(2h)− γ/h2 and η2 = −γ/h2 − d/(2h).
Therefore,it follows from (7), (8) and (10) that we obtain

a semi-discretization scheme of IBVP (3) as follows




dV(t)
dt

= (A−1B)V(t), 0 ≤ t ≤ T,

V(0) = V0,

(11)

whose exact solution is V(t) = exp(A−1Bt)V(0), which
implies that

V(tk+1) = exp(A−1B∆t)V(tk).

Here, we should suitably choose meshsize h as follows. (1)
As c ≤ 0 and d ≥ 0, one can choose arbitrary meshsize
h. (2) As c ≤ 0 and d < 0, meshsize h should satisfy h ≤
(−8γ)/d. (3) As c > 0 and d ≥ 0, meshsize h should admits
h ≤ (−8γ)/c. (4) As c > 0 and d < 0, meshsize h should
satisfy h ≤ min{8γ/c, (−8γ)/d}. The selections of h stated
above can make matrix A strictly diagonally dominant, and
thus ensure the invertibility of the matrix A.

In what follows, we consider time integration. Clearly,
applying [1, 1]-Padé approximation to exp(x) yields that

[2I − (A−1B)∆t]Vk+1 = [2I + (A−1B)∆t]Vk, (12)

which has a truncation error in the form of O(∆t2 + ∆t4 +
h4). This is CN scheme. Denote the numerical solution of
v(xj , tk) obtained using CN scheme (12) with meshsizes ∆t
and h by V k

j (∆t, h). So, the local Richardson extrapolation
method defined as follow

V k+1
j =

4V
2(k+1)
j (0.5∆t, h)− V k+1

j (∆t, h)
3

(13)

can be used to eliminate the term O(∆t2), thus obtain
numerical solution of order 4 in both time and space.

Furthermore, if [2, 2]-Padé approximation to exp(x) is
used, we obtain

[12I − 6(A−1B)∆t + (A−1B)2∆t2]Vk+1

= [12I + 6(A−1B)∆t + (A−1B)2∆t2]Vk,
(14)

which has convergence order of O(∆t4 + h4).
Integrating (2) with respect to variable x on the interval

[xj−1, xj+1] for j = 1, 2, . . . , n− 1 gives that
∫ xj+1

xj−1

u(x, tk+1)dx = −2γ

∫ xj+1

xj−1

vx(x, tk+1)
v(x, tk+1)

dx

= −2γ ln
∣∣∣v(xj+1, tk+1)
v(xj−1, tk+1)

∣∣∣

Applying Simpson’s rule for the integration to above equa-
tion deduces that

u(xj−1, tk+1) + 4u(xj , tk+1) + u(xj+1, tk+1)

= −6γ

h
ln

∣∣∣v(xj+1, tk+1)
v(xj−1, tk+1)

∣∣∣ +O(h4).

Omitting the truncation error and replacing v(xj , tk+1) by
V k+1

j in above equation gives that




4Uk+1
1 + Uk+1

2 = F k+1
1 − u(x0, tk+1),

Uk+1
j−1 + 4Uk+1

j + Uk+1
j+1 = F k+1

j ,

(j = 2, . . . , n− 2),

Uk+1
n−2 + 4Uk+1

n−1 = F k+1
n−1 − u(xn, tk+1),

(15)

where u(x0, tk+1) = c, u(xn, tk+1) = d and

F k+1
j = −6γ

h
ln

∣∣∣
V k+1

j+1

V k+1
j−1

∣∣∣, j = 1, 2, . . . , n− 1.

As algebraic equations (15), whose coefficient matrix is
strictly diagonally dominant, is a tridiagonal linear system,
it owns unique solution and can be easily solved by Thomas
algorithm.

Finally, for clearness and convenience, it is worthwhile
concluding our algorithms as follows. Suppose that Vk is
known.

Algorithm 1: Vk+1 is firstly computed using CN scheme
(12), then Uk+1 is obtained by the use of the Thomas
algorithm to (15).

Algorithm 2: Vk+1(∆t, h) and V2(k+1)(0.5∆t, h) are
obtained using CN scheme (12) with (∆t, h) and (0.5∆t, h),
respectively. Then from extrapolation method (13) we have
Vk+1. Finally, we obtain Uk+1 by applying the Thomas
algorithm to (15).

Algorithm 3: Firstly compute Vk+1 by solving equation
(14), then calculate Uk+1 by the application of the Thomas
algorithm to (15).

Obviously, Algorithm 1 has a convergence rate ofO(∆t2+
h4), while Algorithm 2 and Algorithm 3 are both of order
four in both time and space. This conclusion is testified
numerically in section 4.

IV. STABILITY ANALYSIS

In this section, we only study the stability of the
present methods applied Burgers’ equation with homoge-
neous boundary conditions, (i.e. c = d = 0).
Theorem 1 Let c = d = 0. Then the eigenvalues of matrix
A−1B are all real and non-positive.
Proof. As c = d = 0, we easily find that the matrix A is
a strictly diagonally dominant, symmetric and real matrix,
which infers that A−1 exists and its eigenvalues are all real,
and the matrix B is also a symmetric and real matrix, which
implies that the eigenvalues of matrix B are all real, too.
Whereas, the eigenvalues of A−1B are all real.

Let λ be an arbitrary eigenvalue of A−1B, and x ∈
Rn+1 be corresponding eigenvector. Then we have that
(A−1B)x = λx, which further implies that λxT Ax =
xT Bx. By simple computation, we easily find that xT Bx =

− γ

h2

n∑

j=2

(xj−1−xj)2 ≤ 0, and xT Ax ==
1
3
x2

1+
2
3

n−1∑

j=2

x2
j +
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1
3
x2

n +
1
12

n−1∑

j=1

(xj + xj+1)2 ≥ 0, which imply that λ must

be less than zero to make λxT Ax = xT Bx hold.
Theorem 2 The present methods applied to Burgers’
equation with homogeneous boundary conditions are uncon-
ditionally stable.

Proof. Let λj (j = 1, 2, . . . , n+1) be eigenvalues of ma-
trix A−1B. Write P = [2I−(A−1B)∆t]−1[2I+(A−1B)∆t],
Then, we have that the eigenvalues of matrix P

(λ(P ))j =
2 + λj∆t

2− λj∆t
, j = 1, 2, . . . , n + 1.

As λj ≤ 0, according to lemma 2, it is easy to find that
ρ(P ) = max

j
|(λ(P ))j | ≤ 1, where ρ(P ) represents the

spectral radius of P . So CN scheme (12) (i.e. Algorithm
1) is unconditionally stable.

As extrapolation solution is a linear combination of two
numerical solutions obtained using CN scheme (12) with
meshsize (∆t, h) and (0.5∆t, h), respectively, extrapolation
solution is also stable.

Denote Q = [12I−6(A−1B)∆t+(A−1B)2∆t2]−1[12I+
6(A−1B)∆t + (A−1B)2∆t2]. We easily find that the eigen-
values of the matrix Q

(λ(Q))j =
12 + 6∆tλj + (λj∆t)2

12− 6∆tλj + (λj∆t)2
, j = 1, 2, . . . , n + 1.

Likewise, by Lemma 2, λj ≤ 0 implies that ρ(Q) =
max

j
|(λ(Q))j | ≤ 1, which show that difference scheme (14)

(i.e. Algorithm 3) is also unconditionally stable.

V. NUMERICAL EXAMPLES

In this section, five IBVPs are solved to illustrate the
performance of our algorithms. L2- and L∞-norm errors at
t = k∆t between exact and numerical solutions are defined
by

err2 =
[ n−1∑

j=1

(Uk
j −uk

j )2h
] 1

2
, err = max

1≤j≤n−1
|Uk

j −uk
j |,

respectively, and CPU time are applied to measure the
accuracy and efficiency of the new algorithms. Conver-
gence rates in L∞- and L2-norms are defined as follows:

rate=log2

[
err(2h)
err(h)

]
and rate2=log2

[
err2(2h)
err2(h)

]
, respec-

tively, as ∆t = h, (see Tables I, III and IV).
As we know, TVD RKMs, which own the property of

preserving strong stability [19], [31], have been proven to be
very useful in the simulations of discontinuous problems. For
comparing computational efficiency between them and [2,2]-
Padé, a famous third-order TVD RKM (3-TVD-RKM) (cf.
[13], [19], [31]) has been applied to solve the corresponding
IVPs (11) in Example 2 and Example 3. Moreover, All
computer programs were coded in Matlab 7.0.

Example 1 To test the accuracy of our algorithms, we
consider Burgers’ equation (1) with initial and boundary
conditions [11]

u(x, 0) = 2γ
π sin(πx)

σ + cos(πx)
, x ∈ (0, 1),

u(0, t) = u(1, t) = 0, t ∈ (0, T ],

where σ > 1 is a parameter.
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Fig. 1. Example 2 with different parameter γ (solved by Algorithm 3 with
∆t = h = 0.0125): Time evolution graphs of numerical solution at t = 1.
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Fig. 2. Example 3 with γ = 0.001 (solved by Algorithm 3 with ∆t =
h = 0.001): Numerical solution and corresponding errors

Here v(x, 0) and corresponding exact solution can be
respectively derived as follows:

v(x, 0) =
σ + cos(πx)

σ + 1
u(x, t) =

2γπe−π2γt sin(πx)
σ + e−π2γt cos(πx)

.

where (x, t) ∈ [0, 1]×[0, T ]. For this problem, we give σ = 2
and γ = 0.1, and display the numerical results in Tables
I-IV. As computational cost is very low for running one
time, to accurately assess the performance of three methods,
for a fixed grid, we run 1000 times, then take the average
computational time as time cost (CPU time) in Tables I-IV.
From these data, we can give several conclusions as follows:

(1) Table I shows that Algorithm 1 has a convergence order
of O(h2) in L2- and L∞-norms as ∆t = h. Meanwhile, from
Table II, we also can see that as ∆t and h are decreased by a
factor of 1/2 and 1/4 each time, respectively, L2- and L∞-
errors are approximately reduced by a factor of 1/16. These
results exactly show that Algorithm 1 has a convergence rate
of O(∆t2 + h4) in L2- and L∞-norms.

(2) From Table III and Table IV, we can find that both
Algorithm 2 and Algorithm 3 are fourth-order in both time
and space with respect to L2- and L∞-norms, however,
Algorithm 3 costs less time than Algorithm 2 in the case
of attaining almost same error tolerance. Furthermore, in
comparison with data in Table II, it is clear that Algorithm 3
is the most efficient, and Algorithm 2 is more efficient than
Algorithm 1. For example, err = 8.2508e − 10 obtained
using Algorithm 1 with h = 1/128 and ∆t = 1/5120
costs 7.156e − 02 s; err = 5.3096e − 10 provided using
Algorithm 2 with h = ∆t = 1/128 costs 1.475e − 02 s;
err = 5.3029e − 10 generated using Algorithm 3 with
h = ∆t = 1/128 costs the least CPU time, namely
4.828e− 03 s.

Example 2 For comparing with other existing numerical
methods, we consider the following Burgers’ equation (1)
with initial and boundary conditions [11]

u(x, 0) = sin(πx), x ∈ (0, 1),
u(0, t) = u(1, t) = 0, t ∈ (0, T ].

For this problem, using the Hopf-Cole transformation yields
the following exact solution

u(x, t) = 2πγ

∞∑
n=1

cn exp(−n2π2γt)n sin(nπx)

c0 +
∞∑

n=1

cn exp(−n2π2γt) cos(nπx)

, (16)

in which coefficients are defined as follows

c0 =
∫ 1

0

exp(−1− cos(πx)
2πγ

)dx, cn =

2
∫ 1

0

exp(−1− cos(πx)
2πγ

) cos(nπx)dx, (n = 1, 2, 3, . . .).

Meanwhile, it is easy to find that

v(x, 0) = exp(−1− cos(πx)
2πγ

), x ∈ [0, 1].

For testing the accuracy, Fourier series (16) should be eval-
uated in this example, where a number N is taken such that
the coefficient cN is less than 1.0e− 15.

Table V and Table VI illustrate that with the same mesh-
size, Algorithm 3 is almost as accurate as Algorithm 2, but
faster than Algorithm 2, and has an evident advantage in
terms of accuracy comparing with FEM [17], FDM [10] and
HOC FDM [14].

As we know, because 3-TVD-RKM is conditionally stable,
a very small time step compared with spatial increment
should be used, thus consuming expensive time. From these
two tables, we can find that 3-TVD-RKM is slower than
Algorithm 3 under condition of achieving almost the same
accurate solutions, and 3-TVD-RKM with h = 1/160 and
∆t = 1.0e − 03 is invalid for this problem. These results
illustrate that although 3-TVD-RKM is very useful for dis-
continuous problems, it may be less efficient than [2,2]-Padé
in the solutions of continuous problems. Similar numerical
results can be found in the Table VIII of the next example.

Time evolution of numerical solutions for different γ are
shown in Figure 1, from which we can observe the interesting
physical phenomenon of this problem.

Example 3 We consider solution of IBVP (1) with bound-
ary condition u(0, t) = 1, u(1, t) = 0.2 and initial condition
u(x, 0) = {[α+µ+(µ−α) exp[α(x−β)/γ]}/{1+exp[α(x−
β)/γ]}, whose exact solution, i.e. traveling wave is

u(x, t) =
α + µ + (µ− α) exp(η)

1 + exp(η)

where η = α(x− µt− β)/γ, and α, β and µ are constants.
Corresponding initial condition of IBVP (3) is

v(x, 0) = exp[
(α− µ)(x− a)

2γ
]
1 + exp{[α(β − x)]/γ}
1 + exp{[α(β − a)]/γ} .

Like literatures [14], we take parameters α = 0.4, µ = 0.6,
and β = 0.125. Numerical results are listed in Tables
VII–IX. From these data, we can deduce the following
Conclusions: (1) For a fixed meshsize, solution obtained
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TABLE I
COMPUTATIONAL RESULTS AT t = 1 FOR EXAMPLE 1, OBTAINED USING ALGORITHM 1 WITH ∆t = h.

h 1/4 1/8 1/16 1/32 1/64 1/128
err 1.2734e− 03 1.7144e− 04 3.9949e− 05 9.8571e− 06 2.4570e− 06 6.1391e− 07
rate − 2.8929 2.1015 2.0189 2.0043 2.0008
err2 6.6575e− 04 1.1596e− 04 2.7471e− 05 6.7935e− 06 1.6940e− 06 4.2323e− 07
rate2 − 2.5214 2.0776 2.0157 2.0037 2.0009
CPU 6.312e− 05 7.900e− 05 1.260e− 04 2.810e− 04 9.070e− 04 4.907e− 03

TABLE II
NUMERICAL RESULTS AT t = 1 FOR EXAMPLE 1, OBTAINED USING ALGORITHM 1.

h ∆t err
err(h,∆t)

err(0.5h,0.25∆t)
err2

err2(h,∆t)
err2(0.5h,0.25∆t)

CPU
1
4

1
5

1.0774e− 03 − 5.4417e− 04 − 6.450e− 05
1
8

1
20

5.5860e− 05 19.2874 2.9620e− 05 18.3721 9.400e− 05
1
16

1
80

3.3830e− 06 16.5120 1.7829e− 06 16.6129 2.340e− 04
1
32

1
320

2.1206e− 07 15.9532 1.1044e− 07 16.1443 9.530e− 04
1
64

1
1280

1.3212e− 08 16.0501 6.8870e− 09 16.0356 6.718e− 03
1

128
1

5120
8.2508e− 10 16.0134 4.3022e− 10 16.0082 7.156e− 02

TABLE III
COMPUTATIONAL RESULTS AT t = 1 FOR EXAMPLE 1 USING ALGORITHM 2 WITH ∆t = h.

h 1/4 1/8 1/16 1/32 1/64 1/128
err 7.3018e− 04 3.5360e− 05 2.2402e− 06 1.3687e− 07 8.5058e− 09 5.3096e− 10
rate − 4.3680 3.9804 4.0328 4.0081 4.0018
err2 3.9475e− 04 1.9135e− 05 1.1063e− 06 6.7827e− 08 4.2190e− 09 2.6341e− 10
rate2 − 4.3667 4.1124 4.0277 4.0069 4.0015
CPU 1.982e− 04 2.442e− 04 3.880e− 04 8.450e− 04 2.821e− 013 1.475e− 02

TABLE IV
COMPUTATIONAL RESULTS AT t = 1 FOR EXAMPLE 1, USING ALGORITHM 3 WITH ∆t = h.

h 1/4 1/8 1/16 1/32 1/64 1/128
err 7.3044e− 04 3.5368e− 05 2.2410e− 06 1.3691e− 07 8.5087e− 09 5.3029e− 10
rate − 4.3682 3.9803 4.0328 4.0082 4.0041
err2 3.9479e− 04 1.9137e− 05 1.1064e− 06 6.7835e− 08 4.2195e− 09 2.6330e− 10
rate2 − 4.3666 4.1124 4.0277 4.0069 4.0023
CPU 6.25e− 05 7.801e− 05 1.250e− 04 2.650e− 04 9.060e− 04 4.828e− 03

using Algorithm 1 is more accurate than the one provided
using HOC FDM [14], and needs almost the same CPU time
as HOC FDM [14]. This meets our anticipation because HOC
FDM [14] has only second-order accuracy at boundary. (2)
Using the same meshsize and relatively small γ, Algorithm
3 has approximately as high accuracy as Algorithm 2, and
is much more accurate than Algorithm 1 and HOC FDM
[14]. Meanwhile, computational time of Algorithm 3 is much
lower than the one of Algorithm 2, and is roughly as much
as Algorithm 1 and HOC FDM [14]. (3) For very small γ,
with the same meshsize, solution computed using Algorithm
3 is more accurate than the one provided than Algorithm 2.
In a word, Algorithm 3 is the most efficient in the aspects
of accuracy and computational cost.

Finally, the use of Algorithm 3 with ∆t = h = 0.001
to this problem with γ = 0.001 is carried out. Evolution
graph of numerical solution and the propagation of errors are
plotted in the left and right columns of Figure 2, respectively,
from which we can observe that the errors become large
when the values of the solution vary violently. This shows
that Algorithm 3 has a good capacity of simulation for a
wide range of γ.

Example 4 In what follows, the IBVP (1) which has a
shock-wave solution [14]

u(x, t) =
λ

2
{1 + tanh[

λ

8γ
(−2x + λt)]}

is solved using our methods and HOC FDM [14]. Obviously,
corresponding initial condition of IBVP (3) is

v(x, 0) = exp[α(x− a)]
cosh(αx)
cosh(αa)

,

in which α = (−λ)/(4γ). In computation process, we choose
λ = 1.6 and boundary conditions u(−5, t) = 1.6 and
u(10, t) = 0.

Numerical results listed in Table X and Table XI further
show the evident superiority of Algorithm 3 over Algorithm
2, Algorithm 1, and HOC FDM [14] in terms of accuracy
and computational cost.

Figure 3 shows the graphs of numerical solutions to
example 4 with γ = 0.1 at t = 0.25, 1.5, 2.75 and the
propagation of the corresponding errors on mesh points.
From this figure, we can see that the error becomes much
large in the vicinity of the place, where the gradient of the
solution varies very quickly.

Example 5 Finally, we consider numerical simulation of
Burgers’ equation with the initial and boundary conditions

u(x, 0) =





1, 0 ≤ x < 5,
6− x, 5 ≤ x < 6,
0, 6 ≤ x < 12.

and u(0, t) = 1, u(12, t) = 0. By some simple computations,
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TABLE V
COMPARISONS OF L∞-ERRORS AND CPU AT t = 0.2 FOR EXAMPLE 2 WITH γ = 0.05, (∆t = h WITH EXCEPTION OF ∆t = 1.0e− 03 FOR

3-TVD-RKM).

Methods h = 1/10 (CPU) h = 1/40 (CPU) h = 1/160 (CPU)
Algorithm 2 1.6837e− 03 (3.750e− 02) 6.0494e− 06 (0.589) 2.5095e− 08 (0.813)
Algorithm 3 1.7097e− 03 (7.750e− 05) 6.0084e− 06 (2.350e− 04) 2.3522e− 08 (5.742e− 03)
FEM [17] 3.5903e− 02) (1.870e− 05) 2.3661e− 03 (4.530e− 05) 1.4858e− 04 (6.516e− 04)
FDM [10] 1.7956e− 02 (2.030e− 05) 1.1415e− 03 (4.680e− 05) 7.1605e− 05 (6.531e− 04)

HOC FDM [14] 5.8288e− 03 (1.500e− 04) 5.2591e− 04 (3.100e− 04) 3.3486e− 05 (6.400e− 03)
3-TVD-RKM 1.920e− 03 (0.452) 7.0122e− 06 (0.608) NaN

TABLE VI
COMPARISONS OF L2-ERRORS AND CPU AT DIFFERENT TIME LEVELS FOR EXAMPLE 2 WITH γ = 0.05, (∆t = h = 0.01 WITH EXCEPTION OF

∆t = 5.0e− 04, h = 0.01 FOR 3-TVD-RKM).

Methods t = 0.2 (CPU) t = 0.6 (CPU) t = 1.0 (CPU)
Algorithm 2 8.8773e− 08 (0.515) 2.2125e− 07 (1.217) 9.8134e− 08 (1.716)
Algorithm 3 8.5563e− 08 (0.171) 2.2233e− 07 (0.515) 9.7987e− 08 (0.717)
FEM [17] 7.5569e− 04 (0.005) 3.5996e− 04 (0.006) 1.2426e− 04 (0.008)
FDM [10] 5.7455e− 04 (0.005) 4.8370e− 05 (0.006) 3.1252e− 05 (0.008)

HOC FDM [14] 4.1443e− 05 (0.014) 1.3622e− 05 (0.015) 7.2409e− 06 (0.016)
3-TVD-RKM 1.807e− 07 (0.562) 9.106e− 007 (0.624) 3.5517e− 07 (0.780)

TABLE VII
COMPARISON BETWEEN EXACT AND NUMERICAL SOLUTIONS OF EXAMPLE 3 WITH γ = 0.005 AT t = 1, (∆t = h = 0.002).

x Algorithm 1 Algorithm 2 Algorithm 3 HOC FDM [14] exact solution
0.2 1.00000884705024 1.00000884705023 1.00000884705024 0.99345055174620 1.00000000000000
0.4 1.00000884704643 1.00000884704627 1.00000884704628 0.99345055174583 0.99999999999591
0.6 0.99997401773015 0.99997254089226 0.99997253343592 0.99340571924913 0.99996368170504
0.8 0.20206202643915 0.20197749501259 0.20197794728201 0.20178887544250 0.20197809852531
err 8.3402e− 03 2.2455e− 05 1.1218e− 05 3.1874e− 02
err2 1.5245e− 03 8.8047e− 06 7.4719e− 06 8.1970e− 03

TABLE VIII
COMPARISON OF NUMERICAL RESULTS AT DIFFERENT TIME LEVELS FOR EXAMPLE 3 WITH γ = 0.003, (h = 0.0025).

t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1.0
Algorithm 1 err 1.1734e− 02 2.3730e− 02 3.5815e− 02 4.7847e− 02 5.9792e− 02

∆t = h CPU 0.094 0.109 0.110 0.121 0.125
Algorithm 2 err 4.1822e− 04 6.3672e− 04 7.9259e− 04 1.0129e− 03 1.3136e− 03

∆t = h CPU 0.293 0.325 0.356 0.387 0.434
Algorithm 3 err 4.0566e− 04 5.4574e− 04 5.5112e− 04 5.3979e− 04 5.2724e− 04

∆t = h CPU 0.091 0.105 0.112 0.122 0.123
HOC FDM [14] err 3.4087e− 02 3.4087e− 02 8.4274e− 02 1.4105e− 01 1.9799e− 01

∆t = h CPU 0.093 0.094 0.109 0.110 0.121
3-TVD-RKM err 4.0663e− 04 5.4763e− 04 5.5396e− 04 5.4358e− 04 5.3197e− 04

∆t = 5.0e− 04 CPU 3.781 7.389 10.767 14.181 17.740

we have that

v(x, 0) =





exp(
−x

2γ
), 0 ≤ x < 5,

exp(
x2

4γ
− 3x

γ
+

25
4γ

), 5 ≤ x < 6,

exp(
−11
4γ

), 6 ≤ x < 12.

for this case.
Algorithm 3 is applied to solve this problem. Profiles of

numerical solution at t = 1, 2, 3, 4 are displayed in Figure 4,
which is similar to the patterns of Figure 1 and Figure 2 in
[21]. This exactly confirms that numerical solution obtained
using Algorithm 3 can exhibit correct physical behavior.

VI. CONCLUSIONS

In this article, three numerical solvers (i.e. Algorithm 1,
Algorithm 2, Algorithm 3) for solving Burgers’ equation
in one dimension based on Hopf-Cole transformation have
been developed. Numerical results show the superiority of
Algorithm 3 over Algorithm 1 and Algorithm 2 in term

of computational efficiency, though Algorithm 2 has the
same accuracy as Algorithm 3. Also, numerical results reveal
that Algorithm 3 outperforms numerical solvers devised in
[10], [14], [17]. However, as exact solution is not smooth
enough or discontinuous, the presented methods can not
attain the claimed accuracy, even invalid. As we know,
the initial or/and boundary condition has jumps, the exact
solution to Burgers’ equation is discontinuous, i.e. shock
wave. The proposed methods, which do not satisfy total
variation diminishing property [31], thus yielding seriously
spurious oscillations near discontinuities, are not suitable for
numerical simulations of discontinuous problems. This is a
regretful deficiency. In the future work, it is possible to pay
much more attention to the study of exponential integrators
[32], [33] with TVD property.

In addition, over the past several decades, stabilized
explicit Runge-Kutta methods (SERKMs) [34], [35] have
attracted much more attention. They possess large stability
domains and have been proven to be very useful in the
solutions of IBVPs. Also, it is very interesting and challeng-
ing to solve multi-dimensional IBVPs by the combinations
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TABLE IX
COMPARISON OF NUMERICAL RESULTS AT t = 1 FOR EXAMPLE 3 WITH DIFFERENT γ , (∆t = h = 0.002).

γ = 0.01 γ = 0.008 γ = 0.006 γ = 0.004 γ = 0.002
Algorithm 1 err 3.2528e− 03 2.6712e− 03 4.8987e− 03 1.6257e− 02 1.2838e− 01

err2 8.4138e− 04 6.1754e− 04 9.8071e− 04 2.6583e− 03 1.4968e− 02
Algorithm 2 err 2.2112e− 03 6.3690e− 04 7.5088e− 05 1.0588e− 04 5.3862e− 03

err2 5.7237e− 04 1.4739e− 04 1.5553e− 05 2.4448e− 05 6.6394e− 04
Algorithm 3 err 2.2112e− 03 6.3699e− 04 7.4626e− 05 4.6404e− 05 1.7570e− 03

err2 5.7238e− 04 1.4743e− 04 1.5562e− 05 1.9288e− 05 3.4468e− 04
HOC FDM [14] err 2.6558e− 03 8.0053e− 03 1.9081e− 02 5.9661e− 02 3.7600e− 01

err2 1.5423e− 03 2.9058e− 03 5.5360e− 03 1.3245e− 02 5.6780e− 02

TABLE X
COMPARISON BETWEEN EXACT AND NUMERICAL SOLUTIONS OF EXAMPLE 4 WITH γ = 0.25 AT t = 1.5, (∆t = h = 0.025).

x Algorithm 1 Algorithm 2 Algorithm 3 HOC FDM [14] exact solution
0 1.56637702742831 1.56633382966077 1.56633382656578 1.56637363394596 1.56633384476725

1.25 0.73665723258733 0.73613585176191 0.73613590308168 0.73665722340424 0.73613618471109
2.5 0.02462008147105 0.02458829874397 0.02458830650549 0.02462008147077 0.02458832890444
err 5.2435e− 04 4.6538e− 07 4.6537e− 07 2.1576e− 03
err2 1.2359e− 04 1.6947e− 07 1.6482e− 07 6.4710e− 04
CPU 0.378 1.128 0.391 0.375

TABLE XI
COMPARISON BETWEEN EXACT AND NUMERICAL SOLUTIONS OF EXAMPLE 4 WITH γ = 0.05 AT t = 1.5, (∆t = h = 0.025).

x Algorithm 1 Algorithm 2 Algorithm 3 HOC FDM [14] exact solution
0 1.59999999377673 1.59999999266475 1.59999999264451 1.59999999322371 1.59999999266051

1.25 0.55398528835588 0.49472699352290 0.49527918783689 0.55398528835588 0.49604083019580
1.5 0.01536819730726 0.01297644607361 0.01302853320031 0.01536819730727 0.01306011384506
err 6.3569e− 02 1.3138e− 03 9.2627e− 04 6.5569e− 02
err2 6.9271e− 03 1.5405e− 04 1.3003e− 04 1.6828e− 02
CPU 0.390 1.185 0.391 0.375
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Fig. 3. Example4 with γ = 0.1 (solved by Algorithm 3 with ∆t = h =
0.05): Numerical solution and corresponding errors.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

U

t=1

t=2

t=3

t=4

γ=1,  h=∆ t=0.05

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

x
t

U

γ=0.1

Fig. 4. Example 5 (solved by Algorithm 3 ): Numerical solutions at
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of SERKMs with HOC FDMs. It is possible that some
techniques developed in this paper are useful for the research
of SERKMs combined with HOC FDMs in future.

Finally, the extensions of the proposed methods to some
high-dimensional Burgers equations [36], [37] are impossible
if they are not transformed into heat equation with mixed
boundary by Hopf-Cole transformation. Of course, similar
techniques may be generalized to the following system of
two-dimensional Burgers equations:

{
ut + uux + vuy = ∆u
vt + uvx + vvy = ∆v

with potential symmetry condition uy = vx because it can
be transformed into heat equation by Hopf-cole transfor-
mation. However, for higher complicated matrix, it is also
challenging to investigate the good approximation of matrix
exponentials.
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