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Abstract—Ontology, as a useful tool, has been widely applied
in various fields, and ontology concept similarity calculation is
an essential problem in these application algorithms. A recent
method to get similarity between vertices on ontology is not
by pairwise computation but based on a function which maps
ontology graph into a line and maps every vertex in graph into
a real-value, the similarity is measured by the difference of their
corresponding scores. The multi-dividing method is suitable
for ontology problem and plays a key role in achieving this.
Such ontology function is given by learning a training sample
which contains a subset of vertices with k classes from ontology
graph. In this paper, we propose a new multi-dividing ontology
algorithm framework, which is designed to avoid the choice of
loss function. Meanwhile, there is such a vertex selection policy
in new multi-dividing ontology algorithm that it guarantees that
the new algorithm can be employed for an ontology graph with
its structure rather than a tree. We provide some theoretical
characteristics of the new multi-dividing ontology algorithm,
and show that the new algorithm is convergent.

Index Terms—Ontology, multi-dividing, ROC optimization,
AUC criterion, VC major class.

I. INTRODUCTION

THE term of “Ontology”, deriving from philosophy, is
used to describe the nature of things. In computer

science, ontology is defined as a shared conceptual model,
which has been applied in intelligent information integration,
collaboration, information systems, information retrieval, e-
commerce, knowledge management and image retrieval. As
an effective conceptual semantic model, ontology technology
has been widely employed in many other areas such as social
science (for instance, see Qiu and Lou [1]), biology medicine
(for instance, see Arsene et al., [2]), and geography science
(for instance, see Arsene et al., [2]).

In information retrieval, ontology has been used to com-
pute semantic similarity (for instance, see Su and Gulla
[4]) and search extensions for concepts. Every vertex on an
ontology graph represents a concept; a user, searching for a
concept A, will return similarities concepts of A as search
extensions. Let G be a graph corresponding to ontology O,
the goal of ontology similarity measure is to approach a
similarity function which maps each pair of vertices to a real
number. Choose the parameter M ∈ R+, the concepts A and
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B have high similarity if Sim(A,B) > M . Let A,B be two
concepts on ontology and if Sim(A,B) > M , then return
B as retrieval expand when search concept A. Therefore, the
quality of similarity functions plays an important role in such
applications.

Recent years have witnessed some effective technologies
for ontology similarity measurement. Zhu et al., [5] proposed
a new algorithm to get a similarity matrix in terms of
learning the optimal similarity kernel function for ontology
applications. Zhu and Gao [6] presented a new optimization
model for ontology similarity measurement and ontology
mapping in multi-dividing setting such that the similarity
function was designed from the idea of partial AUC criterion.
Gao et al., [7] obtained the fast ontology algorithm for
standard ontology SVM by virtue of infinite push multi-
dividing ontology algorithm. Gao et al., [8] deduced an
ontology optimize algorithm for ontology sparse vector
learning using gradient descent, and a fast rate version of
algorithm was also given. Gao and Gao [9] inferred a sparse
vector learning algorithm for ontology similarity measure
and ontology mapping in view of accelerated first-order
technology. Lan [10] explored the learning theory approach
for ontology similarity computation in a setting when the
ontology graph is a tree. It forms k branches in the tree
and any two vertices belong to different branches have no
edge between them. The concepts in the same branch of the
tree should have higher similarity, compared with concepts
in different branches. Using the multi-dividing algorithm in
which the k parts correspond to the k classes of vertices of
k rates. The rate values of all classes are decided by experts.
Then, a vertex in a rate a has larger value than any vertex
in rate b (where 1 ≤ a < b ≤ k) under ontology function f .
At last, the similarity between two vertices is judged by the
difference between two real numbers which they correspond
to. Thus, the multi-dividing algorithm is reasonable to learn
a score function for an ontology graph with a tree structure.
More ontology algorithms can be referred to Gao and Shi
[11] and Lan et al., [12].

Furthermore, in [13], Gao and Xu studied the uniform
stability of multi-dividing ontology algorithm and obtained
the generalization bounds for stable multi-dividing ontology
algorithms. Gao et al., [14] researched the strong and weak
stability of multi-dividing ontology algorithm. Gao and Xu
[15] learned some characters for such ontology algorithm.
Other analysis for ontology algorithm can be refered to [16],
[17], [18].

In this paper, we still focus on the theoretical analysis
of multi-dividing ontology algorithm, but the new multi-
dividing framework is reconsidered by us from a new
perspective. We obtain ontology score function under the
new multi-dividing framework which is regardless of the
loss function, and propose a vertex partitioning strategy to
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solve the problem of ontology graph structure restrictions for
multi-dividing setting. We focus on the theoretical analysis of
the new framework. The convergence of new multi-dividing
ontology algorithm is proved.

The organization of this paper is as follows: we describe
the multi-dividing ontology problem in Section 2, notions for
new multi-dividing ontology algorithm setting are defined in
Section 3. Using these notions and new idea, we derive some
theoretical results for new multi-dividing ontology algorithm
in Section 4.

II. THE MULTI-DIVIDING METHOD FOR ONTOLOGY

Let V ⊂ Rq (q ≥ 1) denote an input space (or the
instance space) for ontology graph, and the vertices (or,
instances) in V are drawn randomly and independently
according to some (unknown) distribution D. Given a train-
ing set S = {v1, · · · , vn} of size n in V , the goal of
ontology learning algorithms is to obtain a score function
f : V → R, which assigns a score to each vertex, and
ranks all the instances according to their scores. The multi-
dividing ontology problem is a special kind of ontology
learning problem in which vertices come from k categories
and the learner is given examples of vertices labeled as there
k classes.

Formally, the settings of multi-dividing ontology prob-
lems can be described as follows. There is an instance
space V from which vertices are drawn, and the learner
is given a training sample (S1, S2, · · · , Sk) ∈ V n1 ×
V n2 × · · ·×V nkconsisting of a sequence of training sample
Sa = (va1 , · · · , vana

) (1 ≤ a ≤ k). The goal is to learn
from these samples a real-valued ontology score function
f : V → R that orders the future Sa vertices rank higher
than Sa′ where a < a′, that is, f is considered to score
a vertex v higher than a vertex v′ if f(v) > f(v′). Let
≺f be a preorder on V such that for any (v, v′) ∈ V 2,
v ≺f v′ if and only if f(v) ≤ f(v′). We assume that
instances in each Sa are drawn randomly and independently
according to some (unknown) distribution Da on the in-
stance space V respectively. Denote Y be a label of V ,
which indicates its classification information. We use pair
(µ, η) to describe the probability measure on the underlying
space, where µ implies the marginal distribution of V and
ηa,b(v) = P{Y = a|V = v, Y ∈ {a, b}}, v ∈ V and
a ∈ {1, · · · , k} denotes the posterior probability. Without
loss of generality, we always assume that V coincides with
the support of µ. If not particularly specified, η refers to
established for all (a, b).

The ontology loss function l : RV ×V ×V → R+∪{0} is
used to punish the inconsistent situation which sgn(f(v) −
f(v′)) is not coincide with their category relationships, where

sgn(u)=

 1, u > 0
0, u = 0
−1, u < 0

. l also satisfies that l(f, v, v′) is a

non-negative real number and symmetric with respect to v
and v′. As an example, one common loss function called γ
ontology loss for γ > 0 defined as

lγ(f, v, v′) =


1, if f(v)− f(v′) ≤ 0

1− f(v)−f(v′)
γ , if 0 < f(v)− f(v′) < γ

0, if f(v)− f(v′) ≥ γ

Fig. 1. Mathematics Ontology

The quality of the ontology score function is measured by
the expected l-error:

Rl(f) = (1)

1∑k−1
a=1

∑k
b=a+1

k−1∑
a=1

k∑
b=a+1

nanbEv∼Da,v′∼Db
{l(f, v, v′)}.

However, computation model (1) cannot be calculated direct-
ly since the distribution Da for a = 1, · · · , k are unknown.
Instead, we use empirical l-error to measure ontology func-
tion:

R̂l(f ;S1, · · · , Sk) (2)

=
1∑k−1

a=1

∑k
b=a+1

k−1∑
a=1

k∑
b=a+1

∑
i:vai

∑
j:vbj

l(f, v, v′).

Calculation model (2), however, has an obvious drawback
which is that it depends on the selection of the ontology
loss function l. Different loss functions lead to different
optimal ontology score functions, and often the distinction of
performances for different optimal ontology score functions
are extensively large. At the same time, the theoretical
analysis in [13], [14], [15] showed that the theoretical
characters of different ontology score functions given by
different ontology loss functions have big gap due to their
different consistent continuity, differentiability, smoothness,
and other mathematical properties. It inspires us to consider
about obtaining an optimal ontology function from the nature
of the multi-dividing algorithm, which avoids the choice of
ontology loss function.

From [13], [14], [15], the use of the multi-dividing ontol-
ogy algorithm is based on the assumption that the ontology
graph is a tree, i.e., an acyclic graph. Under this premise, all
vertices on given ontology graph except for the top vertex
can be uniquely classified. However, in certain application
areas, there exists a cycle in ontology graph. For example,
see the “Mathematics ontology” in Fig. 1.

In this ontology graph, vertices “Cayley graph theory” and
“Spectral graph theory” belong to cross-discipline, and they
are associated with more than one branch of mathematics. If
we apply the multi-dividing method in this ontology, then
k = 3, and all vertices can be divided into three parts:
“Operation”, “Discrete mathematics”, “Algebra”. However,
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these interdisciplinary vertices are difficult to determine
which part they belong to.

III. DEFINITIONS

In order to solve the first problem, our proposal in this
paper is to evaluate the quality of ontology function by means
of its ROC (Receiver Operating Characteristic) curve. The
trick of ROC curve has been widely used in classification,
regression and ranking (for instance, see [19], [20], [21]).
Here, we first define the multi-dividing version of ROC curve
for our ontology algorithm use. In the following text, all
the ontology score functions considered are connected with
ontology multi-dividing algorithm setting, and we hereby
make no specific statement again.

Definition 1: Let f be an ontology score function. The
ROC curve of f is given by

t ∈ R → (P{f(V ) > t|Y = 1}, · · · ,
P{f(V ) > t|Y = k}) ∈ [0, 1]k.

When the jump occurs in ROC curve, line segments are
employed to connect the corresponding extremities of curve.
From this point of view, ROC curve of ontology score
function f can be regarded as the graph of a continuous
mapping α ∈ [0, 1]→ ROC(f, α).

In a certain sense, the ROC curve implies a partial order
for ontology score function set: for all pairs of ontology score
function f1 and f2, if ROC(f1, α) ≤ ROC(f2, α) holds for
any α ∈ [0, 1], then we say that f2 is more accurate than
f1. In view of standard Neyman-Pearson argument, the most
accurate ontology score function can be established from
increasing transform of the function, which is similar to
the conditional probability function depending on an affine
transformation.

Definition 2: (Optimal ontology score function) Let F ∗ be
the set of ontology score functions. If for any f∗ ∈ F ∗, and
for each pair (v, v′) ∈ V 2, η(v) < η(v′)⇒ f∗(v) < f∗(v′),
then we call F ∗ is the optimal ontology score function set.

In fact, the elements of f∗ are optimizers of the ROC
curve. Moreover, if we assume the random variable η(V )
to be continuous, then F ∗ coincides with the set of strictly
increasing transforms of η. The performance of a candidate
ontology score function f is usually measured by AUC
(Area Under the ROC Curve), which can be regarded as a
summary of the ROC curve. We use the following version
of definition for AUC, which corresponds to multi-dividing
ontology algorithm.

Definition 3: Let f be an ontology score function. The
AUC is the function defined as:

AUC(f)

=
k−1∑
a=1

k∑
b=a+1

{P{f(Va) > f(Vb)|(Ya, Yb) = (a, b)}

+
1

2
P{f(Va) = f(Vb)|(Ya, Yb) = (a, b)}}.

where (Va, Ya) and (Vb, Yb) denote two independent copies
of the pair (V, Y ), for any ontology score function f .

This function gives a total order on the set of ontology
score functions and AUC(f) coincides with

∫ 1

0
ROC(f, α).

We denote the optimal curve and the corresponding (max-
imum) value for the AUC criterion by ROC∗ =ROC(f∗, ·)

and AUC∗=AUC(f∗) respectively, where f∗ ∈ F ∗. The
statistical counterparts of ROC(f, ·) and AUC(f ) denoted
by R̂OC(f, ·) and ÂUC(f), rely heavily on sampling data
which are obtained by replacing the class distributions by
their empirical versions in the definitions. We focus on a
particular subclass of ontology score function in this paper.

Definition 4: ( Piecewise constant ontology score func-
tion) An ontology score function f is piecewise constant
if there exists a finite partition P of V such that for all
C ∈ P , there exists a constant kC ∈ R such that for any
vertex v ∈ C, f(v) = kC .

However, Definition 4 does not provide a unique character-
ization of the underlying partition. The partition P is called
minimal if, for any two of its elements C 6= C ′, we have
kC 6= kC′ . The ontology score function conveys an ordering
on the cells of the minimal partition.

Definition 5: Let f be an ontology score function and
P be its associated minimal partition. The ontology score
function induces an order ≺f over the cells of the partition.
For a given cell C ∈ P , its order R≺f

∈ {1, · · · , |P |} which
is affected by the ≺f over the elements of the partition. By
convention, we set rank 1 to correspond to the highest score.

The ontology score functions considered in this paper
result from a collection of piecewise constant ontology score
functions. Since each of these ontology score function is
related to a possibly different partition, we must consider a
collection of partitions of V . In our proposal, good ontology
score function is defined on the least fine subpartition of this
collection of partitions.

Definition 6: Consider a collection of k partitions of V
denoted by Pb, b = 1, ·, k. A subpartition of this collection
is a partition Pb made of nonempty subsets C ⊂ V such that
for each C ∈ Pk, there exists (C1, · · · , Ck) ∈ P1× · · ·×Pk
satisfying

C ⊆
k⋃
b=1

Cb.

We denote P ∗k = ∩b≤kPb.
An obvious fact is that Pk is a subpartition of any of

the Pb’s. From the point that any partition P which is a
subpartition of Pb for any b ∈ {1, · · · , k}, the largest one is
just a subpartition of Pk. This gives us the theoretical basis
of how to divide the vertex when ontology graph structure
is not a tree. Considering a collection of piecewise constant
ontology score function fb, b = 1, · · · , k, and Pb is denoted
as their corresponding minimal partitions. Naturally, every
ontology score function fb induces a ordering ≺∗b on the
partition P ∗k . For any (C,C ′) ∈ P ∗2k , (Cb, C

′

b) ∈ P 2
b and

C × C ′ ⊂ Cb × C
′

b, we infer that C ≺∗b C ′ if and only if
Cb ≺∗b C

′

b.
The collection of ontology score functions results in a

collection of k orderings on P ∗k . In voting theory, such a
collection is named a profile. Next, we will consider the
case of piecewise constant ontology score functions which
is based on the definition of the probabilistic Kendall τ . We
use more curly notation for the preorder relation ≺f on V
with the following restriction: for any C,C ′ ∈ P , v ∈ C and
v′ ∈ C ′, we get v ≺f v′ if and only if C ≺f C ′. Equivalent
to that, f(v) ≤ f(v′) for any v ∈ C and v′ ∈ C ′. We should
introduce a measure of similarity for preorders on V induced
by ontology score functions f1 and f2.
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Recall that the probabilistic Kendall τ for two random
variables (Z1, Z2) on the same probability space is defined
as

τ(Z1, Z2) = 1− 2dτ (Z1, Z2),

where

dτ (Z1, Z2) = P{(Z1 − Z
′

1) · (Z2 − Z
′

2) < 0}

+
1

2
P{Z1 = Z

′

1, Z2 6= Z
′

2}

+
1

2
P{Z1 6= Z

′

1, Z2 = Z
′

2}

and (Z
′

1, Z
′

2) is an independent copy of the pair (Z1, Z2).

IV. THEORETICAL ANALYSIS

In terms of the definition of probabilistic Kendall τ , we
derive that the Kendall τ for the pair (f(V ), Y ) is related
to AUC(f ). This fact implies that: if we use natation pa,ba =
P{Y = a|Y ∈ {a, b}}, then for any real-valued ontology
score function f , we infer:

1

2
(1− τ(f(V ), Y ))

=
k−1∑
a=1

k∑
b=a+1

2pa,ba pa,bb (1−AUC(f))

+
1

2
P{f(V ) 6= f(V ′), Y = Y ′}.

For two given ontology score functions f1 and f2

and considering the probabilistic Kendall tau for random
variables f1(V ) and f2(V ), we denote dV (f1, f2) =
dτ (f1(V ), f2(V )). It simply manifests that dV implies a
distance between ≺f1 and ≺f2 induced by ontology score
functions f1 and f2 on the vertex set V . The following lemma
shows that the deviation between ontology score functions
in terms of AUC is dominated by a quantity involving the
probabilistic agreement based on Kendall τ .

Lemma 1: Assume pa ∈ (0, 1) for a = 1, · · · , k. For any
ontology score function f1 and f2 on V , we obtain

|AUC(f1)−AUC(f2)|

≤
k−1∑
a=1

k∑
b=a+1

dV (f1, f2)

2pa,ba pa,bb

=
k−1∑
a=1

k∑
b=a+1

1− τV (f1, f2)

4pa,ba pa,bb
.

Proof. In view of τV (f1, f2) = 1 − 2dV (f1, f2), where
dV (f1, f2) is given by:

P{(f1(V )− f1(V ′)) · (f2(V )− f2(V ′)) < 0}

+
1

2
P{f1(V ) = f1(v′), f2(V ) 6= f2(v′)}

+
1

2
P{f1(V ) 6= f1(v′), f2(V ) = f2(v′)}.

For any f , AUC(s) can be rewritten as:
k−1∑
a=1

k∑
b=a+1

P{(f(V )− f(V ′))(Y − Y ′) > 0}
2pa,ba pa,bb

+
k−1∑
a=1

k∑
b=a+1

P{f(V ) = f(V ′), Y = Y ′}
4pa,ba pa,bb

.

Using Jensen’s inequality, we easily obtain that∑k−1
a=1

∑k
b=a+1 2pa,ba pa,bb |AUC(f1) − AUC(f2)| is bounded

by the expectation of the random variable

ΠP{(f1(V )− f1(V ′)) · (f2(V )− f2(V ′)) < 0}

+
1

2
ΠP{f1(V ) = f1(v′), f2(V ) 6= f2(v′)}

+
1

2
ΠP{f1(V ) 6= f1(v′), f2(V ) = f2(v′)}

which is equal to dV (f1, f2) = 1−τV (f1,f2)
2 . 2

What we need to pay special attention to is the fact that
the converse inequality does not hold in general. Ontology
score functions with same AUC may lead to different orders.
To our delight, the following lemma ensures that under
assumption of the noise condition, an ontology score function
with a nearly optimal AUC is approximate to the optimal
ontology score functions in the sense of Kendall τ .

Lemma 2: Suppose that the random variable η(V ) is
continuous and that there exists c <∞ and d ∈ (0, 1) satisfy

E[|η(V )− η(v)|−d] ≤ c (3)

for each v ∈ V . Then, for any ontology score function f and
any optimal ontology score function f∗ ∈ F ∗, we get

1− τV (f∗, f) ≤ C(AUC∗ −AUC(f))
d

1+d ,

where C is constant with

C =
k−1∑
a=1

k∑
b=a+1

3c
1

1+d (2pa,ba pa,bb )
d

1+d

Proof. In terms of the fact that, for any f ∈ F , the AUC
deficit

k−1∑
a=1

k∑
b=a+1

2pa,ba pa,bb |AUC(f1)−AUC(f2)|

can be rewritten as

k−1∑
a=1

k∑
b=a+1

P{f(V ) = f(V ′), (Y, Y ′) = (a, b)}

+ E[|ηa,b(V )− ηa,b(V ′)| ·Π{(V, V ′) ∈ Γa,bf }],

where

Γa,bf = {(v, v′) ∈ V 2 : (f(v)−f(v′))·(ηa,b(v)−ηa,b(v′)) < 0}.

Combining with Holder inequality and noise condition (3),
we infer that P{(V, V ′) ∈ Γa,bf } is bounded by

(E[|ηa,b(V )− ηa,b(V ′)| ·Π{(V, V ′) ∈ Γa,bf }])
d

1+d × c
1

1+d .

Thus, for every f∗ ∈ F ∗, we have

dV (≺f ,≺f∗) =
k−1∑
a=1

k∑
b=a+1

P{(V, V ′) ∈ Γa,bf }

+
1

2
P{f(V ) = f(V ′)}.
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Since
∑k−1
a=1

∑k
b=a+1 p

a,b
a pa,bb P{f(V ) = f(V ′), (Y, Y ′) =

(a, b)} can be represented as

k−1∑
a=1

k∑
b=a+1

E[Π{f(V ) = f(V ′)}

·ηa,b(V ′)(1− ηa,b(V ))]

=
1

2

k−1∑
a=1

k∑
b=a+1

E[Π{f(V ) = f(V ′)}

·(ηa,b(V ′) + ηa,b(V )− 2(ηa,b(V ′)ηa,b(V )))],

which can be easily verified to be larger than
1
2

∑k−1
a=1

∑k
b=a+1 E[Π{f(V ) = f(V ′)} · |ηa,b(V ′) −

ηa,b(V )|]. With the similar discussion demonstrated above,
we get that P{f(V ) = f(V ′)} is bounded by

k−1∑
a=1

k∑
b=a+1

(E[|ηa,b(V )− ηa,b(V ′)|

· Π{f(V ) = f(V ′)}])
d

1+d × c
1

1+d .

From what we argued above, we deduce the desired result.
2

The following lemma reveals the link between a specific
notion of distance between ≺f1 and ≺f2 on P and the K-
endall τ distance between preorders on vertex set V induced
by piecewise constant ontology score functions f1 and f2.
This result is obtained directly from the definition, thus we
omitted the certification process.

Lemma 3: Let f1 and f2 be two piecewise constant on-
tology score functions. We obtain

dV (f1, f2) = 2
∑

1≤r<l≤R

µ(Cr)µ(Cl)Ur,l(≺f1 ,≺f2), (4)

where

Ur,l(≺,≺′)
= Π{(R≺(Cr)−R≺(Cl)) · (R≺′(Cr)−R≺′(Cl)) < 0}

+
1

2
Π{R≺(Cr) = R≺(Cl), R≺′(Cr) 6= R≺′(Cl)}

+
1

2
Π{R≺(Cr) 6= R≺(Cl), R≺′(Cr) = R≺′(Cl)}

for any two orderings ≺, ≺′ on a partition of cells {Cr : r =
1, · · · , R}.

In the right side of (4), Ur,l(≺f1 ,≺f2) equals to 1 if the
cells Cr and Cl are not classified in the same order by
ontology score functions f1 and f2, to 1

2 if they are tied for
one ordering but not for the other, and to 0 for other cases.
In conclusion, the agreement τV (f1, f2) can be regarded as
a weighted version of the rate of accordant pairs for the cells
of P , which is measured by Kendall τ . By substituting the
values of µ(Cr) for their empirical counterparts in (4), we
can get the statistical version of τV (f1, f2). Thus, let

τ̂V (f1, f2) = 1− 2d̂V (f1, f2), (5)

where d̂V (f1, f2) = 2/(n(n − 1))
∑
i<j K(Vi, Vj) is a

U -statistic with degree 2, and K(·, ·) is symmetric kernel

defined as follows:

K(v, v′) = Π{(f1(v)− f1(v′)) · (f2(v)− f2(v′)) < 0}

+
1

2
Π{f1(v) = f1(v′)}Π{f2(v) 6= f2(v′)}

+
1

2
Π{f1(v) 6= f1(v′)}Π{f2(v) = f2(v′)}.

The trick we consider in this paper heavily depends on
the median procedure, which regards the family of metric
procedures (see Barthelemy and Montjardet [22] for more
details). Let d(·, ·) be dissimilarity measure or certain metric
on the set of orderings on a finite set Z. In terms of its
definition, a median ordering with respect to d among a
profile Π = {r : 1 ≤ r ≤ R} is just ordering ≺med on
Z satisfies

∆Π(≺med) = min
≺: ordering on Z

∆Π(≺),

which implies that minimizing the sum ∆Π(≺) =
∑R
r=1 d(≺

,≺r) over the set R(Z) of all orderings ≺ on set Z.
Let N < ∞ be cardinality of Z. We derive that there

exists

|R(Z)| =
N∑
r=1

(−1)r
r∑

m=1

(−1)m
(
r

m

)
mN

possible orderings on Z and in worst cases in computation of
median orderings of this combinatorial optimization problem
is NP-hard.

When we consider preorders with respect to vertex set V
of infinite cardinality, it becomes more difficult to define such
notion. Fixed a pseudo-metric such as dτ and ontology score
functions f1, · · · , fk on V , we are not sure whether there
exists f in F with

∑K
k=1 dτ (f, fk) = minf

∑K
k=1 dτ (f, fk).

However, when it comes to piecewise constant ontology
score functions with corresponding finite subpartition P on
V , there is one-to-one correspondence between the corre-
sponding preorders and orderings on P . In this way, the
minimum distance is effectively obtained.

With regard to a finite collection of piecewise constant
ontology score functions

∑
K = {f1, · · · , fK} on V , with

K ≥ 1. Let F be a collection of ontology score functions.
fK is called a median ontology score function for

∑
K with

respect to F if

fK = argminf∈F ∆K(f),

where ∆K(f) =
∑K
k=1 dV (f, fk) for any f ∈ F .

We can get empirical median ontology score function in
a similar way, but the true distance dV should be displaced
by its empirical counterpart dτ̂V .

From the standard randomization mechanism view, a
randomized ontology score function can be regarded as a
random element, depending on both a random variable Z and
the training sample S = (S1, S2, · · · , Sk). It has the form
like f̂n(·, Z) which takes values over a measurable space Z.
The AUC of a randomized ontology score function f̂n(·, Z)
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is given by:

AUC(f̂n(·, Z))

=
k−1∑
a=1

k∑
b=a+1

{P{f̂n(V,Z) < f̂n(V ′, Z)|(Ya, Yb) = (a, b)}

+
1

2
P{f̂n(V,Z) = f̂n(V ′, Z)|(Ya, Yb) = (a, b)}}.

We can say that a randomized ontology score function f̂n is
AUC-consistent (or, strongly AUC-consistent) if

AUC(f̂n(·, Z))→ AUC∗

when n→∞ holds in probability (or, almost-surely).
Let K ≥ 1. For fixed S, we may draw K Independent and

identically distributed copies Z1, · · · , ZK of Z, obtaining
the collection

∑̂
K of ontology score functions f̂n(·, Zj),

1 ≤ j ≤ K. Let F be a collection of ontology score functions
and assume that f̂K is a median ontology score function for
the profile

∑̂
K with respect to F in the sense of AUC-

consistency definition. The result stated as follows implies
that AUC-consistency is guarded for a median ontology
score function of AUC-consistent randomized ontology score
functions.

Theorem 1: Let K ≥ 1 and F be a class of ontology score
functions. Suppose that
(1) It satisfies the assumptions on the distribution of (V, Y )
in Lemma 2.
(2) The randomized ontology score function f̂n(·, Zj) is
AUC-consistent (or, strongly AUC-consistent).
(3) For all n, K ≥ 1 and any sample S = (S1, S2, · · · , Sk),
there exists a median ontology score function rule f̂K ∈ F
for the collection {f̂n(·, Zj), 1 ≤ j ≤ K} with respect to F .
(4) F ∗ ∩F 6= ∅.

Then, the ontology score function f̂K is AUC-consistent
(or, strongly AUC-consistent).
Proof. By virtue of Lemma 1, we infer

AUC∗ −AUC(fK) ≤
k−1∑
a=1

k∑
b=a+1

dV (f∗, fK)

2pa,ba pa,bb
,

for each f∗ ∈ F ∗. Apply triangular inequality to the distance
dV between preorders on V , we obtain

dV (f∗, fK) ≤ dV (f∗, f̂n(·, Zj)) + dV (f̂n(·, Zj), fK),

for each j ∈ {1, · · · ,K}. Averaging then over j and
according to the fact that

k∑
j=1

dV (f̂n(·, Zj), fK) ≤
K∑
j=1

dV (f̂n(·, Zj), f∗),

if f∗ ∈ F , we have

dV (f∗, fK) ≤ 2

K

K∑
j=1

dV (f̂n(·, Zj), f∗).

The desired conclusion is finally drawn from the consis-
tency assumption of the randomized ontology score function
and the fact described in Lemma 2. 2

If we allow F to depend on sample cardinality n and only
suppose the existence of f

∗
n ∈ Fn satisfies AUC(f

∗
n) →

AUC∗ as n → ∞ (omit the condition F ∗ ∩F 6= ∅), the
above statement becomes

AUC∗ −AUC(fK)

≤
k−1∑
a=1

k∑
b=a+1

1

2pa,ba pa,bb
{ 2

K

K∑
j=1

dV (f̂n(·, Zj), f∗)

+dV (f̃∗n, f
∗)},

which implies that the AUC consistency still holds true for
the median.

One important fact we should highlight here is that the last
assumption in the theory stated above implies that the class
F of candidate median ontology score functions includes
at least one optimal ontology score function, which can be
discarded at the cost of an extra bias term in the rate bound.
Then, the consistency results can be attained by picking
the median ontology score function, for every n, in a class
Fn such that there exists a sequence f̃n ∈ Fn satisfies
AUC(f̃n)→AUC∗ as n→∞. This note contains the special
case where f̂n(·, Zj) is a piecewise constant ontology score
function with a range of cardinality rn ↑ ∞ and the median
is taken over the set Fn of ontology score functions where
its cardinal number not larger than rKn . The bias term, under
mild smoothness conditions on ROC, is then of order O( 1

rKn
).

Median calculation is heavily relied on empirical versions
of the probabilistic Kendall τ , in the practical sense. The
result stated as follows implies that the existence of asymp-
totically median ontology score functions with respect to dV ,
provided that the class F over the median is calculated with
low complexity. Formally, we formulate the result in view
of a VC major class of ontology score functions with finite
dimension. For each f ∈ F , we denote

∆̂K,m(f) =

K∑
j=1

d̂V (f, fj),

where d̂V is the predictor of dV , which is based on m ≥ 1
independent copies of V .

Theorem 2: For given K ≥ 1. Let
∑
K = {f1, · · · , fK}

be a finite collection ontology score functions and F be a
class of ontology score functions which is a VC major class.
Considering the empirical median ontology score function
f̃m = argminf∈F ∆K(f). Then, as m→∞, we get

∆K(f̃m)→ min
f∈F

∆K(f)

holding for probability 1.
Proof. Clearly,

∆K(f̃m)−min
f∈F

∆K(f)

≤ 2 sup
f∈F
|∆̂K,m(f)−∆K(f)|

≤ 2
K∑
j=1

sup
f∈F
|d̂V (f, fj)− dV (f, fj)|.

Now, it follows from the strong law of large numbers for
U -processes such that

sup
f∈F
|d̂V (f, fj)− dV (f, fj)| → 0
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as N → ∞, for each j = 1, · · · ,K. In terms of central
limit theorem for U -processes, we get the convergence rate:
O(m−

1
2 ). 2

In next result, we consider that the empirical ontology
score function depends heavily on two data samples. The
training sample S, completed by the randomization on Z,
results in a collection of ontology score functions which
are instances of the randomized ontology score function.
Then a sample S′(m) = {S′1, · · · , S

′

k} is used to calculate
the empirical median, where S

′

a = ma for a = 1, · · · , k,
and m =

∑k
a=1ma. Combining with the two preceding

results, we finally derive the consistency conclusion from
the ontology score function.

Corollary 1: For given K ≥ 1. F is a VC major class
of ontology score function. Considering a training sample
S of size n with independent and identically distributed
in copies of (V, Y ) and a sample S′(m) of size m with
independent and identically distributed in copies of V .

∑̂
K is

collection of randomized ontology score functions f̂n(·, Zj)
in F establish out of S. The empirical median of

∑̂
K with

respect to F attained from the sample set S′(m) is denoted
by f̂n,m. If the assumptions of Theorem 1 are fully true, then
we get

AUC(f̂n,m)
P−→ AUC∗

as n,m→∞.
Proof. Substitute the statement for Theorem 1, we obtain

dV (f∗, f̂n,m) ≤ 1

K

K∑
j=1

dV (f̂n(·, Zj), f∗)

+
1

K

K∑
j=1

dV (f̂n(·, Zj), f̂n,m).

Using the technologies similarity as in Theorem 2’s proof,
we get

1

K

K∑
j=1

{dV (f̂n(·, Zj), f̂n,m)− dV (f̂n(·, Zj), fK)}

≤ 2 sup
(f,f ′)∈F 2

|d̂V (f, f ′)− dV (f, f ′)|.

Applying strong Law of Large Numbers for U -processes
again, we obtain that the term on the right hand side of
the bound above tends to 0 as m → ∞. Thus, the desired
conclusion is immediately derived from Theorem 1. 2

The conclusions described above can be extended to any
median ontology score function relying on a pseudo-metric
d on the collection of preorders on F which is equivalent to
dV , i.e., c1dV ≤ d ≤ c2dV with 0 < c1 ≤ c2 <∞.

V. CONCLUSION

In standard multi-dividing ontology algorithm, the qual-
ity of optimal ontology score function heavily depends on
the choice of the loss function, and the characteristics of
its algorithm are often influenced by various mathematical
properties of the loss function. Moreover, standard multi-
dividing ontology algorithm has special requirement for the
ontology graph structure, which greatly limits the application
of the algorithm. In this paper, we propose the new standard
of optimal ontology function for multi-dividing method, and

such standard is associated with a vertex splitting strategy,
which is closely linked with the Kendall τ . The new multi-
dividing ontology algorithm theoretically gets rid of the
choice of loss function, and relaxes the ontology graph
structure. Finally, the convergence for new ontology multi-
dividing algorithm has been proved.
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