


Abstract— Mobile devices are rapidly emerging as popular

appliances that are being used by consumers due to its mobility
and easy access to the Internet, especially through the usage of
Wi-Fi facilities. Android is widely used as one of the operating
system in mobile devices. But as the increase usage of mobile
devices, so does the increase of number of malware attacks and
security issues in mobile devices. Mobile devices limited
resources, i.e., processing, memory, battery power, and lack of
storage, prevents the integration of advanced security
monitoring solutions in the mobile devices. One of the solutions
in addressing this problem is by delegating security monitoring
and malware detection for mobile devices to virtual machines
(VM) in cloud computing facilities. VMs provide ease of use
through their on-demand characteristics and give huge benefits
in terms of lowering costs and improving scalability. However,
such solution could create critical vulnerability if the malware
could detect the VM environment. Upon the detection of VM
environment, the malware may not execute its malicious
programs, therefore hiding itself from being detected. The
malware would only execute malicious programs once detecting
the environment is on mobile device. This would have serious
consequences for mobile device users, as any applications that
have passed a malware detection system on the VM are
considered safe and may gain the user’s trust. In this paper, we
propose a VM and mobile device environments detection
method by analyzing the characteristic patterns of ICMP and
IP timestamps received from Android OS running on VMs and
mobile device. Based from our findings, we could showed that
by comparing the characteristic patterns of ICMP and IP
timestamps between VM and mobile device environment, the
environment could be distinguish between each other, thus
enabling the detection of VM environment.

Index Terms— Android, ICMP and IP timestamp, mobile

device, virtual machine detection, network security, malware,
mobile device.

Manuscript received 24th January 2016; revised March 7th, 2016.
M. Noorafiza is currently PhD candidate in Tokyo University of

Technology, Tokyo, Japan (corresponding author: +81426372631; e-mail:
noorafiza.matrazali@gmail.com).

K.K. Ishak is currently PhD candidate in Tokyo University of Technology,
Tokyo, Japan (e-mail: kkishak@gmail.com).

H. Maeda completed his Bachelor of Science and Master of Science in
Computer Science from Tokyo University of Technology, Tokyo, Japan
(e-mail: g211203527@edu.teu.ac.jp).

M. Shiratori is currently undergraduate student in Tokyo University of
Technology, Tokyo, Japan (e-mail: m.shiratori@edu.teu.ac.jp).

T. Kinoshita is a Professor in Tokyo University of Technology majoring
in Computer Security, System Programing and Queuing Theory (e-mail:
kinoshi@stf.teu.ac.jp).

R. Uda is Assistant Professor in Tokyo University of Technology (e-mail:
uda@stf.teu.ac.jp).

I. INTRODUCTION

 obile devices are now able to perform many of the
operations that had been exclusively done on PCs.

Mobile devices use the same architecture as traditional
computers; thus they have the same vulnerabilities and
security issues faced by PCs [1]. Operating system (OS) that
is widely used in mobile devices is Android. According to
Gartner Report [2] the Android OS’s market share was 79%
in August 2013 and it will keep increasing. Android is an
open, programmable software framework which is
vulnerable to typical mobile device attacks that can make the
mobile devices unusable. Moreover, mobile devices such as
smartphone are constrained by their limited resources, i.e.,
processing power, battery power, and lack of storage, which
prevents the integration of advanced security monitoring
solutions that work with traditional PCs.

With the integration of mobile devices and cloud
computing technology with virtual machines (VMs) as the
main underlying technology, the lack of resources available
in mobile devices for security solutions could be addressed
by delegating security monitoring and malware detection to
VMs in cloud computing facilities [3],[4].

However, despite the attractiveness of this idea, we argue
that malware detection security system using VM may have
critical vulnerability. That is, the malware may try to first
detect the environment in which it will be running. Through
such detection, malware creators may write programs that
will not perform harmful operations such as botnet attacks
upon detecting VM environment as the running environment,
thus reducing the risk for their behavior from being studied
and revealed.

There are also high possibilities that development and
testing process of the applications for Android, including
security checking will be done using emulator in the VM on
the cloud computing environment. We argue that the security
testing against various malicious codes might not give the
true results because the malicious operation may not show
their behavior once they had detected that the running
environment is VM. As the result, after the application is
released, the mobile device might be compromised in such a
way that the malware will start to execute malicious behavior
once it had detected that it is not on a VM environment.
Therefore data and private information that are stored and
communication through the mobile device and smartphone
might be revealed to malicious third party. It may also cause
expensive billing due to unapproved SMS/MMS subscription

Characteristic Patterns of Timestamps from Android
Operating System on Mobile Device and Virtual

Machine
M. Noorafiza, K.K. Ishak, H. Maeda, M. Shiratori, T. Kinoshita and R. Uda

M

IAENG International Journal of Computer Science, 43:2, IJCS_43_2_10

(Advance online publication: 18 May 2016)

__

services via smartphones [5].
This would create serious consequences for mobile device

users that are using Android as an operating system, as any
applications that have passed a malware detection system on
the VM are considered safe and may gain the user’s trust.
Furthermore, since mobile devices use the same architecture
as PC, it leads to the rapid evolution of mobile device
malware where it need only two years for mobile device virus
to evolve to a level that computer virus reached in 20 years
[6].

In this paper, we present the analysis of characteristic
patterns of ICMP and IP timestamps from Android OS
running on mobile device and VM environment. From the
findings, we showed that mobile device and VM
environment could be distinguished by examining
characteristic patterns of ICMP and IP timestamps
characteristic patterns. Such characteristic could be exploited
by malware in hiding its malicious programs upon detecting
the VM environment.

II. RESEARCH BACKGROUND

In parallel with the growth of mobile devices usage, there
has been a significant increase in malware aimed at gathering
personal information from mobile devices. This information
could later be used by the malware owner or other third party
for their personal profit such as for marketing and selling
services on the web or profiteering from online banking
information [7], [8]. This growing threat points out the need
for users to protect their mobile devices by using anti-virus or
anti-malware applications that include intrusion detection
system (IDS) and intrusion prevention system (IPS) [9]. But
implementing such anti-virus or anti-malware applications
on mobile devices may not be suited for majority of mobile
devices due to the limited resources of CPU, memory and
battery power [10]. In order to conserve mobile resources
while improving protection from malware threats, an
off-device in-cloud network service could be implemented
[11]. Through this approach, security services are delegated
to VMs in the cloud system for scanning and protecting
mobile device applications, thus free up on-device CPU and
memory resources of the mobile devices while conferring a
high level of malware protection, providing that the mobile
devices are connected to the internet.

Defense against malicious software for mobile devices
also involves in scanning and preventing malicious
applications from being published to users. Basic security
measures such as application review need to be applied for all
the applications that will be released in the application
marketplace [12]. In Android case, Google is implementing
automated antivirus system called Google Bouncer to remove
malicious applications uploaded on to the marketplace. Such
system utilizes VMs as their core environment.

VM is one of the underlying technologies in the
information technology industry. The VMs are implemented
on hypervisor hosts. There are 2 main types of VM
hypervisor. Type 1 hypervisors, or bare-metal
implementations, run directly on the server hardware without
any host operating systems beneath them, whereas Type 2
hypervisors run on top a traditional operating system. Type 2
hypervisors are easy to install and deploy because much of

the hardware configuration work such as networking and
storage is handled by the underlying operating system [13].

However, even with the significant merit of using VMs as
a defense against malware, the idea is still vulnerable due to
the possibility of the malware in detecting the system on
which it is or will be operating and thereby distinguishing the
VM environment. The issue of VM detection has been widely
discussed by researchers [14]-[16]. There are a number of
techniques for detecting the existence of a VM [17].
Detection method that is done once the detection program is
installed and executed on a host is considered the last method
that will be used. This is because if the program or software is
installed in a host, its existence might be detected and a
signature will be generated that may result in their existence
being revealed.

Through VM detection, attackers could design malware
that first try to detect whether the system is running on a VM
or not before executing any malicious or security breaching
operations. Moreover, once that point is reached, the attacks
can escalate from just VM detection to the exploitation of the
VM itself [11], [15]. This creates a critical vulnerability since
malware that has avoided detection in the VM may be
downloaded to end user mobile devices as trusted
applications. In addition, VM implementations range from
those on known to those on unknown hardware
configurations on various platforms, and hypervisors and
VM detection spans a spectrum of scenarios that need to be
investigated. We believe those intensive studies should also
look into VM detection methods and the capability of
malware to differentiate VM or mobile device environment.

If the malware could detect their running environment and
choose not to show their behavior in VMs, the mechanism of
off-device in-cloud network service will not functioning well.
Therefore security tests aimed against applications for mobile
devices may not be effective since malicious programs are
hiding their true nature once detecting that the running
environment is on VM. Thus, security system such as
signature-based Detection in the VM might not capturing the
correct signature data [18]. As a result when the applications
are released, mobile devices that install the applications
might be compromised.

In this research, we are analyzing the characteristic of IP
and ICMP timestamps patterns from the Android OS that are
running on VM or mobile device. Through the analyzed data,
we are proposing a VM or mobile device detection method by
distinguishing the different in the IP and ICMP timestamps
patterns received from the Android OS on the VM and
mobile device.

III. RELATED WORK

Various researches already discussed on VM detection
method since VMs are introduced. Previous methods for VM
detection have typically focused on specific artifacts of the
implementation, such as hardware naming, guest-to-host
communications systems, or memory addresses. Functional
and transparency detection method was discussed in [15] by
highlighting detection strategies that look upon the
characteristic of logical discrepancies, resource discrepancies
and timing discrepancies between VM and non-VM
environment. Detection method focuses on the

IAENG International Journal of Computer Science, 43:2, IJCS_43_2_10

(Advance online publication: 18 May 2016)

__

implementation of the VM that were discussed, includes
method in targeting hardware sources that contain specific
word or command related to VM implementation. Detection
could be also done by using tools that are available on
websites. Detection method that emphases on difference in
performance for VM and physical hardware also were
discussed in [14] [15]. But, as machine that is used to install
the VM is continuously improved, the difference according
to performance might have changed and tests need be done
constantly to verify current situations. A light weight
detection method of VM using CPU instruction execution
performance stability had been studied in [19]. However, this
method requires adjustment to be made in the OS and could
lead to instability in the OS itself.

On the other hand, detection methods that focus on the
network implementation and behavior of VM could be
considered ways of remotely detecting VMs without
compromising the target. A VM detection method that uses
network timestamps was first suggested by Kohno [20]
wherein the TCP timestamp was used as a covert channel to
reveal the target host’s physical clock skew. Meanwhile in
[21], discrepancies between two different kinds of
timestamp, ICMP and IP in one packet were used to
determine the presence of a VM.

In this paper, we extend our scope of studies to explore the
distinguishable differences of timestamps pattern between
mobile devices that use Android as OS both on mobile device
and Android that emulated in VM. Since blocking ICMP
timestamps is not available by default on Android platforms,
the detection using timestamps pattern could prove to be a
vulnerability for the mobile devices [22].

IV. PROPOSED DETECTION METHOD AND METHODOLOGY

A. Detection method using Timestamp

Hypervisor supports the creation of a virtual network that
connects the virtual network interface card (NIC) to a
network that is composed of virtual switches. This virtual
network connects to the physical NICs on the host machines
and allows applications on VMs to connect to services
outside of the hosts. As with other resources in the VM, the
hypervisor is the manager of network traffic in and out of
each VM and the host. Applications send network requests to
the guest operating system which passes the request through
the virtual switch. The hypervisor then takes the request from
the network emulator and sends it through the physical NIC
card out into the network. When the response arrives, it
follows the reverse path back to the application. As a result,
virtualization adds a number of wrinkles to the networking
environment as shows in Figure 1.

The IP timestamp is an optional extension to the IP header
that allows the sender to request timestamp values from any
machine that handles the packet by specifying its IP address.
Timestamp is used in various network protocols, such as IP,
ICMP and TCP. IP and ICMP timestamp options are
variable-length data that are stored in the header and are
associated with a particular extension type. One of the
options allows the sender to request timestamp values from
any target machine which handles the packet by specifying
its IP address.

Fig. 1: Virtual network path

While stamping 2 timestamps ta and tb in one packet, such

as ICMP (ta) and IP (tb) timestamps, the timestamps could be
deviated because VM might switch operation to another
guest operation between the 2 timestamps as shown in Figure
2. This creates time lag of ICMP and IP timestamps in the
same packet. In order to verify the scenario of deviated 2
timestamps in 1 packet, we include timestamp request option
in the header and send the packet to get timestamps reply.
The data structure of the packet with IP header is shown in
Figure 3, while the structure of the IP timestamp option
packets is shown in Figure 4.

Fig 2: Relationship between source clock and two timestamp operations
when timestamp discrepancy occurs

Fig 3: Data structure of IP packets header

IAENG International Journal of Computer Science, 43:2, IJCS_43_2_10

(Advance online publication: 18 May 2016)

__

Fig 4: Structure of IP timestamp option

In our previous study [23], we examined timestamps
behavior for type 2 VM hypervisors. In the study, we showed
that the replied IP timestamp information received from VMs
exhibit different behaviors compared the IP timestamps from
a real machine (PC). In [24], we proved that the IP timestamp
patterns for the type 1 hypervisor also show distinguishable
differences between real machines (PC) and VM.

On the other hand, in mobile devices case, timestamp
discrepancy could occurs due to limited resources such as
processing power in the devices. As the result, bigger
different between timestamp tb and timestamp ta could be
observed.

The comparison of characteristic patterns of ICMP and IP
timestamps for Android OS running on mobile device and
VMs are not addressed comprehensively yet. Thus in this
research, we conduct tests to verify the characteristic patterns
of timestamps from Android OS on mobile device and VMs.

Since VMs are normally operated in high performance
machines and mobile devices such as smartphone are
constrained by their limited resources, we predict that
differences of characteristic patterns of timestamps could be
observed clearly. Therefore by using the characteristic
patterns, Android OS on mobile device VM could be
differentiate.

B. Measurement infrastructure

In this experiment, we sent packets that request both ICMP
and IP timestamps from measurer machine to the target
machines which includes Android OS operated as emulator
in mobile device and VM running Android OS. The
experiment environment is shown in Figure 5.

Request timestamps Send timestamps response
Collect timestamps distribution

Fig 5: Experimental environment

A measurer machine running with open source Linux
Ubuntu 12.04 as the OS and Intel Core i3 540 as the CPU
with 2.8GB of RAM was setup to send packets with the
timestamp option to the measurement target machines.
High-performance Dell Power Edge server with Intel Xeon
CPU E5-2440 was used to host the VM target machine.
Major hypervisor products, [25], i.e., VMWare[26], Oracle
VirtualBox[27] and Xen[28] were implemented in the
experiments as emulators environment for Android OS. Open
source Android Lollipop 5.0.2 with 1GB of virtual memory
and IDE HDD with 16GB of virtual storage was setup as the
Android OS on the VMs and tests were done accordingly. As
for the measurement target mobile device, Android was
installed on Sony Xperia SO-04E and tests were done
separately on 4 different Android versions which are Android
Ice Cream Sandwich 4.0.4, Android Jelly Bean 4.2.2,
Android KitKat 4.4.4, and Android Lollipop 5.0.2.

Timestamps request packets were sent from the measurer
machine by executing customized script developed for this
experiment. The measurer machine also collects the
timestamps information in the replied packets received from
the measurement target machines.

The target machines and the measurer machine were
connected using Wi-Fi that we setup in our laboratory. C
language scripts were written to send packets to request for
ICMP and IP packets reply with timestamp option from the
client machine to the target machines. We sent
non-suspicious packets to the target machines in order to
make sure the packets would not be dropped or denied by the
network or devices. CPU busy ratio of each target machine
was set up and maintained at 80% in order to emulate the
normal usage of the machines.

As many as 1,000,000 packets were continuously sent
from the measurer machine to each target machine by
executing the developed C language scripts. The next packet
from the measurer machine was only sent to the target
machines once the measurer machine had received the reply
for the previous packet. In the experiment environment, the
timestamps in the packets from the target machines were not
affected by the network until they reached the measurer
machine. Thus, accurate timestamps were obtained from the
target machines. The timestamp information in the reply
packets from the target machines were recorded and
compiled. The ICMP and IP timestamps from the compiled
data were analyzed in decimal units to the nearest millisecond.
Milliseconds was chosen as the unit for analysis as it is the
standard unit for the timestamp in the IP packet [29]. Also,
RFC 792 imposes a 1 milliseconds resolution to the ICMP
timestamps and, since we use active requests for them,
sufficient timestamps can be collected in a short amount of
time, which makes the method feasible for fast identification.

The data were analyzed by examining the difference of
timestamp between successive packets that were received
from the target machines. We also examine deviation of
ICMP and IP timestamps in 1 packet. From the analyzed data,
graphs of the timestamps difference in value, rate for the
occurrence and ICMP and IP deviation were plotted to
investigate the characteristic pattern differences of ICMP and
IP timestamps from each target machine respectively.

IAENG International Journal of Computer Science, 43:2, IJCS_43_2_10

(Advance online publication: 18 May 2016)

__

C. Limitations

A study by Kohno had proven that the clock skew is
independent of the access topology, regardless of whether the
hosts use random or constant IP addresses [20]. Therefore,
for our experiments, we used a controlled environment that
was setup in our laboratory to eliminate the network latency
issue. Note that the characteristics of the data might vary
from device to device, from one VM technology to another,
and with changes in the implementation environment. We did
not address the latency issue in this research. This research
hypothesized that a VM environment could be detected by
comparing the behavior patterns of IP and ICMP timestamps
sent from VM target hosts and with the IP timestamps of
mobile devices that are using Android as OS within the same
environment.

V. RESULT ANALYSIS

We analyzed the collected data to understand the
time-stamping pattern behaviors of the target machines.
Table 1 shows a sample of a portion of ICMP and IP
timestamp data for the 15 count sequence, n until the (n+1) th
– n th packet. 1,000,000 ICMP and IP timestamp data were
collected from all the target machines. Based from the
collected data, the differences of ICMP timestamps value
between (n+1) th – n th were calculated for all the count
sequence data. The differences of timestamps in the sequence
were compiled to find the distribution of difference
successive timestamps in order to find the characteristic of
the timestamps reply from the target machines.

Distribution graphs were plotted in order to observe the
differences between the timestamps of the target machines.
Figure 6(a), (b), (c), (d) are the distribution patterns of the
difference value between the timestamps from the mobile
device target machine on which 4 versions of Android OS are
operated and the reoccurrence rate in the 1,000,000 ICMP
timestamp data.

Figure 7 shows the compilation of distribution patterns for
all 4 tested Android versions.

TABLE I: PORTION OF COLLECTED IP AND ICMP TIMESTAMP
INFORMATION

 IP and ICMP Timestamp (millisecond)

Count IP
Timestamps

ICMP
Timestamps

Difference of
successive
ICMP
timestamps

Different
between IP
and ICMP
timestamps

n 25567551 25567551 nil 0
n+1 25567556 25567556 5 0
n+2 25567560 25567560 4 0
n+3 25567566 25567566 6 0
n+4 25567571 25567571 5 0
n+5 25567575 25567575 4 0
n+6 25567579 25567579 4 0
n+7 25567584 25567584 5 0
n+8 25567592 25567592 8 0
n+9 25567595 25567595 3 0
n+10 25567599 25567599 4 0
n+11 25567602 25567602 3 0
n+12 25567605 25567606 3 1
n+13 25567618 25567618 13 0
n+14 25567626 25567626 8 0

Based from the distribution graph, the peak of
reoccurrence rate for timestamp difference for Android Ice
Cream Sandwich 4.0.4 and Android Jelly Bean 4.2.2 is 2 and
3. While for Android KitKat 4.4.4, and Android Lollipop
5.0.2 the peak is 2, 3 and 4. Based from this results, we could
observe that pattern characteristic for 4 versions for Android
in Wi-Fi environment are quite similar, where the peak of
reoccurrence rate for the difference of timestamps value in
the sequence are 2, 3 and 4. Figure 8 shows the compilation
of distribution patterns for Android Lollipop 5.0.2 that was
installed in the target VMs. It shows the distribution patterns
of the difference between successive timestamps from the
VMs target machine and the reoccurrence rate in 1,000,000
ICMP timestamp data. From Figure 8, we could observe that
the peaks for the reoccurrence rate are at 0 for all the VMs.
70% of the timestamps from Xen and VMWare have the
same value as the timestamps from the previous sequence
packets, where (n+1) th – n th= 0, while 50% of the
timestamps from VirtualBox have the same value as the
timestamps from the previous packets.

 Fig. 6 (a): Android Ice Cream sandwich 4.0.4

 Fig. 6 (b): Android Jelly Bean 4. 2.2

 Fig 6 (c): Android KitKat 4.4.4

IAENG International Journal of Computer Science, 43:2, IJCS_43_2_10

(Advance online publication: 18 May 2016)

__

Fig. 6 (d): Android Lollipop 5.0.2

 Fig. 7: Timestamps difference distribution for 4 versions of Android

 Fig. 8: Timestamps differences when Android installed as emulator
 on different types of VMs

 Fig. 9: IP and ICMP timestamps differences for 4 versions of Android

From the distributions graphs in Figure 7 and 8, we could
notice a compelling different of the characteristic patterns of
ICMP timestamps from Android OS running on mobile
device environment and VMs.

Further data analysis also shows that the data for ICMP
and IP timestamps from the mobile device replicated the

phenomenon as per study completed in [21], where different
ICMP and IP timestamps in same packet could be observed.
As displayed in Figure 9, 3.31% of the packets from the
Android KitKat 4.4.4 give difference value of 1 between the
value of ICMP and IP timestamps in the same packet. Same
characteristic were detected in 2.69 % of the received packets
from Android Lollipop 5.0.2, 2.57 % from Android Ice
Cream Sandwich 4.0.4 and 2.21% from Android Jelly Bean
4.2.2.

VI. DISCUSSION

In this research we could clearly see that characteristic

patterns of timestamps from Android OS on mobile device
and VMs are distinguishable. We conducted experiments to
gather and analyze data to determine the difference of
successive ICMP timestamps and reoccurrence rate for
timestamp difference for Android. We observed that the
timestamps differences between timestamp and the
successive timestamps in mobile device is 2, 3 and 4 in 4
versions of Android Oss. Meanwhile, for the latest version of
Android OS in major hypervisor products, we found out that
the difference is almost 0 for timestamps differences between
timestamp and the successive timestamp.

The results also showed that ICMP and IP timestamps
were deviate for the timestamps replied from mobile device
installed with Android OS. This characteristic could not be
observed in the packets replied from the VMs target machine
because of the high performance machine that used to host
VM. Due to this different in characteristic patterns of ICMP
and IP timestamps, we had proved our hypothesis that ICMP
and IP timestamps pattern characteristic could be used in
detecting either the target machine is running Android on
VM environment or on mobile devices, therefore enabling
the detection of VM environment.

 In this research also, we showed that machine
performance could be exploited in detecting the environment
in which Android OS is running. Thus, mobile devices that
have limitation in performance need to address this issue
which could become vulnerability for the mobile devices
with Android OS.

VII. CONCLUSION AND FUTURE WORK

Wireless local area networks (WLANs) or hotspots [30] or
commonly known as “Wi-Fi”[31] provides a convenient,
cost-effective means for network connectivity in designated
areas. With the changing mobile computing landscape that
empowers mobile device users to access on-line on the go
through this Wi-Fi., it is vital for security related studies to be
performed in such environment. Concerns regarding security
and privacy with the expanding usage of Wi-Fi discussed in
various studies [32]-[34].

Furthermore with the current trend of Bring Your Own
Device (BYOD) to workplace, employees are bringing their
personal mobile devices to access applications and corporate
data in the corporate internal network. This could cause
security issue within the corporation. Mobile device could be
affected with the malware or spoofing tools in non-secure
Wi-Fi connection and when it access the corporation

IAENG International Journal of Computer Science, 43:2, IJCS_43_2_10

(Advance online publication: 18 May 2016)

__

environment, malware could start stealing the information
within the corporation [35], [36].

In this research we have shown that ICMP and IP
timestamps could be used in differencing between Android in
mobile device and VM environment. VMs are normally
installed on high performance machine in cloud computing
environment whereas mobile devices have limited resources
such as the processing power. Due to this, it creates different
characteristic patterns of ICMP and IP timestamps in the
replied packets from Android OS on mobile device and VMs.
This scenario could be used by malware to differentiate the
Android OS running environment.

In such scenario where infected mobile device is
connected to corporate internal network, the detection
method using ICMP and IP timestamps could be used in
sniffing the internal network to avoid from infecting Android
OS implemented in VMs while targeting only Android in
mobile devices. This could create security issue within the
corporation. Similar method could also be used by malware
in hiding its malicious behavior from being detected by
security services running on VM, for example by connecting
to a command and control server and gathering the ICMP and
IP of the running environment.

In conclusion, from our results in this research, we showed
that Android OS running on mobile device could create
security loophole that can be exploited by attackers. Thus as
future works in this study, researchers will need to focus not
only developing in VM environment that emulates the
Android operating system but also emulating the special
characteristic of mobile devices such as the ICMP and IP
timestamp characteristic pattern that was shown in this
research.

REFERENCES
[1] N. Leavitt, “Malicious code moves to mobile devices,” Computer,

2000(12): p. 16-19.
[2] A. Gupta, C. Milanesi, R. Cozza, CK. Lu, Market Share Analysis:

Mobile Phones, Worldwide, 2Q13. 2013, Gartner
[3] M.R Rahimi, et al., “Mobile Cloud Computing: A Survey, State of Art

and Future Directions,” Mobile Networks and Applications,. vol. 19,
no. 2, pp. 133-143. 2014.

[4] S. Zonouz, et al., “Secloud: A cloud-based comprehensive and
lightweight security solution for smartphones,” Computer. Security,
vol. 37, pp. 215-227, 2013.

[5] D. Dagon, T. Martin, and T. Starner, “Mobile phones as computing
devices: The viruses are coming!” Pervasive Computing, IEEE, vol. 3,
no. 4, pp. 11-15, 2004.

[6] A. Gostev, and D. Maslenikov, “Mobile malware evolution: An
overview,” Kaspersky Labs Report on Mobile Viruses, 2006.

[7] S. Abraham, and I. Chengalur-Smith, “An overview of social
engineering malware: Trends, tactics, and implications,” Technology
in Society, vol. 32, no 3, pp. 183-196, 2010.

[8] J. Hong, “The state of phishing attacks,” Communications of the
ACM, vol. 55, no.1, pp. 74-81, 2012.

[9] J. Oberheide, et al., “Virtualized in-cloud security services for mobile
devices,” in ACM Proceedings of the First Workshop on
Virtualization in Mobile Computing, 2008.

[10] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
behavior-based malware detection system for Android,” in
Proceedings of the 1st ACM workshop on Security and privacy in
smartphones and mobile devices, Chicago, Illinois, USA, 2011, pp.
15-26.

[11] T. Garfinkel, M.Rosenblum, “A Virtual machine Introspection-Based
Architecture for Intrusion Detection”, in Network and Distributed
System Security Symposium, The Internet Society, 2003.

[12] G. Suarez-Tangil, et al., “Evolution, detection and analysis of
malware for smart devices,” IEEE Communications Surveys &
Tutorials, vol. 16, no 2, pp. 961-987, 2014.

[13] M. Portnoy, Virtualization essentials, John Wiley & Sons, vol. 19,
2012.

[14] T. Garfinkel, K. Adams, A. Warfield, J. Franklin, “Compatibility is
not transparency: VMM detection myths and realities,” in
Proceedings of the 11th USENIX workshop on Hot topics in
operating systems, USENIX Association: San Diego, CA, pp. 1-6,
2007.

[15] P. Ferrie, “Attacks on more virtual machine emulators,” Symantec
Technology Exchange, 2007.

[16] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting system
emulators,” in Springer Information Security, pp. 1-18, 2007.

[17] C. Thompson, M. Huntley, and C. Link, “Virtualization detection:
New strategies and their effectiveness”. Available: http: Ilwww-users.
cs. umn. edu/ cthomp/papers/vmm-detect-20. 1.

[18] H.J. Liao, C-H.R. Lin, Y-C. Lin, K-Y.Tungal, “Intrusion detection
system: A comprehensive review,” Journal of Network and Computer
Applications, vol. 36, no. 1, pp. 16-24, 2013.

[19] K. Miyamoto, H.Tanaka, “Proposal of Effective Detection Method of
VMM without Feature Database,” Information Processing Society of
Japan, vol. 52 (Japanese), pp. 2602-2612, 2011.

[20] T. Kohno, “Remote physical device fingerprinting,” IEEE
Transactions on Dependable and Secure Computing, vol. 2, no. 2, pp.
93-103, 2005.

[21] M. Shimamura, K. Kono, “Remote Virtual Machine Monitor
Detection Using Network Timestamp,” Information Processing
Society of Japan(IPSJ), vol. 50, no. 8 (Japanese), pp. 1870-1882,
2009.

[22] M. Cristea, and B. Groza, “Fingerprinting Smartphones Remotely via
ICMP Timestamps,” Communications Letters, IEEE, vol. 17, no. 6,
pp. 1081-1083, 2013.

[23] M. Noorafiza, H.Maeda., R. Uda, T. Kinoshita, “Virtual machine
remote detection method using network timestamp in cloud
computing,” in International Conference on Information Science and
Technology (ICIST), IEEE, 2013.

[24] M. Noorafiza, H.Maeda., R. Uda, T. Kinoshita, M. Shiratori,
“Vulnerability Analysis using Network Timestamps in Full
Virtualization Virtual Machine,” in 1st International Conference on
Information Systems Security and Privacy (ICISSP 2015),
SCITEPRESS Digital Library, 2015

[25] A. J. Younge, R. Henschel, J.T. Brown, G. Laszewski, J. Qiu, G. C.
Fox. “Analysis of Virtualization Technologies for High Performance
Computing Environments,” in IEEE International Conference on
Cloud Computing (CLOUD), 2011.

[26] M. Rosenblum, VMWare's Virtual Platform: A virtual machine
monitor for commodity PCs. 1999(Hot Chips 11).

[27] J. Watson, “VirtualBox: bits and bytes masquerading as machines,”
Linux Journal, vol. 166, pp. 1, 2008.

[28] P. Barham, et al., “Xen and the art of virtualization,” in Proceedings
of the nineteenth ACM symposium on Operating systems principles,
ACM: Bolton Landing, NY, USA., pp. 164-177, 2003.

[29] Su, Z., Specification of the Internet Protocol (IP) timestamp option.
1981.

[30] A. Balachandran, G.M. Voelker, and P. Bahl, “Wireless hotspots:
current challenges and future directions,” Mobile Networks and
Applications, vol. 10 no. 3, pp. 265-274, 2005.

[31] N. Piscataway, “Wireless LAN medium access control (MAC) and
physical layer (PHY) specifications,” IEEE P802. 11 D3, 1996.

[32] P. Klasnja, et al, “When i am on wi-fi, i am fearless: privacy concerns
& practices in eeryday wi-fi use,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ACM, 2009.

[33] H.S. Choi, and D. Carpenter, “Connecting to Unfamiliar Wi-Fi
Hotspots-A Risk Taking Perspective”, 2013.

[34] T. Kindberg, et al. “Measuring trust in wi-fi hotspots,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
ACM, 2008.

[35] B. Tokuyoshi, “The security implications of BYOD,” “Network
Security”, vol 4. pp. 12-13, 2013.

[36] G. Thomson, “BYOD: enabling the chaos,” Journal of Network
Security, vol.2, no. 2, pp. 5-8, 2012.

IAENG International Journal of Computer Science, 43:2, IJCS_43_2_10

(Advance online publication: 18 May 2016)

__

