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Abstract—Effective prognostic tools are crucial for 

maintenance to predict failure before system completely 
damage and ensure systems reliability. Under the condition that 
the only available information is degradation observations from 
the forecasted system of interest, to perform fault prediction 
with uncertainty quantification, a recursive models re-sampling 
bootstrap (RMRB) associated with adaptive neural fuzzy 
inference system (ANFIS) predictor is presented. In addition 
with point prediction, the proposed RMRB could provide 
prediction interval (PI), thus reduce risks of misleading decision 
to maintenance. Faulty feature sensitive to system degradation 
is selected to compose time-series. Then the future time instance 
faulty feature prediction and its PI are provided by RMRB in 
two steps: firstly, a set of ANFIS predictors are updated 
dynamically by hybrid learning algorithm of recursive least 
squares and gradient descent (RLS-GD) according to temporal 
order; secondly, the candidate ANFIS predictors are 
re-sampled as bootstrap replications to estimate prediction 
mean and prediction interval. Case studies based on two real 
failure datasets show that the proposed approach can effectively 
estimate uncertainties coupled with fault pre-diction results. 
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I. INTRODUCTION 

ith an increasing demand to maintain system high 
reliability, safety and availability, besides effective 

fault detection and isolation when a failure has already 
occurred, it is usually required to predict system degradation 
trend before malfunctions or even catastrophic failures 
happen. As a result, failure prognosis has attracted 
considerable attention in maintenance and indemnification, 
especially in avionics [1], aircraft [2], machine [3] and 
manufacture industry [4] fields. 

The existing fault prediction algorithms can be broadly 
categorized into two classes: analytical model based 
approaches and non-analytical model based approaches [5]. 
Given a proper mathematic model for representing the 
specific forecasted system, analytical model based 
algorithms tend to provide high prediction accuracy. 
Unfortunately, it is difficult to derive accurate mathematic 
model in some complex nonlinear systems, and this limits the 
application of analytical model based methods. In contrast, 
non-analytical model based methods have been more popular 
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in fault prediction for their free of system mathematic 
functions. Data-driven based approaches, as an important 
part of non-analytical model approaches, employ data 
sensitive to system degradation to construct fault prediction 
model, which can be performed more easily compared with 
analytical model based methods. A variety of data-driven 
techniques have been proposed in the literature, including 
auto-regressive moving-average [6], grey model [7], hidden 
Markov model [4], bayesian networks [8], neural networks [9, 
10], and support vector machine [11] etc. 

Commonly data-driven methods are performed as point 
forecast without any indication of prediction accuracy. As 
there inherently exist some sources of uncertainties in 
data-driven predictors (such as the error between true system 
and data-driven model, measurement noise, dynamic process 
noise), it is more important to predict failure with quantitative 
uncertainty information. Such information can provide the 
estimation of faulty system best and worst degradation status, 
i.e., to what extents the predicted results could be trusted, and 
reduce risks of misleading decision to maintenance. Clearly, 
prediction interval (PI), composed of upper and lower 
bounds that contain a future unknown value with a prescribed 
probability called a confidence level (1-α)% [12], offers us a 
convenient way to indicate the uncertainty associated with 
point prediction. PI estimation algorithms include but not 
limit to, statistical method [13], mean-variance estimation 
[14], delta[15], bayesian [16], and bootstrap [17, 18] etc.  

Among the existing PI algorithms, bootstrap has become a 
popular method for its advantages in simplicity for 
constructing PI and independence of specified predicting 
models. Malhotra et al. [19] apply bootstrap for fault 
prediction of software quality. In some references, bootstrap 
is utilized to train neural networks for construct PI [20, 21]. 
Baraldi et al. [22] use bootstrap to predict turbine blade RUL 
(remaining useful life) with PI estimation. Noticeably, the 
aforementioned bootstrap algorithm is based on the 
assumption that data is independent and identically 
distributed (IID). However, time-series methods, that faulty 
feature indicating system degradation is selected to compose 
temporal sequence to be predicted, can not be assumed to be 
IID for its time dependence relationship [23]. Consequently, 
the ordinary bootstrap method would distort the underlying 
temporal dependence structure of the time-series, since it is 
incapable of preserving the serial correlation among data. To 
avoid this pitfall, some improved bootstrap techniques are 
proposed, such as moving block bootstrap (MBB) [24], 
models re-sampling bootstrap (MRB) [25], etc. Application 
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of MBB has been documented in the literature among the 
fields of spacecraft telemetry data prognosis [26], electricity 
price prediction [27], power generation forecasts [28], etc. 
Whereas MBB is primarily suitable for specified prediction 
horizon H, which is due to its underlying strategy of 
re-sampling directly from the original time-series data[29]. 
Thus for another specified prediction horizon, new prediction 
models should be constructed to estimate PI for MBB. In 
contrast, MRB, instead of re-sampling directly from the 
time-series data, selecting bootstrap replications from the set 
of candidate data-driven prediction models, is befitting to 
estimate PIs online, i.e., calculating 1 to H steps-ahead PIs by 
iterating a one-step-ahead predictor without training different 
time horizon predicting model. 

However, MRB  is performed under the assumption that a 
set of observations similar to the one to be predicted is 
available. With regard to fault prediction in the actual system, 
it is hard to obtain a whole life cycle failure degradation 
observation sequences from other similar systems, especial 
for long life cycle and high reliability systems, i.e., the 
information available is just the degradation observations up 
to the current time of the predicted system. In this condition, 
the existing MRB with insufficient dataset would offer low 
quality PI. To provide effective PI with the limited available 
dataset, a recursive models re-sampling bootstrap (RMRB) 
algorithm is proposed based on the theory framework of 
MRB. With new coming observation according to temporal 
order, RMRB dynamically updates candidate data-driven 
predictors used for bootstrap replicating, which could adapt 
system failure changing trends timely without disturbing the 
time dependence structure of the data. In this paper, adaptive 
neural fuzzy inference system (ANFIS), using hybrid 
learning algorithm of recursive least squares and gradient 
descent (RLS-GD), is applied for building data-driven 
predictor to forecast time-series composed of faulty features. 
Then the proposed RMRB is utilized to quantify uncertainties 
associated with the predicted faulty features. A confidence 
level of (1-α)% is considered for constructing faulty feature 
PI. Experiments are conducted with two real failure datasets. 
The validation of the constructed PI is demonstrated from 
semi-quantitative analyzing and comparison of different PI 
estimating methods. 

The rest of this paper is organized as follows. The 
construction of PI and models re-sampling based bootstrap 
are briefly introduced in Section 2. Section 3 presents the 
recursive models re-sampling bootstrap algorithm. The fault 
prediction approach based on the proposed RMSB is 
described in Section 4. In Section 5, we provide the 
experiment cases to verify the performance of the proposed 
method with two real failure datasets. Finally, the conclusive 
remarks are drawn in Section 6. 

II. PROBLEM STATEMENT 

A. Prediction interval 

Consider the following time-series dynamic model 
( , )k k k k kt f  X W                                 (1) 

where tk is measured target at k time instance, ( , )k k kf X W  is 

true regression model denoting mean of target distribution 

given input vector Xk and model parameters Wk, εk is gaussian 
noise with zero mean and covariance 2

k
 . To time-series 

prediction, k k Ht y  , 2 ( 1)[ , , , , ]k k k H k H k m Hy y y y    X , 

here H is prediction horizon, m is embedding dimension and 
yk is time-series variable at k time instance. 

Actually, only the approximate model ˆ ˆ( , )k k kf X W  toward 

system true model ( , )k k kf X W  can be constructed, where 

ˆ
kW  is model parameters for ˆ ˆ( , )k k kf X W . Suppose ( )kf   and 

ˆ ( )kf   to be the short form of ( , )k k kf X W  and ˆ ˆ( , )k k kf X W  

respectively, then we obtain, 
ˆ ˆ( ) [ ( ) ( )]k k k k kt f f f                                 (2) 

Assuming that ˆ( ) ( )k kf f    and k  are statistically 

independent, prediction error variance 2

kp  of ˆ ( )k kt f   can 

be decomposed into two terms, 

 
   

2 2

2 2

2 2
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ˆ    [ ( ) ( )] [ ( )]
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k k
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k k k k
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E t f

E f f E t f





 

  

      

 

            (3) 

where 2

km  is variance between predicted regression model 

ˆ ( )kf   and true regression model ( )kf  , while 2

k
  denotes a 

noise term εk. The regression model uncertainty calculated by 
2

km  and target uncertainty calculated by 2

kp  are called 

confidence interval (CI) and prediction interval (PI) 
separately, as shown in Eq. (4) and Eq. (5). 

2 2ˆ ˆ( ) ( ) ( )
k kk CI m k k CI mf c f f c                         (4) 

2 2ˆ ˆ( ) ( )
k kk PI p k k PI pf c t f c                           (5) 

where cCI and cPI represent the factor of CI and PI 
respectively. CI is corresponding to the accuracy of predicted 
regression model ( )kf  , i.e., of the estimation of the 

probability ˆ( ( ) | ( ))k kP f f  . In contrast, PI deals with the 

accuracy of measured target tk with the predicted value ˆ ( )kf  , 

i.e., the estimation of the probability ˆ( | ( ))k kP t f  . Obviously, 

PI should be wider than CI and enclose it. And prediction 
interval is preferable since it covers more sources of 
uncertainties and gives more accurate information about 
unknown measured target value. 

B. Models re-sampling based bootstrap 

Bootstrap, as a popular algorithm to estimate PI, is 
essentially a re-sampling method for calculating the 
distribution of the predicted targets tk [17]. It regenerates a 
mass of samples via re-sampling the available observed 
dataset with replacement. Then the samples can be utilized to 
construct confidence interval (CI) and prediction interval (PI) 
for tk. The conventional bootstrap algorithm is based on the 
assumption that data is independent and identically 
distributed (IID). However, time-series data can not be 
assumed to be IID, thus the conventional bootstrap method 
would distort time-series underlying temporal dependence 
structure for its incapacity to preserve the serial correlation 
among data. To avoid this pitfall, some improved bootstrap 
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techniques are proposed. Of the bootstrap algorithms applied 
in time-series prediction, models re-sampling bootstrap 
(MRB) [25] has emerged as a popular method due to its 
facility in estimating PIs online, i.e., calculating 1 to H 
steps-ahead PIs by iterating a one-step-ahead predictor 
without training different time horizon predicting models. 
Unlike other bootstrap algorithms of re-sampling directly 
from time-series dataset, MRB selects samples from the set of 
candidate data-driven models, where each candidate model is 
built based on part of the original time-series dataset to 
predict target value at future time instance. The detailed 
re-sampling algorithm for MRB is described as [25]. 

Step 1 Generate n model samples 1{ }j n
jM   for bootstrap 

re-sampling. Here jM  is one-step-ahead predictor trained 
according to time-series data of the predicted system, and 

jM  can be constructed based on neural network, support 
vector machine, etc. 

1-a Define j = 1; 
1-b Select two arbitrary integers Nj and tj from the 

following equations, 
( , )jN U S T                                   (6) 

~ (0, )j jt U T N                                 (7) 

where U(·) operator represents discrete uniform distribution, 
Nj denotes the length of data interval and tj defines the 
starting time instance of training dataset, S and T is the 
minimum and the entire length of data to train model jM  
separately; 

1-c The jth model jM  is trained based on the 

time-series dataset 1{ } j j

j

t N

i i ty  
 ; 

1-d j = j + 1, if j > n, go to step 2, else go to step 1-b; 
Step 2 Obtain B bootstrap replications from the n trained 

model samples 1{ }j n
jM  . 

2-a Set b = 1; 
2-b Re-sample the model samples set 1{ }j n

jM   n times 

with replacement. Then we obtain the bth bootstrap estimate 
*( )b k Hy   

* *

1

1
( ) ( )

n

b k H j k H
j

y o
n 



                             (8) 

where *( )j k Ho   is the predicted output of the jth model jM  at 

k+H time instance, k is the current time instance and H is 
prediction horizon. For multiple steps prediction, *( )j k Ho   is 

calculated by iterating a one-step-ahead prediction *
1( )j ko   H 

times. 
2-c b = b + 1, if b > B, go to step 3, else go to step 2-b; 

Step 3 Compute target prediction mean and PI [22] based 
on the *( )b k Hy  obtained from step 2, b = 1, 2,…, B.  

III. RECURSIVE MODELS RE-SAMPLING BOOTSTRAP 

The current MRB algorithm for PI estimation described in 
section 2.2 is processed mainly under the assumption that 
historical time-series data set 1: 1{ }

q

q Q
N qy   related to the 

degradation process of Q similar failed systems are 
available，whereas this assumption may not be satisfied in 
most actual system, namely the available system degradation 

sequence y1:k is only k observations 1{ }k
i iy   up to the current 

time instance k. In this case, ordinary MRB method, 

re-sampling the n model samples 1{ }j n
jM   trained with 

insufficient amount of data set, may provide low-quality PIs, 
as the poor model samples are not fully representative of the 
“true” distribution of time-series prediction. In addition, Nj 
length training data is acquired simultaneously to construct 
bootstrap re-sampling model jM , as described in section 2.2, 
which has two drawbacks: firstly, the training result is global 
optimization among Nj observations, yet good fitting 
accuracy does not guarantee an equally good prediction 
capability; secondly, constructing model jM  with Nj 
training data simultaneously is time consuming. 

To overcome the aforementioned shortcomings, a 
recursive models re-sampling bootstrap (RMRB) algorithm 
is proposed under the theory framework of MRB. For each 
time instance PI estimation, instead of using the latest Nj 

training data 1{ }
j

k
i i k Ny    , the n model samples 1{ }j n

jM   are 

updated with the latest one observation yk based on recursive 
learning techniques, such as recursive least squares, gradient 
descent, bayesian and kalman filter, etc. Here adaptive neural 
fuzzy inference system (ANFIS) is chosen as the data-driven 

method to build n predicting models 1{ }j n
jM  . Further 

information and mathematical expression about ANFIS can 
be found in reference [30]. Hybrid recursive learning 
techniques [31-33] of recursive least squares and gradient 
descent (RLS-GD) is utilized to train ANFIS, where ANFIS 
consequent parameters are identified by recursive least 
squares and premise parameters are updated by gradient 
descent[34]. Detailed algorithm for RMRB is as the 
following steps. 

(1) Initialize model samples. 

Initialize n model samples 0 1{ }j n
jM   with the beginning T 

length time-series observations 1{ }T
i iy  , where each model 

0
jM  is trained through a child data set 1{ } j j

j

t N

i i ty  
 , Nj and tj is 

selected according to Eq. (6) and Eq. (7). 0
jM  built based on 

ANFIS is shown in Eq. (9). At last, set k = 1; 

1 1 1
ˆˆ ANFIS( , , , ; )i i m i i iy y y y     W                    (9) 

where con preˆ ˆ ˆ[  ]i i iW = W W , conˆ
iW  and preˆ

iW  are ANFIS 

consequent parameters and premise parameters separately. 
(2) Generate models re-sampling based bootstrap 

replications. 
① Update the ANFIS model j

kM  parameters 
con preˆ ˆ ˆ[( )  ( ) ]j j j

k k kW = W W  with (tj+Nj-1+k) time instance 

observation 1j jt N ky     and previous model 1
j

kM   parameters 

1
ˆ j

k W  by RLS-GD as follows, where j = 1, 2, …, n.  

Consequent parameters conˆ( )j
kW  are identified by 

recursive least squares (RLS) when taking premise 

parameters preˆ( )j
kW  as known ones. Then conˆ( )j

kW  can be 

updated recursively. 
con con con T

1 1 1 1
ˆ ˆ ˆ( ) ( ) [ ( ) ( ) ]

j j

j j j j j
k k k t N k k k -K y     +W W W  (10) 

T
1 1

T
1 1 1

( )

1 ( )

j
j k k -

k j j
k - k k -

K 






j

j

P

P


 

                          (11) 
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1 1( )j j
k k k - kK  j jP I P                              (12) 

where con T
1 1 1

ˆˆ ( ) ( )
j j

j j
t N k k k -y     W   is the estimation of true 

1j jt N ky     by ANFIS model j
kM . 

Premise parameters preˆ( )j
kW  are trained via gradient 

descent (GD) by fixing conˆ( )j
kW . 

pre pre pre
1ˆ ˆ( ) ( ) ,  1,2, ,

ˆ

j
j j k

k i k i j
k

E
w w i N

w



  


           (13) 

con pre 2
1 1 1 1

1 ˆ ˆ[ ANFIS( ;( )  ( ) )]
2 j j

j j j j
k t N k k k kE y        Y W W  (14) 

1 1 1 2 1 1[ , , , ]
j j j j j j

j
k t N k m t N k t N ky y y             Y        (15) 

prepre pre
1

ˆ ˆ( ) {( ) }j j N
k k i iw W                             (16) 

where preˆ( )j
k iw  is one of premise parameters preˆ( )j

kW , preN  is 

total number of preˆ( )j
kW , and β is the learning rate. 

② Obtain B bootstrap replications from the n updated 

model samples 1{ }j n
k jM   as described in step 2 of section 2.2. 

Then the bth bootstrap estimate *( )b k Hy   is calculated 

according to Eq. (8), b = 1, 2,…, B, where *( )b k Hy   is the 

predicted output of the bth bootstrap replication at k+H time 
instance, here H is the desired prediction horizon. 

(3) Compute the prediction of mean value mk+H and error 
variance 2

k Hm 
 through the B bootstrap replications. 

*

1

1
( )

B

k H b k H
b

m y
B 



                            (17) 

2 * 2

1

1
[( ) ]

1k H

B

m b k H k H
b

y m
B


  



 
                (18) 

where mk+H is the prediction value of true target yk+H at k+H 
time instance, 2

k Hm 
 corresponds to the first term in the 

right-hand side of Eq. (3). 
(4) Estimate PI at k+H time instance. 
To estimate total variance 2

k Hp


 as shown in Eq. (3), we 

need to construct a model 2 ( ) X  that provides an estimation 

of measurement noise 2

k H 
 in correspondence of an input X. 

In general, 2 ( ) X  can be built based on neural network 

model. Since the true target of 2 ( ) X  is not known a priori, 
2 ( ) X  can not be trained directly by minimizing the 

variance errors between true target and prediction output. As 
a result, a indirect way is needed to train 2 ( ) X . 

Consider the square of residuals, 

 2 2 2( ) max [ ( ) ( )] ( ),0mr y m   X X X X           (19) 

where ( )m X  is the prediction value of true target ( )y X  

with input X. ( )m X  and 2 ( )m X  are computed according to 

Eq. (17) and Eq. (18). Suppose the residuals 2 ( )r X  obey a 

Gaussian distribution with zero mean, then the variance of 
residuals 2 ( )r X  can be written as,  

2 2 2

2 2

2 2

2

[ ( )] {[ ( ) ( )] ( )}

               {[ ( ) ( )] } ( )

                ( ) ( )

                ( )

m

m

p m

E r E y m

E y m







 



  

  

 



X X X X

X X X

X X

X

          (20) 

Obviously, the variance of residuals 2 ( )r X  is equal to 
2 ( ) X . Then a maximum likelihood criterion can be applied 

to train a neural network model 2 ( ) X  with the data set of 

input output pairs '
1{ , }N

i i iy X  by minimizing cost-function, 

2'

22
1

( )1
log exp

2 ( )2 ( )

N
i

i ii

r
LL



         
 X

XX
      (21) 

According to the above mentioned, estimating PI at k+H 
time instance can be described as follows, 

① Choose the latest N# time-series data # 1
{ }k

i i k N
y

  
 to 

construct a M length validation data set #
1{ , }k

i i i k My   X , 

where N#= m+H+M-1, #
1 1[ , , , ]i i H m i H i Hy y y      X  is an 

input vector and yi is the corresponding H-steps-ahead 
prediction output. 

② Calculate residuals 2 #( )ir X  with #
1{ , }k

i i i k My   X  

through Eq. (19). Then 2 #( )ir X  is linked by the set of 

corresponding input #
iX  to form a new input-output dataset 

# 2
1{ , }k

i i i k Mr   X . 

③ Train a new model 2 ( ) X  based on dataset 
# 2

1{ , }k
i i i k Mr   X  via minimizing the log likelihood function 

2 #

2 #2 #

( )1
log exp

2 ( )2 ( )

i

i ii

r
LL



         
 X

XX
     (22) 

where 2 ( ) X  is built by a separate neural network with an 

exponential transfer function for the output layer to keep the 
2 ( ) X to be positive. 

④ Calculate prediction error variance. For input Xk, the 
prediction error variance can be computed as 

2 2 2

* 2 2

1

( ) ( ) ( )

1
               [( ) ] ( )

1

k H k H k Hp k m k k

B

b k H k H k
b

y m
B

  



  

 


 

  
 

X X X

X
  (23) 

⑤ Calculate PIs as follow, 
2 2

k H k Hk H PI p k H k H PI pm c PI m c 
                (24) 

where the factor cPI is the percentile of a Student’s 
t-distribution with number of degrees of freedom equal to the 
number of bootstrap replications B. 

(5) k = k + 1, go to step (2) for next time instance PI 
estimation. 

IV. FAULT PREDICTION 

Faulty feature y representing faulty system degradation is 
selected as the time-series variable to be predicted. The fault 
prediction algorithm flow based on the proposed RMRB is 
organized as follows (shown in Fig. 1). 

Step 1 Initialize parameters of RMRB, ANFIS and 
RLS-GD; 
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Step 2 Collect faulty feature yk at current time instance k to 
construct time-series data set 1{ }k

i iy  , where yk is obtained 

directly from instrument measurement or feature extraction 
method based on system output signal;  

Step 3 Calculate prediction value ˆk Hy   of k+H time 

instance according to Eq. (17) and prediction error variance 
2

k Hp


 by Eq. (23). Then estimate PI of ˆk Hy   by Eq. (24), as a 

result, upper limit upˆ( )k Hy   and lower limit lowˆ( )k Hy   of 

prediction ˆk Hy   are obtained; 

Step 4 Substitute ˆk Hy  , upˆ( )k Hy   and lowˆ( )k Hy   into the 

following Eq. (25) to calculate the mean, upper limit and 
lower limit of system faulty probability [35]. 

1
2

2 1

ˆ ( )
ˆProb{ }

( ) ( )

y U s
y s

U s U s


 


                 (25) 

where s1 and s2 denote normal and faulty state of y separately, 
U(s1) and U(s2) are the corresponding utilities. The system is 
judged to be faulty when the predicted faulty probability 
exceeds the threshold. 

Step 5 Return to step 2 for next time instance fault 
prediction. 

1{ }k
i iy 

 
Fig. 1.  Fault prediction flow chart 

V. AN EXPERIMENT CASE STUDY 

In this section, two real failure datasets from a certain 
navigation receiver is applied to demonstrate the 
implementation and validity of the proposed RMRB based 
fault prediction algorithm. The two test datasets, (a) 
frequency deviation failure of reference-clock and (b) gain 
attenuation failure of intermediate frequency amplifier, are 
gathered. The test platform is mainly composed of control 
computer, measuring instrument and navigation receiver with 
fault injection, where some devices in the prototype are 
replaced by tunable ones comparing with actual navigation 
receiver equipment. As a result, different faulty types and 
faulty degree is generated by changing such tunable devices 
value. 

A. Frequency deviation failure of reference-clock 

The frequency deviation failure of reference-clock can 
affect the output frequence. A total number of 205 frequence 
values are recorded to construct a time-series [fre1, fre2, …, 

fre205], where the receiver is normal at the beginning, then the 
faulty degree grows up as time going on. frei is measured by 
frequency meter at iΔt time instance, Δt =1min. At last, 
time-series 205

1{ }i ifre   is normalized and a 1 offset is added to 

the normalized 205
1{ }i ifre   for keeping positive. 

1. Semi-quantitative analyzing 
In this section, semi-quantitative validation [25] is carried 

out to demonstrate the proposed PI estimation method. As 
shown in Eq. (3), PI are determined by variance 2

m  and 2
 . 

Clearly 2
m  and 2

  are inherently associated with the data 

samples (namely ANFIS models in this case). Thus one way 
to validate the proposed PI estimation approach is to check 
for the correlation between the variability of data samples 
and PI. Three corresponding relationships are considered as 
follows: prediction error – PI, ANFIS models accuracy – PI 
and prediction horizon – PI. 

(1) Relationship between prediction error and PI 
It is obvious that the PI should be wider when the 

prediction error is bigger, whereas smaller prediction error 
relating to narrower PI. The normalized cross-correlation 
between 5-steps-ahead prediction error εk+5 and 
corresponding prediction interval PIk+5 is shown in Fig. 2. 
From Fig. 2, it can be seen that the highest cross-correlation 
coefficient between εk+5 and PIk+5 is not at the location of 
delay τ=0, actually the highest coefficient is at τ=-9. The 
reason is that training data for calculating PIk+5 is some latest 
observations [frek, frek-1,…] up to current time instance k, 
which brings in some hysteresis to PIk+5 comparing with 
actual error εk+5. Meanwhile, the normalized 
cross-correlation coefficient between εk+5 and PIk+5 is 0.8371 
at τ=0, and this also indicates a high correlation between εk+5 
and PIk+5 at τ=0. Therefore, it demonstrates the relationship 
of prediction error to PI. 
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Fig. 2.  The normalized cross-correlation between 5-steps-ahead prediction 

error εk+5 and corresponding PIk+5 

(2) Relationship between ANFIS models accuracy and PI 
In the proposed RMRB method, ANFIS models are treated 

as samples for bootstrap. It is obvious that high quality 
samples (exact ANFIS models) will improve the estimation 
accuracy of PI, i.e., a narrow width of PI. In order to yield 
poor samples (less accurate ANFIS models), the parameters 
of the trained ANFIS models are perturbed by adding noise to 
them. 5-steps-ahead PI widths with different noise added in 
ANFIS parameters are listed in Fig. 3, where different noises 
follow Gaussian distribution N(0,(0.002i)2), i=0, 1, 2,…, 10, 
and i=0 represents no noise. The PI width is computed as the 
following equation. 

1

1
( )

testN

i i
itest

MPIW U L
N 

                         (26) 

where Ntest is total number of test data, Li and Ui are upper and 
lower limit of PI at i time instance. Fig. 3 shows that higher 
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quality samples correspond to narrower PI, and this verifies 
the correlation between ANFIS models accuracy and PI. 
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Fig. 3.  5-steps-ahead PI widths with different noise added in neural network 

parameters 

(3) Relationship between prediction horizon and PI 
For multiple-steps-ahead prediction, the one-step-ahead 

prediction error is accumulated to the next step prediction 
due to the underlying iterative prediction process. In this case, 
PI accuracy should be decreasing (PI width increasing) as 
prediction horizon growing up. 1 to 10 steps-ahead PI are 
shown in Fig. 4, which indicates that the prediction steps is 
related to PI. 
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Fig. 4.  1~10 steps-ahead PI widths 

2. Contrast of different PI methods 
5-steps-ahead prediction of the normalized time-series 

205
1{ }i ifre   is carried out to verify a performance comparison 

between the proposed algorithm and three other methods: (a) 
prediction error covariance statistic (PECS) [36], (b) moving 
block bootstrap (MBB) [24], (c) model re-sampling bootstrap 
(MRB) [25] and (d) the proposed recursive models 
re-sampling bootstrap (RMRB). ANFIS with embedding 
dimension m=3 is used as neural network for all the four 
methods for training time-series. For PECS, the latest 10 
prediction errors are utilized to estimate prediction error 
variance σ, then σ is substituted into Eq. (5) to calculate PI. 
The parameters are set as B=20, n=10, S=40, T=50, M=10. To 
MRB, a global optimization approach, combination of 
least-squares and back-propagation, is utilized to train 
ANFIS with the latest T length time-series data. The RLS-GD 
algorithm is applied to recursively update ANIFS with the 
newest observation for MBB and RMRB. 

5-steps-ahead PIs with 95% confidence level of the four 
methods are plotted in Fig. 5. Fig. 6 shows the absolute value 
of 5-steps-ahead prediction error and corresponding half PI 
width of the four methods. 10 times Monte Carlo simulations 
are performed to calculate PI coverage probability (PICP), 
mean PI width (MPIW) and total time consuming of the four 
methods, as listed in Table 1, where MPIW is according to Eq. 
(26) and PICP can be computed as follows. 

1

1 testN

i
itest

PICP c
N 

                               (27) 

1 [ , ]

0 [ , ]
i i i

i
i i i

fre L U
c

fre L U


  

                           (28) 
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Fig. 5.  5-steps-ahead PIs of frequency deviation failure of reference-clock 
Both PICP and MPIW estimate the quality of PI in only 

one aspect. In order to evaluate PI from the two aspects 
(PICP and MPIW) together, a combined index, coverage 
width-based criterion (CWC) [12], is calculated, 
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Fig. 6.  The absolute value of 5-steps-ahead frequence prediction error and corresponding half PI width under frequency  
deviation failure of reference-clock. 
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0
( )

1

PICP
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PICP







  
                      (30) 

where μ corresponds to confidence level (1-α)%, here μ=0.95 
and η=40 in this experiment. It is evident that small CWC 
indicates high quality PI estimation. 

TABLE I 
 INDEXES OF 5-STEPS-AHEAD PREDICTION UNDER FREQUENCY 

DEVIATION FAILURE OF REFERENCE-CLOCK 

Method  PICP MPIW CWC 
Time 

Consuming(s) 
PECS 0.5960 0.0339 4.7842×104 2 
MBB 0.9316 0.0725 0.2238 123 
MRB 0.6642 0.0613 5.6535×103 1330 

RMRB 0.9417 0.0917 0.2195 365 
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Fig. 7.  Faulty probability mean and PI of 5-steps-ahead prediction by RMRB 

under frequency deviation  failure of reference-clock 

Fig. 5-6 and Table 1 show that misleadingly narrow PI 
width results in a low PICP for PECS, thus CWC for PECS is 
the highest. Apparently, the PI quality of PECS is much 
lower than the other three methods though time consuming is 
the shortest. CWC of MRB is the second highest, this is 
primarily due to the low prediction accuracy with global 
optimization learning algorithm for training ANIFS, since 
such learning algorithm fails to capture faulty system new 
dynamics without sufficient training dataset (only time-series 
data up to current time instance is available). MBB and 
RMRB, both adopting recursive learning algorithm for 
training ANIFS, exhibit good quality PIs for their small 
CWCs and high PICPs. Therefore the results of MBB and 
RMRB verify the effectiveness of the proposed recursive 
re-sampling algorithm. In addition, the PICP of the proposed 
RMRB is 0.9470, which approximately satisfies the 
prescribed 95% confidence level. It is observed that time 
consuming of RMRB is longer than MBB, the reason is that 
MBB re-samples directly from the time-series to calculate PI 
while RMRB re-samples from ANFIS models built by 
time-series data. However, comparing with MBB, the 
advantage of RMRB is its convenient to estimate PIs online, 
i.e., calculating 1 to H steps-ahead PIs by iterating a 
one-step-ahead predictor 1|ANFISk k  without constructing 

different time horizon predicting model |ANFISk i k  as MBB 

does, i = 1, 2, …, H. 
Suppose U(s1)=1.2 and U(s2)=0.2 denote the utilities of the 

normal and faulty state, respectively. We substitute the mean, 
upper limit and lower limit of 5-steps-ahead prediction by 
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RMRB into Eq. (25) to calculate faulty probabilities, as 
shown in Fig. 7. It is shown that as the faulty degree expands, 
the faulty probability increases at the same time. 

B. Gain attenuation failure of intermediate frequency 
amplifier 

 The receiver output power is corresponding to the gain 
attenuation failure of intermediate frequency amplifier. A 
time-series [pow1, pow 2, …, pow 253] are measured by power 
meter, where the receiver is normal at the beginning, then the 
faulty degree of gain attenuation failure expands as time 
going on. Also time-series 253

1{ }i ipow   is normalized and a 1 

offset is added to the normalized 253
1{ }i ipow  . We can obtain 

the same result for semi-quantitative validation as analyzing 
in section 5.1.1. Fig. 8 shows the 5-steps-ahead PI with 95% 
confidence level of the four methods. The absolute value of 
5-steps-ahead prediction error and corresponding half PI 
width of the four methods are shown in Fig. 9. Four methods 
PICP, MPIW, CWC and total time consuming are averaged 
across a Monte Carlo simulation consisting of 10 runs, shown 
in Table 2. Table 2 indicates the superior PI quality of the 
proposed algorithm. Fig. 10 shows fault probability of 
5-steps-ahead prediction with PI. 
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Fig. 8.  5-steps-ahead PIs of gain attenuation failure of intermediate 
frequency amplifier 
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Fig. 9.  The absolute value of 5-steps-ahead power prediction error and corresponding half PI width under gain attenuation failure of intermediate frequency 
amplifier 

 
Table II 

 INDEXES OF 5-STEPS-AHEAD PREDICTION 

Method  PICP MPIW CWC 
Time 

Consuming(s) 
PECS 0.4523 0.0224 9.9125×106 2 
MBB 0.9409 0.0812 0.1981 162 
MRB 0.7085 0.0362 5.6757×102 1809 

RMRB 0.9548 0.0810 0.0810 483 
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Fig. 10.  Faulty probability mean and PI of 5-steps-ahead power 

prediction by RMRB under gain attenuation failure of intermediate 
frequency amplifier 

VI. CONCLUSION 

In this paper, a recursive models re-sampling bootstrap 
(RMRB) based fault prediction with PI estimation is 
presented. The proposed RMRB could provide PI associated 
with point prediction, when there is lack of the whole life 
cycle failure degradation sequences from the predicted 
system or other similar systems. The estimation of PI allows 
decision maker to efficiently quantify the level of uncertainty 
towards the predicted system degradation, which would 
reduce false alarm and risk of inaccurate maintenance 
decision. Using two real failure datasets, the case study 
results illustrate validity and potential applications for fault 
prediction. Moreover, the proposed RMRB can be 
conveniently applied to other data-driven models. 
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