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Abstract—Liu and Tanaka (2007) investigated the eigen-
distribution, which achieves the distributional complexity, for
uniform binary trees. In the present work, we extend their
studies to balanced multi-branching trees. We show that an
eigen-distibution is equivalent to Ei-distribution with respect
to the closed set of all alpha-beta pruning algorithms. The
proof is quite different from the uniform binary case given by
Suzuki and Nakamura (2012). We also show that for any multi-
branching tree, Ei-distribution is the unique eigen-distribution
with respect to the set of all alpha-beta pruning algorithms.

Index Terms—randomized complexity, alpha-beta pruning
algorithms, balanced trees, uniform trees, AND-OR trees.

I. INTRODUCTION

THIS study is a continuation of Liu and Tanaka [2] which
investigated uniform binary AND-OR trees. We extend

the study to a multi-branching case. By balanced multi-
branching, we mean that all the nonterminal nodes at the
same level have the same number of children and all paths
from the root to the leaves are of the same length. It should
be noted that the balancedness makes no restriction on the
number of children for nodes at different levels. In this paper,
we concentrate on T h

n , an n-branching tree with height h.
We here notice that the argument for the uniform binary trees
T h

2 cannot be generalized to T h
n (n > 2) directly, since T h

n

inevitably corresponds to a non-uniform binary tree.
We quickly review the basics of game trees. An AND-

OR tree (OR-AND tree, respectively) is a tree whose root is
labeled AND (OR), and sequentially the internal nodes are
level-by-level labeled by OR-node and AND-node (AND-
node and OR-node) alternatively. Each probed leaf is as-
signed with Boolean value 0 or 1, via an assignment. By
evaluating a tree, we are trying to compute the Boolean
value of the root. We start from probing the leaves. Each
leaf returns its value. The computation stops when we get
enough information to evaluate the root value of the tree.
The cost of computation is the number of the leaves that are
queried during this computation, regardless of the remaining
unqueried leaves.

An algorithm tells us how to proceed to evaluate a tree.
The performance of algorithms makes a significant effect on
the cost of computation. Among all these algorithms, alpha-
beta pruning algorithm is known as one of the classical and
effective algorithms [8] [7]. Knuth and Moore [4] conducted
a detailed study on the alpha-beta pruning algorithm, which
we briefly explain as follows. While evaluating an AND-
node, if some child returns value 0, then the value of the
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AND-node is regarded as 0 without searching other children
of this AND-node (which is known as an alpha-cut). On
the other hand, when evaluating an OR-node, if some child
returns value 1, then the value of the OR-node is recognized
as 1 without searching other children of this OR-node (which
is known as a beta-cut).

A randomized algorithm is a distribution over a family of
deterministic algorithms. For a randomized algorithm, cost is
computed as the expected cost over the corresponding family
of deterministic algorithms. Yao’s principle [1] indicates the
relation between randomized complexity and distributional
complexity as follows,

min
AR

max
ω

cost(AR, ω)︸ ︷︷ ︸
Randomized complexity

= max
d

min
AD

cost(AD, d).︸ ︷︷ ︸
Distributional complexity

where AR ranges over randomized algorithms, ω ranges
over assignments for leaves, d ranges over distributions
on assignments and AD ranges over deterministic algo-
rithms. This result provides a new perspective to analyze
randomized algorithms. Saks and Wigderson [9] showed
that for any n-branching tree, the randomized complexity
is Θ((n−1+

√
n2+14n+1
4 )h), where h is the height of tree.

Recently, several works have been done for uniform binary
trees. Based on Saks and Wigderson [9], Liu and Tanaka
[2] proposed the concept of eigen-distribution on assign-
ments. They claimed that an eigen-distribution among the
independent distributions (ID) is actually independently and
identically distributed (IID). Suzuki and Niida [11] proved a
stronger result by fixing the probability of root.

Liu and Tanaka [2] also introduced a reverse assigning
technique to formulate sets of assignments for T h

2 , namely
1-set and 0-set, in the case that assignments to leaves are cor-
related distributed (CD). They showed that E1-distribution
(a distribution on 1-set such that all deterministic algorithms
have the same cost) is a unique eigen-distribution (the Liu-
Tanaka Theorem). Suzuki and Nakamura [10] furthermore
studied certain subsets of alpha-beta pruning algorithms on
T h

2 and proved that the eigen-distribution with respect to a
“closed” subset of alpha-beta pruning algorithms is unique,
but for a set of directional algorithms, the uniqueness does
not hold.

In this study, we proceed to balanced multi-branching
trees. The remainder of this paper is organized as follows. In
Section III, at first we give some technical lemmas to prove
that the average cost on 1-set is larger than that on other
closed sets. Based on these results, we show the relation
between eigen-distribution and E1-distribution for balanced
multi-branching trees. In Section IV, we mainly show the
uniqueness of eigen-distribution for the set of all alpha-beta
pruning algorithms. The current paper is an extension of our
conference talk [12].
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II. PRELIMINARY

For simplicity, we just consider n-branching trees, but all
our results also hold for general balanced multi-branching
trees.

In this study, we restrict ourselves to alpha-beta pruning
algorithms. It should be noted that such a algorithm is both
depth-first and deterministic. Depth-first means that when the
algorithm evaluates the value of a certain node, it would not
stop querying the leaves under this node until it knows the
value of the node. An algorithm is directional if it queries the
leaves in a fixed order, independent from the query history
[6]. A typical directional algorithm SOLVE evaluates a tree
from left to right [6]. If an algorithm proceeds depending
on its query history, then we say it is non-directional. In
this study, we denote AD the set of all alpha-beta pruning
algorithms, and Adir the set of all directional algorithms.

First, we define a node-code for T h
n as follows.

Definition 1 (Node-code). Given a tree T h
n , a node-code is

a finite sequence over {0, 1, · · · , n− 1}. An example of the
node-code for T 2

3 is illustrated in Fig. 1.
• The node-code of root is the empty sequence ε.
• For a non-terminal node with node-code v, the

node-code for its n children are in the form of
v0, v1, · · · , v(n− 1) from left to right.

Fig. 1. Node-code for T 2
3

We often identity “node” with “node-code”.
Then the assignment for T h

n is a function ω :
{0, 1, · · · , n − 1}h → {0, 1}. The set of assignments is
denoted as Ω(T h

n ). If T h
n is clear from the context, then

we just denote it as Ω.
Let C(A, ω) denote the cost of an algorithm A under an

assignment ω. Given a set of assignments Ω, d a distribution
on Ω and A ∈ AD, then the expected cost by A with respect
to d is defined by C(A, d) =

∑
ω∈Ω d(ω) ·C(A, ω). In fact,

C(A, d) is the average cost if d is the uniform distribution
on assignments.

The concept of “transposition” has been introduced to
investigate T h

2 in [10]. We extend this notion to n-branching
trees. To start with, we introduce the transposition of node.

Definition 2 (Transposition of node, an extension of Defini-
tion 4 in [10]). For T h

n , suppose u is an internal node. For
i < n, by trui (v), we denote the i-th u-transposition of a
node v in T h

n (Fig. 2), which is defined as follows
• The 0-th u-transposition of v is itself, that is, tru0 (v) =
v.

• For i ∈ {1, · · · , n− 1}, trui (v) is defined by

trui (v) =


u(i− 1)s if v = uis,

uis if v = u(i− 1)s,

v otherwise,

Fig. 2. Transposition of nodes under node u

where s is a finite sequence over {0, 1, · · · , n− 1}.

Definition 3 (Transposition of assignment). For T h
n , suppose

that u is an internal node, and ω an assignment. The i-th u-
transposition of ω, denote trui (ω), is defined by trui (ω)(v) =
ω(trui (v)), where v is a leaf of T h

n .

Example 1. Fig. 3 shows an example of T 2
3 with assignment

ω = 000100111. For transposition of node, if u = 0 and

1 2

 

00  01  02 10  11 12  20  21  22 

 ! 0   0   0 1 0  0   1   1   1 

0

Fig. 3. An example of T 2
3

i = 1, then tr0
1(00) = 01, tr0

1(01) = 00, and for other
v, tr0

1(v) = v. For transposition of assignment, trε2(ω) =
000111100, and tr1

1(ω) = 000010111.

Definition 4 (Transposition of algorithm). For T h
n , suppose

that u is an internal node, and A an algorithm in AD. For
each assignment ω and the query history (α1, · · · , αm) of
(A, trui (ω)), the i-th u-transposition of A, denote trui (A), has
the query history (β1, · · · , βm) such that βj = trui (αj) for
each j ≤ m.

Note that C(A, trui (ω)) = C(trui (A), ω).

Definition 5 (Equivalent assignment class, closeness, con-
nectness). For T h

n , any assignments ω, ω′, we denote ω ≈ ω′
if ω′ = trui (ω) for some u and i. An assignment ω is
equivalent to ω′ if there exists a sequence of assignments
〈ωi〉i=1,··· ,s such that ω ≈ ω1 ≈ · · · ≈ ωs ≈ ω′ for some
s ∈ N. Then we denote [[ω]] as the equivalent assignment
class of ω.
• A set Ω of assignments is closed if Ω =

⋃
ω∈Ω [[ω]].

• A set Ω of assignments is connected if for any assign-
ments ω, ω′ ∈ Ω, there exists a sequence of assignments
〈ωi〉i=1,··· ,s in Ω such that ω ≈ ω1 ≈ · · · ≈ ωs ≈ ω′.
• Given A ⊆ AD, A is closed (under transposition) if for
any A ∈ A, each internal node u and i < n, trui (A) ∈ A.

Definition 6 (i-set for n-branching trees, adapted from [2]).
Given T h

n , i ∈ {0, 1}, i-set consists of assignments such that
• the root has value i,
• if an AND-node has value 0 (or OR-node has value 1), just
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one of its children has value 0 (1), and all the other n − 1
children have 1 (0).

Note that i-set is closed and connected for i∈{0, 1}.

Definition 7 (i′-set). Given T h
n , i ∈ {0, 1}, A closed set Ω

of assignments is called an i′-set if it is not i-set and for
any ω ∈ Ω, the root of the tree has value i with ω, which is
denoted by ω(ε) = i.

Definition 8 (Ei-distribution and eigen-distribution from
[2]). Suppose A is a subset of AD and Ω a set of assign-
ments.
• A distribution d on i-set is called an Ei-distribution w.r.t. A
if there exists c ∈ R such that for any A ∈ A, C(A, d) = c.
• A distribution d on Ω is called an eigen-distribution
w.r.t. A if for any distribution d′ on Ω, min

A∈A
C(A, d) =

max
d′

min
A∈A

C(A, d′) holds.

III. THE EQUIVALENCE OF EIGEN-DISTRIBUTION AND
Ei-DISTRIBUTION FOR BALANCED MULTI-BRANCHING

TREES

In this section, at first we show that any alpha-beta pruning
algorithm has the same cost under the uniform distribution on
a closed set of assignments, then give some technical lemmas
to show that the average cost on 1-set is larger than the aver-
age cost on any i′-set. Based on these results, we investigate
the equivalence of eigen-distribution and Ei-distribution for
multi-branching trees. In the following sections, we denote
A as a nonempty closed subset of AD.

Definition 9 (Definition 6 in [10]). Suppose that p1, · · · , pm
are non-negative real numbers such that their sum is 1,
Ω1, · · · ,Ωm are disjoint non-empty subsets of assignments.
We say that d is a distribution on p1Ω1 + · · ·+ pmΩm if for
each 1 ≤ j ≤ m, there exists a distribution dj on Ωj such
that d = p1d1 + · · ·+ pmdm.

For T h
2 , Suzuki and Nakamura [10] applied a version

of no-free-lunch theorem from [5] to study the equivalence
of eigen-distribution and E1-distribution. We can easily
see that this theorem also works in the case of balanced
multibranching trees as we state below.

Lemma 1. Suppose p1, · · · , pm and Ω1, · · · ,Ωm as in
Definition 9. Assume that each Ωj is connected. Then
there exists c ∈ R such that for each distribution d on
p1Ω1 + · · ·+ pmΩm,

∑
A∈A C(A, d) = c holds.

Proof: See Lemma 1 in [10].
Following is a technical lemma to show that for any closed

subset of assignments with uniform distribution, all alpha-
beta pruning algorithms have the same cost.

Lemma 2. For any balanced multibranching tree T , suppose
p1, · · · , pm and Ω1, · · · ,Ωm as in Definition 9 and moreover
each Ωj is closed. Let dunif(p1Ω1 + · · ·+ pmΩm) denote the
distribution p1d1 +· · ·+pmdm, where each dj is the uniform
distribution on Ωj . Then there exists c ∈ R such that for any
algorithm A ∈ AD, C (A, dunif(p1Ω1 + · · ·+ pmΩm)) = c.

Proof: To begin with, we handle the case m = 1. We
prove by induction on height h.
• For case h = 1, let A be a directional algorithm. Then
for any i ∈ {0, · · · , n − 1}, we have C(trεi (A), ω) =

C(A, trεi (ω)). Since Ω1 is closed,
∑

ω∈Ω1

C(trεi (A), ω)=∑
ω∈Ω1

C(A, ω). Then C(A, dunif(Ω1))= C(trεi (A), dunif(Ω1)).

• For the induction step, we show the case h+1 by induction
on the number n of children under the root of tree T .

(1) For n = 1, the case for height h + 1 can be reduced
to the case of height h.

(2) For induction step, T is divided into T0 and T ′ as
shown in Fig. 4, where T0 is the left-most subtree under the
root, and T ′ denotes the rest part.

0 1 n-1

T0

T’

root 

Fig. 4. An illustration of division of T

Then Ω1 can be represented by Ω1 =
⊔

ω0∈W {ω0}×Ω′ω0
,

where ω0 is an assignment for the left-most subtree T0, W is
a closed set of assignments for T0 and Ω′ω0

= {ω′ : ω0ω
′ ∈

Ω} is a closed set of assignments for T ′.
To compute C(A, dunif(Ω1)), we may assume that A

evaluates T0 first since Ω1 is closed. Then C(A, dunif(Ω1))
can be represented by

1

|Ω1|
·
∑

ω0∈W

∑
ω′∈Ω′ω0

[
C(A0, ω0) + C(A′ω0

, ω′)
]
,

where A0 is an algorithm for T0, A′ω0
is an algorithm for T ′

which is applied after A evaluates the subtree T0 under the
assignment ω0. If the algorithm stops before A′ω0

starts, we
set C(A′ω0

, ω′) = 0 for each ω′ ∈ Ω′ω0
.

Thus, C(A, dunif(Ω1)) can be computed as

1

|Ω1|
∑

ω0∈W

|Ω′ω0
|C(A0, ω0) +

∑
ω′∈Ω′ω0

C(A′ω0
, ω′)

 . (∗∗)

It is observed that W can be partitioned as W =
W1

⊔
· · ·
⊔
Wk such that each Wj is closed and connected.

Then for any ω, ω′ ∈Wj , Ω′ω = Ω′ω′ . So we let aj =| Ω′ω |
for ω ∈Wj .

Also by induction hypothesis in (2), we know that for any
ω0 ∈Wj , the value of

∑
ω′∈Ω′ω0

C(A′ω0
, ω′) is a constant or

0 and then we denote it by bj . Thus, (**) can be replaced
by

1

|Ω1|

k∑
j=1

∑
ω0∈Wj

[aj · C(A0, ω0) + bj ]

=
1

|Ω1|

k∑
j=1

aj · ∑
ω0∈Wj

C(A0, ω0) + bj |Wj |

 .
By induction hypothesis,

∑
ω0∈Wj

C(A0, ω0) is a constant,
say ej , when we fix some j. Therefore

C(A, dunif(Ω1)) =
1

|Ω1|

k∑
j=1

[aj · ej + bj · |Wj |] .

This completes the proof for the case m = 1.
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For the case m > 1, there exists ci such that
C(A, dunif(Ωi)) = ci for 1 ≤ i ≤ m. It follows that
C (A, dunif(p1Ω1 + · · ·+ pmΩm)) = p1c1 + · · ·+ pmcm.

By our Lemma 2 and analogy to Lemma 2 in [10], we
have

Lemma 3. For any balanced multibranching tree T , suppose
that p1, · · · , pm and Ω1, · · · ,Ωm as in Definition 9 and
each Ωj is closed and connected, d is a distribution on
p1Ω1 + · · · + pmΩm. Then the following (i), (ii) and (iii)
are equivalent:
(i) min

A∈A
C(A, d) = max

d′
min
A∈A

C(A, d′), where d′ is a distri-
bution on p1Ω1 + · · ·+ pmΩm.

(ii) There exists c ∈ R such that for any A ∈ A, C(A, d) =
c holds.

(iii) min
A∈A

C(A, d) =
∑

1≤j≤m
pjC(A, dunif(Ωj)).

Proof: We first show that (i) is equivalent to the
assertion

min
A∈A

C(A, d) =
1

| A |
∑
A∈A

C(A, d). (♣)

If we assume that min
A∈A

C(A, d) = max
d′

min
A∈A

C(A, d′), then

min
A∈A

C(A, d) ≥ min
A∈A

C(A, dunif) = C(A, dunif). By Lemma 2

and Lemma 1, we have C(A, dunif) = 1
|A|

∑
A∈A

C(A, dunif) =

1
|A|

∑
A∈A

C(A, d).

Hence,

min
A∈A

C(A, d) ≥ 1

| A |
∑
A∈A

C(A, d).

Clearly, we have min
A∈A

C(A, d) ≤ 1
|A|

∑
A∈A

C(A, d), which

implies min
A∈A

C(A, d) = 1
|A|

∑
A∈A

C(A, d).

For the other direction, by Lemma 1, for any
distribution d′,

∑
A∈A

C(A, d) =
∑
A∈A

C(A, d′). Thus,∑
A∈A

C(A, d′) ≤ 1
|A|

∑
A∈A

C(A, d) holds. Since

min
A∈A

C(A, d) = 1
|A|

∑
A∈A

C(A, d), we have min
A∈A

C(A, d′) ≤

min
A∈A

C(A, d), i.e., min
A∈A

C(A, d)=max
d′

min
A∈A

C(A, d).

Since (ii) is equivalent to (♣), the assertion (i) and (ii) are
equivalent.

Next, we investigate the equivalence of assertion (iii) and
(♣).
Since

∑
A∈A

C(A, d) =
∑
A∈A

C(A, dunif) =| A | C(A, dunif), we

have
min
A∈A

C(A, dunif) =
1

| A |
∑
A∈A

C(A, d).

Thus, (♣) is equivalent to the following: min
A∈A

C(A, d) =

min
A∈A

C(A, dunif) =
∑

1≤j≤m
pjC(A, dunif(Ωj)).

Our goal of this section is to investigate the relation of
eigen-distribution and E1- distribution w.r.t. A. To show this,
we first need to consider the relation between average cost
over 1-set and average cost over any other closed sets. We
start with the base case of height 2, and then extend to
general height h.

Part I: The case for height 2

In this part, we will investigate the relation between aver-
age cost on i-set for i ∈ {0, 1} and the average cost on any
i′-set for AND-OR trees T 2

n . Since by Lemma 2, the average
cost does not depend on an algorithm, we may only consider
SOLVE. For simplicity, we denote C(ω) = C(SOLVE, ω)
and C(Ω) = C(A, dunif(Ω)), where A ∈ AD and Ω is closed.

Recall that the costs over 0-set and 1-set have been studied
in [3].

Theorem 1 (Theorem 7 in [3]). For any tree T 2
n ,

C(0-set) =
n2 + 4n− 1

4
and C(1-set) =

n(n+ 1)

2
.

Then we show that

Lemma 4. Given an AND-OR tree T 2
n , for any connected

1′-set Ω, C(Ω) < C(1-set).

Proof: We can find an assignment in Ω in the form of
ω = 0a01b0 · · · 0an−11bn−1 where for each i < n, ai+bi =n.

Let M = max{C(ω) : ω ∈ Ω}. Since Ω is closed and
connected, we can show M = n+

∑n−1
i=0 ai. We claim that

C(Ω) ≤ M + n

2
. (?)

The inequality (?) implies that C(Ω) < C(1-set) because
M < n2 and C(1-set) = n2+n

2 (by Theorem 1).
To show (?), we denote the reverse order of an assignment

ω by ωR. For example, if ω = 100110011, ωR = 110011001.
Since Ω is closed,

the map ω 7→ ωR is a bijection on Ω. (‡)

Moreover it is easy to show C(ω) + C(ωR) ≤ M + n for
any ω ∈ Ω.

By (‡), we have C(Ω) =

∑
ω∈Ω

C(ω)

|Ω| =

∑
ω∈Ω

C(ω)+
∑

ω∈Ω

C(ωR)

2|Ω| .

Thus, C(Ω) ≤ (M+n)|Ω|
2|Ω| = M+n

2 .

Lemma 5. If Ω = Ω1 t · · · t Ωk, where each Ωi is closed

and pairwise disjoint, then C(Ω) =
k∑

i=1

|Ωi|
|Ω| C(Ωi).

Proof: Since each Ωi is closed and pairwise disjoint, we
have

C(Ω) =

∑
ω∈Ω C(ω)

|Ω|
=

1

|Ω|
(

k∑
i=1

∑
ω∈Ωi

C(ω))

= (
k∑

i=1

|Ωi|
|Ω|

∑
ω∈Ωi

C(ω)

|Ωi|
)

=
k∑

i=1

|Ωi|
|Ω|

C(Ωi).

Since any closed set Ω can be represented as Ω =
Ω1 t · · · t Ωk where each Ωi for i ∈ {1, · · · , k} is closed,
connected and pairwise disjoint. By Lemma 4 and 5, we get
the following theorem.

Theorem 2. Given an AND-OR tree T 2
n , for any 1′-set Ω,

C(1-set) > C(Ω).

Given sets of assignments 〈Ωi〉0≤i≤n−1, we define Ω0 ×
· · · × Ωn−1 = {ω0 · · ·ωn−1 : ωi ∈ Ωi for i < n}. For any
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assignment ω of any 0′-set, we represent ω = ω0 · · ·ωn−1,
where each ωi is the assignment of i-th subtree. We denote
ω` as the first ωi such that ωi = 0n and ωL as the last ωi

such that ωi = 0n in ω.
Thus for ω ∈ Ω0×· · ·×Ωn−1 such that ω(ε) = 0, we have

C(SOLVE, ω) =
∑`

i=0 C(SOLVE, ωi). That is, the problem
of computing C(SOLVE, ω) turns into searching for the first
0n-segment that appears in ω.

Lemma 6. Given an AND-OR tree T 2
n , for any connected

0′-set Ω, C(Ω) < C(0-set).

Proof: For ω ∈ Ω, let ω = ω0 · · ·ωn−1. First, if ωi is
in the form of ωi = 0ai1ui, the reverse order of ωi can be
denoted as ωR

i = 0bi1vi where ai + bi ≤ n − 1, ui and vi
sequence over {0, 1}. Otherwise, ωR

i = ωi = 0n.
We denote ω′ = ω0

R · · ·ωn−1
R, ω′′ = (ω′)

R and ω′′′ =
ωR. Since the tree is an AND-OR tree of height 2 and ω(ε) =
0, the computation for ω will stop immediately after it finds
the first 0n-segment in ω. Then, we have

C(ω) =
∑
i<`

ai + `+ n,

where the first 0n-segment appears in ω`,
∑

i<` ai counts the
number of 0’s that has been searched in the form of 0ai1ui
before ω`, ` counts the number of 1’s that has been searched
in the form of 0ai1ui before ω` and n is the cost of ω`.

Through the same approach, we can compute

C(ω′) =
∑

i<` bi + `+ n,

C(ω′′) =
∑

i>L ai + (n− L− 1) + n

C(ω′′′) =
∑

i>L bi + (n− L− 1) + n.

Here denote C̃(ω) = C(ω) + C(ω′) + C(ω′′) + C(ω′′′).

Then, C̃(ω) =
∑

i/∈[`,L]

(ai + bi) + 2[n− (L− `)− 1] + 4n.

Since ai + bi ≤ n− 1 for each i, we have∑
i/∈[`,L]

(ai + bi) ≤ (n− 1)[n− (L− `)− 1]. (1)

Thus,

C̃(ω) ≤ (n− (L− `)− 1) · (n+ 1) + 4n ≤ n2 + 4n− 1. (2)

Since Ω is an 0′-set, either (1) or (2) is strict.

Then C(Ω) = 1
4|Ω|

∑
ω∈Ω

C̃(ω) < n2+4n−1
4 = C(0-set).

By Lemma 5 and 6, we obtain the relation between average
cost on the 0-set and any 0′-set.

Theorem 3. Given an AND-OR tree T 2
n , for any 0′-set Ω,

C(0-set) > C(Ω).

Using similar proof idea in Lemma 6, we can also obtain
that for an OR-AND tree T 2

n , for any 1′-set Ω, C(1-set) >
C(Ω) holds. Also, the proof idea in Lemma 4 can be applied
to show that for an OR-AND tree T 2

n , for any 0′-set Ω,
C(0-set) > C(Ω) holds. Hence, we can get a more general
statement as below.

Theorem 4. Given T 2
n which can be either AND-OR tree or

OR-AND tree, for any i′-set Ω, C(i-set) > C(Ω).

Part II: The general case for height h

In this part, we extend the study to height h ≥ 2. To
simplify the notation, throughout the rest part, we denote
C(i-set) by C∧,hi (C∨,hi , respectively) for AND-OR tree
(OR-AND tree, respectively) of height h. For any i′-set Ω,
we denote C(Ω) by C∧,hΩ (C∨,hΩ , respectively) for AND-OR
tree (OR-AND tree, respectively) of height h. Let i-set(∧, h)
denote i-set for AND-OR tree T h

n and i-set(∨, h) denote the
i-set for OR-AND tree T h

n . The following lemma will be
used in the proof of next lemma.

Lemma 7. Given Γ = {0, · · · , N − 1}, N , n ∈ N, let Ψ(k)
be the total number of k that appears in all elements of Γn.
Then Ψ(k) = n ·Nn−1

Proof: For any two different elements k, j of Γ, we have
Ψ(k) = Ψ(j). Then

∑N−1
k=0 Ψ(k) = N ·Ψ(k). Moreover, we

know that
∑N−1

k=0 Ψ(k) = n· | Γn |= n · Nn. As a result,
Ψ(k) = n ·Nn−1.

Note that for any AND-OR (OR-AND) tree T h+1
n , we

can easily get n OR-AND (AND-OR) subtrees T h
n under

the root of T h+1
n . The following lemma shows the relation

of cost between them.

Lemma 8. C∧,h+1
1 = nC∨,h1 , C∧,h+1

0 = C∨,h0 + n−1
2 C∨,h1 ,

C∨,h+1
1 = C∧,h1 + n−1

2 C∧,h0 , and C∨,h+1
0 = nC∧,h0 .

Proof: Since all i-sets are closed, we can fix an al-
gorithm as SOLVE. 0-set(∧, h + 1) can be represent as

0-set(∧, h+ 1)=
n−1⊔
k=0

Ωk, where Ωk = (1-set(∨, h))
k ×

0-set(∨, h) × (1-set(∨, h))
n−(k+1), and 1-set(∧, h + 1) =

(1-set(∨, h))
n. Let m0 = |0-set(∨, h)| and m1 =

|1-set(∨, h)|.

C∧,h+1
0 =

∑
ω∈0-set(∧,h+1)

C(ω)

| 0-set(∧, h+ 1) |
=

n−1∑
k=0

∑
ω∈Ωk

C(ω)

n ·m0 · (m1)n−1

=

n−1∑
k=0

∑
ω0···ωn−1∈Ωk

∑
i<k

C(ωi)

n ·m0 · (m1)n−1︸ ︷︷ ︸
(a)

+

n−1∑
k=0

∑
ω0···ωn−1∈Ωk

C(ωk)

n ·m0 · (m1)n−1︸ ︷︷ ︸
(b)

Fix ωk and any ωi6=k ∈ 1-set(∨, h), the number of ωk that
appears in all assignments of Ωk is |1-set(∨, h)|n−1.
Thus,

(b) =

n−1∑
k=0

∑
ω∈0-set(∨,h)

(m1)n−1 · C(ω)

n ·m0 · (m1)n−1
=

∑
ω∈0-set(∨,h)

C(ω)

m0
.

By Lemma 7, (a) can be calculated as
n−1∑
k=1

∑
ω∈1-set(∨,h)

m0 · (m1)n−(k+1) · k · (m1)k−1C(ω)

n ·m0 · (m1)n−1

=

m0 · (m1)n−2 ·
n−1∑
k=1

k ·
∑

ω∈1-set(∨,h)

C(ω)

n ·m0 · (m1)n−1

=
n− 1

2m1
·

∑
ω∈1-set(∨,h)

C(ω).
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Thus,

C∧,h+1
0 = (a) + (b) = C∨,h0 +

n−1

2
C∨,h1 .

Next, we show C∧,h+1
1 = nC∨,h1 .

C∧,h+1
1 =

1

| 1-set(∧, h+ 1) |
∑

ω∈1-set(∧,h+1)

C(ω)

=
1

| 1-set(∧, h+ 1) |
∑

ω0···ωn−1∈(1-set(∨,h))n

n−1∑
i=0

C(ωi).

By Lemma 7, we have

C∧,h+1
1 =

1

m1
n

∑
ω∈1-set(∨,h)

n| 1-set(∨, h) |n−1
C(ω)

=

∑
ω∈1-set(∨,h)

C(ω) · n

m1
= nC∨,h1 .

In the same way, we can calculate C∨,h+1
1 = C∧,h1 +

n−1
2 C∧,h0 and C∨,h+1

0 = nC∧,h0 .

Theorem 5. For any i′-set Ω, C∧,hi > C∧,hΩ and C∨,hi >

C∨,hΩ .

Proof: Since Ω is closed, we can fix an algorithm as
SOLVE. We show this by induction on height h. By Theorem
4, the base case h = 2 holds.

For the induction step, let Ω = Ω1 t · · · t Ωk, where for
each i ∈ {1, · · · , k}, Ωi = [[ω0

i ]] × · · · × [[ωn−1
i ]] and ωj

i is
an assignment of the j-th subtree under the root of T h

n .

• First, we show C∧,h+1
1 > C∧,h+1

Ω , where Ω is a 1′-set.

C∧,h+1
Ω =

1

| Ω |
∑
ω∈Ω

C(ω) =
1

| Ω |

k∑
i=1

∑
ω∈Ωi

C(ω)

=
1

| Ω |

k∑
i=1

∑
v0∈[[ωn−1

i ]]

· · ·
∑

vn-1∈[[ωn−1
i ]]

[C(v0) + · · ·+ C(vn-1)]

=
1

| Ω |

k∑
i=1

n−1∑
m=0

∏
j 6=m

|[[ωj
i ]]|

∑
vm∈[[ωm

i ]]

C(vm)


=

1

| Ω |

k∑
i=1

n−1∑
m=0

| Ωi | C∨,h[[ωm
i ]] =

k∑
i=1

| Ωi |
| Ω |

n−1∑
m=0

C∨,h[[ωm
i ]].

By induction hypothesis, C∨,h[[ωm
i ]] < C∨,h1 . Thus, C∧,h+1

Ω <
k∑

i=1

|Ωi|
|Ω|

n−1∑
m=0

C∨,h1 = nC∨,h1 = C∧,h+1
1 .

By the same way, we show that C∨,h+1
0 > C∨,h+1

Ω .

• Next, we show C∧,h+1
0 > C∧,h+1

Ω , where Ω is a 0′-set.

For ω = ω0 · · ·ωn−1 of T h+1
n , we denote ω̃ =

ωn−1 · · ·ω0. Similar with Lemma 6, let ` (L, respectively)
denotes the minimum (maximum) number such that ω` (ωL)
assigns 0 to all the leaves of `-th (L-th) subtree under the
root. Then C∧,h+1

Ω can be computed by

1

| Ω |
∑
ω∈Ω

C(ω) =
1

2 | Ω |
∑
ω∈Ω

[C(ω) + C(ω̃)]

=
1

2 | Ω |

k∑
i=1

∑
ω0

i∈[[ω0
i ]]

· · ·
∑

ωn−1
i ∈[[ωn−1

i ]]

[
C(ω0

i ) + · · ·+

C(ω`
i ) + C(ωL

i ) + · · ·+ C(ωn−1
i )

]
.

Since
∑

ω0
i∈[[ω0

i ]]

· · ·
∑

ωn−1
i ∈[[ωn−1

i ]]

C(ωj
i ) =| Ωi | C∨,h[[ωj

i ]]
,

we can compute C∧,h+1
Ω by 1

2|Ω|

k∑
i=1

| Ωi |
[
C∨,h

[[ω0
i ]]

+ · · · +

C∨,h
[[ω`

i ]]
+ C∨,h

[[ωL
i ]]

+ · · ·+ C∨,h
[[ωn−1

i ]]

]
.

By induction hypothesis,

C∧,h+1
Ω <

k∑
i=1

| Ωi |
[
`C∨,h1 + 2C∨,h0 + (n−L−1)C∨,h1

]
2 | Ω |

≤ 1

2 | Ω |

k∑
i=1

| Ωi |
[
(n− 1)C∨,h1 + 2C∨,h0

]
=
n− 1

2
C∨,h1 + C∨,h0 = C∧,h+1

0 .

In the same way, we can show that C∨,h+1
1 > C∨,h+1

Ω .

Theorem 6. For any T h
n , C∧,h1 > C∧,h0 .

Proof: We show that for h ≥ 1,

C∧,h1 = C∨,h0 , C∨,h1 = C∧,h0 and
n+ 1

2
C∨,h1 > C∨,h0 , (♠)

which implies C∧,h+1
1 > C∧,h+1

0 by Lemma 8.
We prove (♠) by induction on height h. For h = 1,

C∧,11 = C∨,10 = n, C∨,11 = C∧,10 = n
2 .

For the induction step, the first two equalities follows
from Lemma 8 and n+1

2 C∨,h+1
1 = n+1

2 C∧,h1 + n2−1
4 C∧,h0 >

(n+1)2

4 C∧,h0 > nC∧,h0 = C∨,h+1
0 .

By Theorem 5 and 6, we have the following theorem.

Theorem 7. For an AND-OR tree T h
n , any closed but not

1-set Ω, C(1-set) > C(Ω).

By Lemma 3 and Theorem 7, we can show that

Lemma 9. For an AND-OR tree T h
n and d an eigen-

distribution w.r.t. A, then d is a distribution on the 1-set.

Proof: Suppose for an AND-OR tree T h
n , and d is an

eigen-distribution w.r.t. A. Let 〈Ωj〉1≤j≤m be a partition of
all assignments such that each Ωj is connected and closed.

Without loss of generality, let Ω1 be the 1-set. For each
j, pj denotes the probability for Ωj under the distribution
of d. By Theorem 7, for each j > 1, C(Ω1) > C(Ωj). By
Lemma 3,

min
A∈A

C(A, d) = p1C(Ω1) +
m∑
j=2

pjC(Ωj).

Since d is an eigen-distribution w.r.t. A, p1 = 1 and for each
j ∈ {2, · · · ,m}, pj = 0. Thus, d is a distribution on the
1-set.

Theorem 8. Assume an AND-OR tree T h
n , d is a probability

distribution on the assignments, A is a closed subset of AD.
Then the following two conditions are equivalent.

a) d is an eigen-distribution w.r.t. A.
b) d is an E1-distribution w.r.t. A.

Proof: By Lemma 9, d is an eigen-distribution on 1-set.
Thus the equivalence holds by Lemma 3.
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Remark 1. (1) For the case OR-AND tree, eigen-distribution
is equivalent to E0-distribution w.r.t. A.
(2) The above remark and Theorem 8 also hold for balanced
multi-branching trees.

IV. EIGEN-DISTRIBUTION w.r.t AD IS UNIQUE

To start with, we investigate the relation of Ei-distribution
and uniform distribution for n-branching trees. By Lemma
2 and Theorem 8, we can show the following

Corollary 1. For any AND-OR tree T h
n and closed subset

A ⊆ AD, the uniform distribution on 1-set is an eigen-
distribution w.r.t. A.

From this section, we also consider non-directional al-
gorithms, which play an important role to investigate the
uniqueness of eigen-distribution. While a deterministic algo-
rithm A works, the order of searching leaves may depend
on the query history. If so, A is called a non-directional
algorithm. We first provide an example of a such algorithm.

Example 2. Given a tree T 2
3 , where each leaf is labeled

from left to right as shown in Fig.5. Let A be a directional
algorithm on T 2

3 denoted as 123456789, it means the algo-
rithm evaluates the leaves from left to right. We can define a
non-directional algorithm A′ denoted as 1̂23456789, where
the order of searching leaves depends on the query history
as follows
• if ω(00) = 1, then the algorithm continues as the

searching order 789456;
• otherwise, the algorithm continues from left to right as

the searching order 456789.

1 2

 

00  01  02 10  11 12  20  21  22 

1   2   3 4 5  6   7   8   9 

0

Labels : 

Fig. 5. T 2
3 with label on leaves

Next we show the uniqueness of eigen-distribution w.r.t
AD. We start with the base case of height 2.

Theorem 9. For any AND-OR tree T 2
n , E1-distribution w.r.t.

AD is uniform.

Proof: For simplicity, we also consider T 2
3 as shown

in Fig.5. Let d be an E1-distribution for T 2
3 such that the

probability of d being an assignment ω of 1-set is d(ω).
Suppose ω1 = 001001001, ω2 = 001001010 with probability
p1 = d(ω1) and p2 = d(ω2). We start with showing that
p1 = p2.

We consider a directional algorithm A denoted as
123456789, and a non-directional algorithm A′ denoted as
̂123456789, which probes the left-most two subtrees with

label 123456, and then the algorithm proceeds as follows
• if the cost of evaluating the left-most two subtrees is 6,

it exchanges the searching order of 8 and 9;
• otherwise, it continues as in A.

Thus, if the assignment for T 2
3 is in the form 001001ω′,

where ω′ ∈ {001, 010, 100}, then the right-most subtree is
searched as 798, otherwise 789.

Then we have

C(A, d) = C(A, ω1)p1+C(A, ω2)p2+· · · = 9p1+8p2+ · · ·︸︷︷︸
r1

C(A′, d) = C(A′, ω1)p1+C(A′, ω2)p2+· · · = 8p1+9p2+ · · ·︸︷︷︸
r2

Using the two given algorithms A and A′, the values of r1

and r2 are equal. Since d is an E1-distribution, C(A, d) =
C(A′, d). Thus p1 = p2. By the same argument, we can show
that for any assignments ω and ω′, d(ω) = d(ω′) = 1

27 .
The general case T 2

n can be treated similarly.

Using the same approach in Theorem 9, we can show that

Corollary 2. For any OR-AND tree T 2
n , E0-distribution

w.r.t. AD is uniform.

Theorem 10. For any AND-OR tree T 2
n , E0-distribution

w.r.t. AD is uniform.

Proof: For simplicity, we consider T 2
3 again. Let d be

an E0-distribution for T 2
3 . We partition 0-set as Ω1tΩ2tΩ3,

where for i ∈ {1, 2, 3}, Ωi is the collection of assignments
such that 000 is assigned to the i-th subtree of T 2

3 under the
root. By the same method in Theorem 9, we can show that
all the assignments in Ωi have the same probability and we
denote it as pi for i ∈ {1, 2, 3}.

For any A ∈ AD, C(A, d) =
∑3

i=1

∑
ω∈Ωi

pi · C(A,ω).
We consider a directional algorithm A denoted as

123456789 and a non-directional algorithm A′ denoted as
1̂23456789, which first evaluates the subtree with label
123, and then it proceeds as follows
• if the assignment for the subtree with label 123 is 000,

it continues as in A;
• otherwise, it exchanges the searching order of the sub-

trees with label 456 and 789.
Then, we have

C(A, d) =
∑3

i=1

∑
ω∈Ωi

pi · C(A, ω),

C(A′, d) =
∑3

i=1

∑
ω∈Ωi

pi · C(A′, ω).

By algorithms A and A′, we can calculate that∑
ω∈Ω2

C(A, ω) =
∑

ω∈Ω3
C(A′, ω),∑

ω∈Ω3
C(A, ω) =

∑
ω∈Ω2

C(A′, ω),∑
ω∈Ω1

C(A, ω) =
∑

ω∈Ω1
C(A′, ω),

45 =
∑

ω∈Ω2
C(A, ω) 6=

∑
ω∈Ω3

C(A, ω) = 63.

Therefore we have p2 = p3. When we consider A denoted
as 789123456 and A′ denoted as 7̂89123456, if the right-
most subtree is assigned 000, it is same as A, otherwise we
change the query order of 123 and 456. We can show that
p1 = p2. So each assignment has the same probability.

In the same way, we can show that the E0-distribution
w.r.t. AD is also uniform for general case.

Using the same approach in Theorem 10, we have the
following corollary.

Corollary 3. For any OR-AND tree T 2
n , E1-distribution

w.r.t. AD is uniform.
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By induction on the height of the tree, we can show the
following theorem

Theorem 11. For any tree T h
n , Ei-distribution w.r.t. AD is

uniform. Thus eigen-distribution w.r.t. AD is unique.

V. CONCLUSION

This study extended the Liu-Tanaka Theorem to balanced
multi-branching trees. Although, for convenience, we just
treat n-branching trees, all the theorems in this paper also
hold for balanced multi-branching trees. We showed that for
any balanced multi-branching tree and a probability distribu-
tion d on all assignments, the following three conditions are
equivalent: an eigen-distribution, an Ei-distribution and the
uniform distribution on the i-set w.r.t. AD.

Saks and Wigderson [9] proved that for T h
2 , the distri-

butional complexity is equal to max
d

min
A∈Adir

C(A, d). Suzuki

and Nakamura [10] remarked that it is indeed equal to
max

d
min
A∈A

C(A, d) for any closed set of all alpha-beta pruning

algorithms on T h
2 . Similarly, using our arguments in Part III,

we can conclude that the equality still holds for any balanced
multi-branching tree.
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