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Abstract—In the software quality assurance process, it is 

crucial to prevent defective software to be delivered to 

customers since it can save the maintenance cost and increase 

software quality and reliability. Software defect prediction is 

recognized as an important process to automatically detect the 

possibility of having an error in the software. After defects are 

detected, it is then needed to identify their severity levels to 

avoid any effects that may obstruct the whole system. There 

were many trials attempts to capture errors by employing 

traditional supervised learning techniques. However, all of 

them are often faced with an imbalanced issue and scarcity of 

data, which causes decreased prediction performance. In this 

paper, we present a Two-Stage Model to detect and rank 

defects in software. The model focuses on two tasks. First, we 

will capture defects by applying an unbiased SVM called “R-

SVM,” which reduces a bias of the majority class by using the 

concept of threshold adjustment. Second, the detected modules 

will be ranked according to their severity levels by using our 

algorithm called “OS-YATSI,” that combines semi-supervised 

learning and oversampling strategy to tackle the imbalanced 

issue. The experiment was conducted on 15 Java programs. The 

result showed that the proposed model outperformed all of the 

traditional approaches. In the defect prediction model, R-SVM 

significantly outperformed others on 6 programs in terms of F1. 

In the defect ranking model, OS-YATSI significantly 

outperformed all baseline classifiers on all programs at an 

average of 23.75% improvement in term of macro F1. 

 
Index Terms—software defect prediction, defect severity 

categorization, imbalanced issue, threshold adjustment, semi-

supervised learning 

 

I. INTRODUCTION 

OFTWARE defect is an anomaly in the software. It is also 

referred to as a bug, fault, or error. It can be found in the 

source code. It may be a cause of failures to the software that 

cannot work properly, or does not meet the requirements 

specifications. As mentioned above, it is obvious that the 

creation of software products without any defects or bugs is 

difficult since human is a developer, which can cause the 

errors. 

Software development organizations realize an 

importance of software production and quality assurance 

process to achieve the quality software that can respond to 

customer needs and actually works. However, to acquired  

 
 

 

 

 

quality software that is required a defect prediction, which is 

a key process in the field of software engineering. It is an 

attempt to automatically detect errors in the software, which 

can help developers to fix the bugs and prevent any serious 

damages to the whole system. Therefore, it is very important 

to detect all of the defects as early as possible before 

publishing the software. 

Many researchers have been aware of the software defect 

issue and proposed several defect prediction frameworks by 

applying traditional supervised learning techniques [1-4], 

feature selection [5], and sampling strategies [6]. 

Unfortunately, all of these works showed relatively low 

prediction performance due to the class imbalanced issue, 

which is an important factor that tremendously drop 

prediction performance.  
Class imbalanced issue is a major problem in the field of 

data mining since the technology application is diverse and 

still growing. Thus, the size of data also increases and it 

becomes difficult to classify. Imbalanced issue occurs where 

one of the two classes having more example (majority class) 

than other classes (minority class). The most of algorithm 

focuses on classification of majority class, while ignores 

minority class. Therefore, these classifiers always give better 

results with the majority class and poor results with minority 

class. For example, assume the percentage of defected 

modules is only 10%, while the remaining modules (90%) 

are non-defected. Although the detection system incorrectly 

classifies all modules as non-defected ones, the accuracy is 

still 90%! 

Apart from detecting software defects, it is also important 

to rank them by their severity. Defect severity is a degree of 

impact that a defect has on the development or operation of 

a software system. Different defects have different impacts 

on the software. Some of them may only slow down the 

process, whiles others may be a cause of failures to the 

whole system. Therefore, it is important to categorize each 

defect by their severity levels, which can help developers to 

prioritize the defects and prevent any serious damages to the 

whole system. 
There were many attempts to automatically classify defect 

severity. Almost of them required bug report from the user 

as an input. SEVERIS [7]  is a software severity assessment 

system that utilize a textual description from reported issues. 

[8-10] applied traditional data mining techniques to predict a 

severity level from user feedbacks. [11, 12] employed a text 

mining algorithm along with a feature selection mechanism 

to select important keywords from bug reports. However, 

these works relied on the bug description, which means that 
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serious damages may already occur. Thus, it should be more 

efficient to early capture all defects along with their severity 

levels directly from a software metrics during the software 

production stage. 

At the production stage, the number of defected modules 

is very small when comparing to the non-defected ones. 

Moreover, only a small number of defected modules are 

described along with their severity levels, while most of 

them do not have it. For example, the Eclipse PDE UI 

project [13] has 209 defective modules composing of 59 

defects (28.23%) and 150 defects (71.77%) of known and 

unknown severity levels, respectively. Thus, it is not good 

idea to use a supervised learning algorithm that only relies 

on labeled data without considering imbalance and scarcity 

of the data. Furthermore, 46 defects (77.97%) of defects 

with severity levels are defined as “moderate effects (Level 

2)” out of 3 levels. This situation is referred as “imbalanced 

problem” which is known to tremendously drop prediction 

performance.  

In this paper, we aim to propose a model to detect bugs in 

software by applying an unbiased support vector machine 

called “R-SVM,” our previous work [14, 15] which reduces 

a bias from majority class by using threshold adjustment. In 

addition, we also propose a model to rank the defect 

modules according to their severity levels by using our 

algorithm called “OS-YATSI,” [16] that combines YATSI 

[17], a self-training semi-supervised learning algorithm, and 

SMOTE [18], an oversampling technique. It enhances a 

prediction performance by utilizing unlabeled data, while 

amending imbalanced issue all together. The experiment was 

conducted on 15 Java programs [13, 19] and, then, the result 

was compared to the original YATSI and several supervised 

learning techniques: Decision Tree (DT), Naïve Bayes (NB), 

k-NN and SVM. 

The rest of paper is organized as follows. Section II 

presents an overview of the related work. Section III 

provides the background knowledge that use in this paper. 

The detail of the proposed method are presented in Section 

IV. Section V shows the data sets and the experimental 

results. Finally, this paper is concluded in Section VI. 

II. RELATED WORKS 

A. Related Works in Defect Prediction 

In the field of software defect prediction, there were many 

trials that apply several machine learning techniques. [5] 

applied Naïve Bayes for constructing a model to predict 

software defects. There was an investigation on the feature 

selection strategy using information gain. The result showed 

that their system achieved 71 % of the mean probability 

detection (PD) and 25 % of the mean false alarm rate (PF). 

[1] introduced a novel algorithm called “GA-CSSVM,” that 

built around SVM and used Genetic Algorithm (GA) to 

improve the cost sensitive in SVM. The experimental result 

showed that it reached a promising performance in terms of 

AUC. [2] proposed an algorithm called “Roughly Balanced 

Bagging (RBBag)” to predict fault in high assurance 

software. It employed the bagging concepts into two choices 

of classifiers: Naïve Bayes and C4.5. The result showed that 

RBBag model outperformed the classical models without the 

bagging concept. Moreover, RBBag is more effective when 

it was applied to Naïve Bayes than C4.5. However, all of 

these studies discard the imbalanced issue, so their 

prediction accuracy was limited. 

[6] was aware of the imbalanced issue in the software 

defect prediction. There was an investigation on various 

approaches to handle the imbalanced issue including 

threshold moving, ensemble algorithms, and sampling 

techniques. The result showed that AdaBoost.NC is the 

winner, and it also outperformed other traditional 

approaches: NB and Random Forest (RF). Furthermore, a 

dynamic version of AdaBoost.NC was proposed and proved 

that it was better than the original one. 

Recently, support vector machine (SVM) has been 

applied in the area of software defect prediction. It is one of 

the most popular classification techniques and demonstrates 

a good prediction performance. [3] employed SVM to detect 

bugs in the MDP data set. The analysis from the SVM 

results revealed that if a module has a large average of the 

decision values (SVM scores), there is high chance to found 

defects in it. [4] compared SVM to eight conventional 

classifiers, such as Neural Networks, Naïve Bayes, etc., on 

the MDP data set. The experiment demonstrated that SVM 

is the winner method. Thus, this is our motivation to apply a 

method built around SVM called “R-SVM” to detect the 

software errors. 

B. Related Works in Defect Severity Categorization 

There are many trials that applying text mining and 

machine learning techniques in the area of software defect 

severity prediction. In 2008, [7] proposed a method named 

SEVERIS (SEVERITY Issue assessment) based on a rule 

learning algorithm which also utilize the textual descriptions 

from issue reports. It was experimented on five nameless 

PITS projects consisting of 775 issue reports with about 

79,000 words. By considering the top 100 terms, result 

showed that the method proposed is a good predictor for 

issue severity levels. The F-measure values is in the range of 

65% - 98% for cases with more than 30 issue reports only. 

In 2010, [8] applied Naïve Bayes algorithm to predict 

severity levels based on textual description of bug reports in 

binary classes. There was an investigation on the three open-

source projects from Bugzilla. The result showed that it 

obtained a promising performance with precision and recall 

vary between 0.65-0.75 (Mozilla and Eclipse) and 0.70-0.85 

(GNOME). Furthermore, this study has been extended to 

compare with four traditional classifier such as Naïve Bayes 

(NB), Naïve Bayes Multinomial (NBM), K-Nearest 

Neighbor (K-NN) and Support Vector Machines (SVM) [9]. 

The experiment revealed that Multinomial Naïve Bayes does 

not only show the highest accuracy, but it is also faster and 

requires a smaller training set than other classifiers. 

In 2012, [11] was aware of the problem of how to find the 

potential indicators to improve the performance of severity 

prediction task. There was an investigation on three 

selection schemes namely Information Gain (IG), Chi-

Square (CHI), and Correlation Coefficient (CC) based on the 

Naïve Bayes classifier. The experiment was conducted on 

four open-source components from Eclipse and Mozilla. The 

experimental results showed that the advantage of feature 
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selection can extract potential indicators and improve the 

performance of severity prediction. In 2014, [12] introduced 

an application of bi-grams and feature selection strategy for 

bug severity classification based on NB classifier. The result 

demonstrated that bi-grams and Chi-Square feature selection 

can help to enhance an accuracy of the severity 

categorization task. 

As mentioned above, none of previous studies have ever 

applied semi-supervised learning approaches to improve a 

prediction performance by utilizing unlabeled data. 

Moreover, all of them ignored an imbalanced issue resulting 

in a prohibited accuracy. 

III. BACKGROUND KNOWLEDGE 

A. Software Metrics 

Measurement is considered as a key element in the 

software development process. It can helps to estimate the 

cost, effort, and timing of software development. In addition, 

It can help developers to know that software development is 

on target and schedule or not. For building a software, we 

use numerous software metrics to evaluate quality of 

software and also define the attribute of software. These 

software metrics reflect the benefits and one of the main 

benefits is to provide it provides information for software 

defect prediction. 

Currently, there are many software metrics used for defect 

prediction in software. In this study, our intention is to point 

out that size and structure of software are reflect the defect 

prone in the software. We have studied and collected metrics 

from many researches [20-24] and use the software size and 

structure metrics by extracting from the source code with 

CKJM tool [25]. The details of software metrics used in the 

experiments as shown in Table 1. 

 

B. Semi-Supervised Learning 

Semi-supervised learning (SSL) is a class of machine 

learning that combines between supervised learning and 

unsupervised learning. Semi-supervised learning algorithm 

use both labeled data and unlabeled data for training. This 

algorithm can improve prediction accuracy by utilizing 

unlabeled data. In the literature survey [26], traditional semi-

supervised learning algorithms are divided into four groups:  

Self-training 

Self-training is a method commonly used for semi-

supervised learning. In this method, a classifier uses a small 

amount of labeled data for training and generate the 

prediction model. This model is used to label the unlabeled 

data. Typically the most confident unlabeled data from the 

new labeled one are added to the training set. The classifier 

is retrained and procedure repeated until convergence. This 

process is also called self-teaching or bootstrapping. 

 

Co-Training 

Co-training is a semi-supervised learning algorithm that 

needs two views of the data. Features are split into two sets 

and each classifier is trained with one of these sets. Each 

classifier predicts the labels of unlabeled data and teaches 

the other classifier with the most confident unlabeled data. 

After this step, classifiers are retrained and the procedure 

repeated. 

 

Transductive Support Vector Machines (TSVMs) 

Transductive Support Vector Machines (TSVMs) is an 

extension of traditional support vector machines with 

unlabeled data. In this method, the unlabeled data is also 

used. The aim is to label unlabeled data, so that maximum 

margin is reached on both labeled data and unlabeled data. 

 

Graph-based methods 

Graph-based methods define a graph where the nodes are 

the labeled and unlabeled data in the data set, and the edges 

represented as the similarity of examples. These methods are 

non-parametric, discriminative, and also transductive in 

nature. 

As mentioned above, the success of semi-supervised 

learning depends on underlying assumptions in each model. 

In this paper, we use the self-training approach which is the 

most popular semi-supervised learning technique, since it is 

simple and can be easily applied to almost all existing 

classifiers. 

C. Strategies to Handle Imbalanced Data Sets 

To tackle imbalanced issue, a sampling technique has 

received the most attention and is reported to be the best 

strategy. These techniques are mainly dividing into two 

approaches as follows. 

 

Undersampling (US) 

Undersampling approach tries to balance between two 

classes by removing examples in the majority class until the 

desired class ratio has been achieved. Unfortunately, it is not 

suitable for small training data and it cannot guarantee to 

keep all important examples. 

 

Oversampling (OS) 

Oversampling approach is an opposite of the 

undersampling strategy. It helps to improve a balance 

between classes by replicating examples in the minority 

class; thus, it is suitable when there is a scarcity issue in the 

training data. However, a duplication of minority data can 

cause an overfitting issue, so it is common to generate new 

TABLE I 

CLASS LEVEL SOFTWARE METRICS. 

Metrics Reference 

WMC Weight Method per Class  

C&K [20] 

NOC Number of Children 

CBO Coupling Between Object classes 

RFC Response for a class 

LCOM Lack of Cohesion in Methods 

Ca Afferent couplings 
Martin [21] 

Ce Efferent couplings 

NPM Number of Public Methods 

QMOOD [22] 
DAM Data Access Metric 

MOA Measure of Aggregation 

MFA Measure of Functional Abstraction 

CAM Cohesion Among Methods of Class 

CBM Coupling Between Methods Tang [23] 
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minority examples instead. SMOTE (Synthetic Minority 

Over-sampling TEchnique) is chosen to use in this work and 

its details will be shown in Section IV. 

D. Prediction Performance Metrics 

In the domain of binary classification problem (defect and 

non-defect), it is necessary to construct a confusion matrix, 

which comprises of four based quantities: True Positive 

(TP), False Positive (FP), True Negative (TN), and False 

Negative (FN) as shown in Table II. 

 
 These four values are used to compute Precision (Pr), 

Probability of Detection (PD), Probability of False Alarm 

(PF), True Negative Rate (TNR), F-measure [20], and G-

mean [27] as shown in Table III. 

 
As mentioned earlier, there are two ways to combine those 

common measures [28]: macro-averaging and micro-

averaging as shown in Table IV. Macro-averaging gives an 

equal weight to each class, whereas micro-averaging gives 

an equal weights to each class based on a number of 

examples. In an imbalanced situation, it is appropriate to use 

macro-averaging over micro-averaging in order to avoid a 

dominance of majority classes. 

 

IV. A PROPOSED METHOD 

In this section, we demonstrate the details of our proposed 

which is Two Stage Model. Fig. 1 shows an overview of our 

model consisting of two stages: (i) Defect Prediction and (ii) 

Defect Ranking 

 In the first stage, the R-SVM model is constructed based 

on the code features of the data. Then, the model predicts the 

class with a defect. In the second stage, we used the 

prediction result with only defective classes as an input to 

construct a ranking model. It builds around OS-YATSI to 

prioritize the defects according to their severity levels. 

 

A. Support Vector Machines 

Support Vector Machine (SVM) [29] is a standout among 

the most well-known classification techniques which was 

introduced by Vapnik. It was shown to be more precise than 

other classification techniques, especially in the domain of 

text categorization. It builds a classification model by 

finding an optimal separating hyperplane as shown in Fig. 2 

that maximizes the margin between the two classes. The 

training samples that lie at the margin of the class 

distributions in feature space called support vectors. 
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Fig. 2. Optimal separating hyperplane of SVM. 
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Fig. 1. Overview of our Two Stage Model. 

TABLE IV 

MACRO-AVERAGING AND MICRO-AVERAGING OF PRECISION, RECALL, AND 

FΒ, I IS A CLASS INDEX. 

Metrics Macro-averaging Micro-averaging 

Precision 
1

1
i

L

i
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L 
   1

1
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ii
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i ii
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MiPr
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






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Recall 
1

1
i

L

i
MaRe Re

L 
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1
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ii

L

i ii

tp
MiRe

tp fn


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






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,1
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i
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2
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MiF

MiPr MiRe





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TABLE III 

PREDICTION PERFORMANCE METRICS. 

Metrics Definition Formula 

Precision 

a proportion of examples predicted 

as defective against all of the 

predicted defective 
FNTP

TP


 

Probability of 

Detection (PD), 

Recall, TPR 

a proportion of examples correctly 

predicted as defective against all of 

the actually defective 
FNTP

TP


 

Probability of 

False Alarm 

(PF), FPR 

a proportion of examples correctly 

predicted as non-defective against 

all of the actually non-defective 
FPTN

FP


 

True Negative 

Rate (TNR) 

a proportion of examples correctly 

predicted as non-defective against 

all of the actually non-defective 
FPTN

TN


 

G-mean 
the square root of the product of 

TPR (PD) and TNR 
   TNRTPR   

Fβ -measure 
a weighted harmonic mean of 

precision and recall RePr

(Pr)(Re)2


 

 

TABLE II 

A CONFUSION METRIX. 

 Predicted Positive Predicted Negative 

Actual Positive TP FN 

Actual Negative FP TN 
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The purpose of SVM is to induce a hyperplane function 

(Equation 1), where w


 is a weight vector referring to 

“orientation” and b is a bias. 

  bxwbwh 


,         (1) 

Equation (2) shows the optimization function to construct 

SVM hyperplane, where C  is a penalty parameter of error 

due to misclassifications. 

 
n

i i

T

bw

CwwMinimize 1
,, 2

1


  

   0,1 
iii

T

i
bxwytosubject    (2) 

In a non-linear separable problem, SVM handles this by 

using a kernel function (non-linear) to map the data into a 

higher space, where a linear hyperplane cannot be used to do 

the separation. A kernel function is shown in (3). 

     jiji xxxxK ,       (3) 

Unfortunately, although SVM has shown an impressive 

result, it still suffers from the imbalanced issue like other 

conventional classification techniques. 

B. Threshold Adjustment (R-SVM) 

Although SVM has shown a good classification 

performance in many real-world data sets, it often gives low 

prediction accuracy in an imbalanced scenario. R-SVM [14] 

is an our earlier attempt that focuses to tackle this issue by 

applying the threshold adjustment strategy. To minimize a 

bias of the majority class, it translates a separation 

hyperplane in (1) without changing the orientation w


 by 

only adjusting b. After the SVM hyperplane has been 

induced from the set of training data mapped to SVM scores, 

L. The task is to find a new threshold, , that selected from 

the set of candidates thresholds, , which gives the highest 

value of a user-defined criterion, perf (e.g., the 
1

F  metric): 

    ,max Lperf      (4) 

To avoid overfitting issue, the output  is an average of 

the thresholds obtained from different training subsets. 

Finally, the SVM function is corrected as below: 

    
ii

xhxh*        (5) 

Fig. 3 shows how “shifting” the hyperplane’s bias 

downward in the bottom graph corrects the way SVM labels 

the three positive examples misclassified by the original 

hyperplane in the bottom graph (note that the hyperplane’s 

orientation is unchanged). 

 

C. OS-YATSI 

In this section, we demonstrate the details of our proposed 

defect severity classification called “OS-YATSI”. The 

process of our method consisting of three main modules: (i) 

Oversampling, (ii) Semi-supervised Learning, and (iii) 

Unlabeled Selection Criteria as shown in Fig. 4. 

 
1) Oversampling (OS) 

This module aims to alleviate a bias from the majority 

severity level. SMOTE, an oversampling strategy, is chosen 

since the scarcity of defects. It generates synthetic examples 

from the minority class following the equation below: 

))(ˆ( rxxxx
iinew
       (6) 

First, i-th minority example (xi) is randomly selected 

along with its nearest neighbor in the minority class (
i

x̂ ). 

Second, a new synthetic example (xnew) is calculated from 

the equation (6), where r is a random number between 0-1. 

Finally, this process repeats until all minority examples 

are processed and generated their synthetic examples. 

 

Fig. 4. A process diagram of the proposed method. 
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(a) SVM hyperplanes before threshold adjustment.  
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+

h*=h-θ
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+ +
+

x1
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(b) SVM hyperplanes after threshold adjustment. 

Fig. 3. SVM hyperplanes before (a) and after (b) threshold adjustment. 

The classification of three examples is thus corrected [14]. 
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2) Semi-Supervised Learning 

In the bug repositories, some defects have severity levels 

reported (labeled data), while most of them do not have it 

(unlabeled data). This process focuses on utilizing unlabeled 

defects by employing a semi-supervised learning classifier 

called “Yet Another Two Stage Idea (YATSI),” which 

consists of two stages as shown in Fig. 5. 

In the first stage, an initial classifier is constructed only 

from the oversampling labeled data from Module 1 

(Oversampling). Then, it is used to predict a severity level 

for each unlabeled data. The output unlabeled data with 

predicted severity are called “pre-labeled data.” 

In the second stage, the nearest neighbor algorithm is 

applied on a merged data set between the labeled and pre-

labeled data to determine a predicted severity level of the 

unlabeled data. A weighting strategy is referred to as the 

amount of trust. It is applied to a distance during the process 

of finding a neighbor. As a default value, the weight of the 

labeled data is set to 1, while the weight of the unlabeled 

data is equal to F × (N/M), where N and M denote the 

number of labeled and unlabeled data, consecutively, and F 

denotes a user-defined parameter between 0 and 1 showing a 

trust on the unlabeled data. 

For the last stage, all unlabeled data are assigned to their 

actual severity level. The k-nearest neighbor is employed. It 

predicts the level that gives the largest total weighting score. 

 

3) Unlabeled Selection Criteria (USC) 

After Module 2 (SSL), all unlabeled defects are already 

annotated and have their severity level, so an enhanced 

training data can be created by combining between the 

labeled and unlabeled data.  

For the labeled data, we choose the oversampling data 

from Module 1 (Oversampling) to avoid the imbalanced 

issue. For the unlabeled data, the traditional semi-supervised 

classifier usually uses all of them without concerning the 

imbalanced issue. However, the preliminary experiment 

showed that there is still an imbalanced issue in the 

unlabeled data. 

Therefore, this module called “USC” is proposed as a 

criteria to select examples in the unlabeled data set to 

include in the training data set while maintaining the balance 

of data for each severity level as summarized below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1. Find the class with the smallest amount of example 

(also called minority class) and add all examples in 
that class to the training data. 

2. Select examples for each severity level equally to 
those in the minority class by their prediction score 
from module 2 (Semi-supervised Learning) 

From Fig. 6, we illustrate examples of using the USC. 

First, we founded that the low severity level with 5 examples 

are minority class. Then, we add all examples of these 

classes to the training data. Finally, we select examples for 

each remaining classes (medium and high) equally to those 

minority class by their confidence value and add all 

examples of them to the training data. 

 
 

 

 

 

Fig. 6. A process of the Unlabeled Selection Criteria. 

 

Fig. 5. A procedures of YATSI algorithm. 
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The pseudo code for OS-YATSI is shown below. 

  

V. EXPERIMENTS AND RESULTS 

A. Data Sets 

We use the public benchmark presented in [13, 19], which 

contains a metrics that describe software artifacts from 15 

open-source java projects. The data set statistics is shown in 

Table V. From the statistics, it has shown that the public 

benchmark suffers from the imbalanced issue and scarcity of 

the data. An average percentage of the severity class is 

28.51%, and the lowest percentage is only 10.19% in 

Synapse. 

In addition, we select the three java projects to use in the 

ranking model. There are enough training examples to 

predict the defect severity, which comprises of three severity 

levels: Low, Medium, and High. The severity statistics is 

shown in Table VI. 

 

 

B. Experimental Setup 

In this section, show how to conduct the experiments in 

this paper. We divided the experiments into two parts: (i) 

software defect prediction and (ii) software defect severity 

ranking. It starts from the data preprocessing including 

numeric-to-nominal conversion and scaling [30] all values 

into a range of [0, 1]. Then, we compare the prediction 

performance among different approaches, which can 

explained the details of each experiment as the following 

steps. Note that all experiments are based on 10-fold cross 

validation. 

1) Software Defect Prediction 

 Step1: find the baseline method which is the 

winner of the traditional classifiers: Decision Tree 

(DT), Naïve Bayes (NB), k-NN and SVM 

 Step2: compare R-SVM to the baseline method 

(Step1) along with a significance test using 

unpaired t-test at a confidence level of 95% 

2) Software Defect Severity Ranking 
 Step1: find the best setting of the winner method 

from the first experiment (software defect 

prediction) whether or not the oversampling is 

necessary to construct an initial model. 

 Step2: find the best setting for OS-YATSI whether 

or not USC is necessary. Then, compare OS-

YATSI to the baselines (Step1) and Original 

YATSI along with a significance test using 

unpaired t-test at a confidence level of 95% 

 

Algorithm   Pseudo code for OS-YATSI algorithm 

Input: A set of label L= {l1, l2, l3}, classifier C, labeled data Dl , 
unlabeled data Du, oversampling ratio Ros, 
oversampling labeled data  Dosl , number of nearest 
neighbors  K, N = |Dosl|,  M = |Du| , unlabeled data 
example du  

Step1: Find the majority class lM  with |DM|  examples in the 
labeled data  Dl  
Create a set of minority classes Lm that excludes the 
majority class lM  
While(Lm is not empty) 
    Find the class lM  in Lm with the least number of 
examples, |Dm|  
    Compute the number of examples |D’m|  if 
oversampling using SMOTE with  Ros  
    If ( Diff(|D’m| , |DM| )  <   Diff(|Dm| , |DM| )) Then 

     Oversampling the class using SMOTE with  Ros  
             Add the new oversampled example into  Dosl  
    Else 
             Remove class lM  from a set of classes Lm 

Step2: Use the classifier C to construct the initial model M1 by 
using  Dosl  
Use the M1 to “pre-label” all the examples of  Du  
For(i=1 to N) 
        Weight = 1.0 
For(j=1 to M) 
        Weight = (N/M) * WeightFactor F   
Combine  Dosl  and  Du to generate  D  
For every example in  Du  

Find the  K-nearest neighbors to the example from  
D  to produce set  DkNN  

For i=1 to K 
        If(class of  DkNN  = 1)  sum weight1 of  DkNN  
        If(class of  DkNN  = 2)  sum weight2 of  DkNN   
        If(class of  DkNN  = 3)  sum weight 3of  DkNN   

Predict the actual class with the largest total 
weighting score 

Step3: For unlabeled data  Du  
Find the class with smallest amount of example and 

produce set  Csmall  
For another class 

Select examples equally to Csmall  with their 
prediction score and produce set  Cbalance  

Merge  Csmall  and  Cbalance  to produce balance 
unlabeled data  D’u  

 

TABLE VI 

SEVERITY STATISTICS FOR EACH DATA SET. 

Data #classes 
Severity (Sev.) levels 

%Sev. 
lv. 1 lv. 2 lv. 3 N/A 

Eclipse 

JDT Core 
206 12 19 10 165 19.90% 

Eclipse 

PDE UI 
209 7 46 6 150 28.23% 

Mylyn 245 127 15 3 100 59.18% 

Average 220 48.67 26.67 6.33 138.33 35.77% 

 

TABLE V 

DEFECT STATISTICS FOR EACH DATA SET. 

Data #classes 
Defect 

Class 

Non-Defect 

Class 
%Defect 

Ant 125 20 105 16.00% 

Camel 608 216 392 35.53% 

Ivy 352 40 312 11.36% 

Jedit 272 90 182 33.09% 

Log4j 135 34 101 25.19% 

Lucene 195 91 104 46.67% 

Pbeans 26 20 6 76.92% 

Poi 237 141 96 59.49% 

Synapse 157 16 141 10.19% 

Velocity 229 78 151 34.06% 

Xalan 723 110 613 15.21% 

Xerces 440 71 369 16.14% 

Eclipse JDT Core 997 206 791 20.66% 

Eclipse PDE UI 1,497 209 1,288 13.96% 

Mylyn 1,862 245 1,617 13.16% 

Average 7,855 1,587 6,268 28.51% 
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C. Results and Discussion 

In this section, we first compare the performance of the 

software defect prediction model and the two existing 

software defect severity ranking models. The result will 

demonstrate that our method can give the best performance. 

In addition, we summarized the data characteristics for 

each methods in the experiments to make it more 

understandable as shown in Table VII. 

 

1) Results of Software Defect Prediction 

The comparison of the baseline methods. In order to get 

the baseline for each data set, four classifiers: Decision Tree, 

Naïve Bayes, k-NN, and SVM, were tested and compared in 

terms of PD, PF, F1, and G-Mean (Tables VIII – XI). For 

each row in the tables, the boldface method is a winner on 

that data set. From the result, DT and k-NN showed the best 

performance in almost all data sets, while others gave the 

moderate and low performance on some data set, especially 

for the Velocity, NB gave the worst performance for 35.30%  

For Table X – XI, it is interesting that F1 and G-mean 

unanimously showed the same winners. Since F1 and G-

mean are suitable metrics for imbalanced data, we selected 

the winner as a baseline using F1 and G-mean as 

summarized in Table XII. 

 

 
 

 
 

 

TABLE VII 

DATA CHARACTERISTICS OF EACH METHODS IN THE EXPERIMENTS. 

Method 

Name 

Data Characteristics 

Training Data Unlabeled Data 

Original 
Over 

sampling 

Without 

USC 
With USC 

Baseline     

Original (OG)     

Oversampling 

(OS) 
    

YATSI     

OS-YATSI 

w/o USC 
    

OS-YATSI 

w/ USC 
    

 

TABLE XI 

PREDICTION PERFORMANCE: G-MEAN 

Data 
Prediction model 

DT k-NN NB SVM 

Ant 0.814 0.905 0.881 0.893 

Camel 0.776 0.783 0.616 0.714 

Ivy 0.931 0.914 0.788 0.847 

Jedit 0.806 0.832 0.817 0.827 

Log4j 0.855 0.857 0.850 0.827 

Lucene 0.580 0.783 0.705 0.718 

Pbeans 0.785 0.951 0.858 0.867 

Poi 0.819 0.851 0.749 0.827 

Synapse 0.897 0.900 0.819 0.898 

Velocity 0.856 0.873 0.867 0.816 

Xalan 0.913 0.907 0.743 0.851 

Xerces 0.927 0.882 0.797 0.762 

Eclipse JDT Core 0.812 0.892 0.733 0.848 

Eclipse PDE UI 0.828 0.806 0.702 0.801 

Mylyn 0.730 0.713 0.725 0.720 

Avg. 0.822 0.857 0.777 0.814 

SD 0.089 0.063 0.075 0.060 

 

TABLE X 

PREDICTION PERFORMANCE: F1 

Data 
Prediction model 

DT k-NN NB SVM 

Ant 0.790 0.816 0.784 0.799 

Camel 0.608 0.642 0.629 0.619 

Ivy 0.870 0.846 0.596 0.703 

Jedit 0.798 0.814 0.748 0.795 

Log4j 0.756 0.807 0.793 0.793 

Lucene 0.623 0.742 0.725 0.719 

Pbeans 0.583 0.837 0.767 0.827 

Poi 0.706 0.704 0.405 0.710 

Synapse 0.816 0.826 0.725 0.820 

Velocity 0.682 0.720 0.355 0.699 

Xalan 0.734 0.726 0.702 0.734 

Xerces 0.856 0.771 0.639 0.602 

Eclipse JDT Core 0.833 0.851 0.731 0.772 

Eclipse PDE UI 0.862 0.813 0.698 0.711 

Mylyn 0.742 0.729 0.704 0.730 

Avg. 0.751 0.776 0.667 0.736 

SD 0.094 0.062 0.129 0.067 

 

 

TABLE IX 

PREDICTION PERFORMANCE: PF 

Data 
Prediction model 

DT k-NN NB SVM 

Ant 0.161 0.066 0.181 0.134 

Camel 0.321 0.365 0.755 0.646 

Ivy 0.154 0.195 0.150 0.138 

Jedit 0.210 0.243 0.448 0.232 

Log4j 0.228 0.138 0.406 0.286 

Lucene 0.301 0.344 0.541 0.313 

Pbeans 0.050 0.300 0.000 0.200 

Poi 0.270 0.164 0.086 0.363 

Synapse 0.114 0.100 0.200 0.157 

Velocity 0.238 0.272 0.112 0.318 

Xalan 0.152 0.180 0.618 0.277 

Xerces 0.100 0.144 0.575 0.348 

Eclipse JDT Core 0.169 0.154 0.643 0.402 

Eclipse PDE UI 0.143 0.120 0.725 0.492 

Mylyn 0.135 0.129 0.676 0.449 

Avg. 0.183 0.194 0.408 0.317 

SD 0.077 0.091 0.262 0.142 

 

TABLE VIII 

PREDICTION PERFORMANCE: PD 

Data 
Prediction model 

DT k-NN NB SVM 

Ant 0.857 0.747 0.774 0.765 

Camel 0.684 0.646 0.749 0.749 

Ivy 0.891 0.878 0.492 0.621 

Jedit 0.803 0.853 0.863 0.814 

Log4j 0.751 0.773 0.922 0.843 

Lucene 0.601 0.786 0.875 0.731 

Pbeans 0.900 0.900 0.700 0.850 

Poi 0.702 0.680 0.283 0.794 

Synapse 0.809 0.780 0.687 0.808 

Velocity 0.735 0.740 0.252 0.714 

Xalan 0.825 0.829 0.876 0.744 

Xerces 0.824 0.718 0.743 0.582 

Eclipse JDT Core 0.836 0.855 0.946 0.881 

Eclipse PDE UI 0.866 0.768 0.925 0.823 

Mylyn 0.866 0.799 0.911 0.832 

Avg. 0.797 0.783 0.733 0.770 

SD 0.085 0.072 0.224 0.084 
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The comparison of R-SVM and the baseline methods. In 

this section, we compare R-SVM to the baseline methods, 

which are obtain from the previous experiment as shown in 

Tables VIII-XI. In Table XIII shows a comparison in terms 

of PD, PF, F1, and G-mean. All of the performance metrics 

give the same conclusion that R-SVM outperforms the 

baseline methods in almost all of the data sets. From 15 data 

sets, R-SVM significantly won 5, 6, and 5 on PD, F1, and G-

mean, respectively. 

For more details about the overall performance, Fig. 7 

shows the number of data sets that each method is the 

winner. R-SVM outperformed the baseline methods on 10 

data sets. Furthermore, R-SVM on both F1 and G-mean 

outperformed others on 8 data sets and achieved an average 

F1 at 0.750. Thus, this demonstrates that it is effective to 

apply R-SVM as a core module for early detect imperfect 

software system. 
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Fig. 7. The number of wom data sets on R-SVM and the baseline methods in terms of PD, PF, F1 and G-mean. 

 

TABLE XIII 

COMPARISON PREDICTION PERFORMANCE MEASURES BETWEEN R-SVM AND THE BASELINE METHOD FROM TABLE XII. 

THE BOLDFACE METHOD IS A WINNER ON THAT DATA SET. 

Project 
 PD  PF  F1  G-mean 

 Baseline R-SVM  Baseline R-SVM  Baseline R-SVM  Baseline R-SVM 

Ant  0.857 0.902  0.066** 0.275  0.816 0.832**  0.905 0.886 

Camel  0.749 0.905*  0.321 0.471  0.642 0.650  0.783 0.804** 

Ivy  0.891 0.831  0.138** 0.313  0.870** 0.796  0.931 0.864 

Jedit  0.863 0.840  0.210 0.224  0.814 0.785  0.832 0.878** 

Log4j  0.922 0.983*  0.138* 0.297  0.807 0.775  0.857 0.860 

Lucene  0.875 0.941  0.301 0.334  0.742 0.692  0.783 0.806* 

Pbeans  0.900 1.000  0.000 0.003  0.837 0.893  0.951 0.952 

Poi  0.794 0.811  0.086* 0.279  0.710 0.714*  0.827 0.943** 

Synapse  0.809 0.875  0.100** 0.211  0.826 0.836**  0.900 0.906 

Velocity  0.740 0.784  0.112 0.041*  0.720 0.731**  0.873 0.837 

Xalan  0.876 0.843  0.152** 0.385  0.734 0.757**  0.913** 0.845 

Xerces  0.824 0.858*  0.100 0.121  0.856** 0.703  0.927* 0.874 

Eclipse JDT Core  0.946 0.990**  0.154** 0.372  0.851** 0.744  0.892* 0.840 

Eclipse PDE UI  0.925 0.914  0.120** 0.627  0.862** 0.716  0.828* 0.744 

Mylyn  0.911 0.954**  0.129** 0.535  0.742 0.767**  0.730 0.805** 

Avg.  0.859 0.874  0.174 0.318  0.733 0.750  0.852 0.861 

SD  0.063 0.066  0.125 0.161  0.061 0.072  0.069 0.054 

* and ** represent a significant difference at a confidence level of 95% and 99%, respectively. 

TABLE XII 

THE WINNER OF THE BASELINE METHOD FOR EACH DATA SET 

IN TERMS OF F1 AND G-MEAN. 

Project Winner Method F1 G-mean 

Ant k-NN 0.816 0.905 

Camel k-NN 0.642 0.783 

Ivy DT 0.870 0.931 

Jedit k-NN 0.814 0.832 

Log4j k-NN 0.807 0.857 

Lucene k-NN 0.742 0.783 

Pbeans k-NN 0.837 0.951 

Poi SVM 0.710 0.827 

Synapse k-NN 0.826 0.900 

Velocity k-NN 0.720 0.873 

Xalan DT 0.734 0.913 

Xerces DT 0.856 0.927 

Eclipse JDT Core k-NN 0.851 0.892 

Eclipse PDE UI DT 0.862 0.828 

Mylyn DT 0.742 0.730 

Avg. - 0.789 0.862 

SD - 0.068 0.064 
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2) Results of Software Defect Severity Ranking 

The comparison of the baseline. In order to get the 

baseline methods for each data set, four classifiers: DT, NB, 

k-NN, and SVM were tested and compared in terms of Pr, 

Re, and F1 (Table XIV). For each row in the table, the 

boldface method is a winner on that data set. From the result, 

R-SVM showed the best performance in terms of macro and 

micro-average on JDT Core and PDE UI, while the Mylyn 

data has been effective from k-NN method, which are not 

significantly better than R-SVM. Hence, we selected the R-

SVM on both macro and micro-average as a baseline 

methods in terms of F1 as summarized in Table XV to 

construct an initial model. 
The comparison of an initial model with and without 

oversampling. In this section, we aim to give the best setting 

of an initial model by testing whether or not the 

oversampling training data can deal with the imbalanced 

issue and improve the prediction performance. We use R-

SVM as a predictor to build an initial model. For each row 

in the tables, the boldface method is a winner on that data 

set. The results in Table XVI demonstrate that the R-SVM 

with OS (oversampling) performs better than without OS 

(original) all data sets both macro and micro-average. The 

results imply that the oversampling strategy is suitable when 

there is a scarcity in the training data since it can helps to 

improve the prediction performance. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The comparison of OS-YATSI, YATSI and baseline 

methods. In this section, we compare OS-YATSI to the R-

SVM with the oversampling training data (OS) which are 

obtain from the Table XVI. Furthermore, we also compare 

to the original YATSI as well. In addition, we aim to give 

the best setting of OS-YATSI by testing whether or not the 

Unlabeled Selection Criteria can handle the imbalanced 

issue and improve the prediction performance. 

In Table XVII shows a comparison in terms of Pr, Re, and 

F1 for both macro and micro-average. All of the measures 

give the same conclusion that OS-YATSI both with and 

without USC outperforms the other method in almost all of 

the data sets. Moreover, OS-YATSI with USC is the best 

setting since it performs better than without USC all data 

sets, which indicate that all the unlabeled data is not always 

enhance the performance and it may be reduced as well. 
In macro-average, OS-YATSI with USC significantly won 

3, 2, and 3 on Pr, Re, and F1, respectively. On average, 

macro F1 of OS-YATSI with USC outperforms that of the 

OS for 23.75%, especially for the JDT Core data set 

showing 50.57% improvement. Furthermore, it also 

outperforms the original YATSI for 55.60% on JDT Core 

data set. Consequently, this demonstrates that it is effective 

to apply OS-YATSI with USC as a main mechanism of 

software defect severity categorization. 

TABLE XV 

THE WINNER OF THE BASELINE METHOD FOR EACH DATA SET  

IN TERMS OF F1-MEASURE. 

Data Winner 
F1 

Macro Micro 

JDT Core R-SVM 0.336 0.488 

PDE UI R-SVM 0.296 0.761 

Mylyn R-SVM, k-NN 0.341 0.759 

Avg. - 0.324 0.669 

SD - 0.025 0.157 

 

TABLE XVI 

A COMPARISON OF AN INITIAL MODEL BETWEEN WITH AND WITHOUT 

OVERSAMPLING IN TERMS OF F1-MEASURE. 

Data 

OG 

(original) 

OS 

(oversampling) 

Macro Micro Macro Micro 

JDT Core 0.459 0.491 0.484 0.513 

PDE UI 0.290 0.629 0.430 0.746 

Mylyn 0.349 0.800 0.361 0.807 

Avg. 0.366 0.640 0.425 0.689 

SD 0.086 0.155 0.062 0.155 

 

TABLE XIV 

COMPARISON PREDICTION PERFORMANCE MEASURES OF THE CLASSICAL CLASSIFIERS. 

THE BOLDFACE METHOD IS A WINNER ON THAT DATA SET. 

Precision 

Data 
 DT  k-NN  NB  SVM  R-SVM 

 Macro Macro  Macro Macro  Macro Macro  Macro Macro  Macro Micro 

JDT Core  0.330 0.445  0.302 0.317  0.419 0.419  0.186 0.186  0.377 0.488 

PDE UI  0.263 0.630  0.261 0.679  0.255 0.255  0.258 0.258  0.323 0.761 

Mylyn  0.291 0.855  0.361 0.758  0.318 0.318  0.292 0.292  0.338 0.759 

Avg.  0.295 0.643  0.308 0.585  0.331 0.331  0.245 0.245  0.346 0.669 

SD  0.034 0.205  0.050 0.235  0.083 0.083  0.054 0.054  0.028 0.157 

Recall 

Data 
 DT  k-NN  NB  SVM  R-SVM 

 Macro Macro  Macro Macro  Macro Macro  Macro Macro  Macro Micro 

JDT Core  0.393 0.445  0.272 0.317  0.356 0.356  0.329 0.329  0.355 0.488 

PDE UI  0.318 0.630  0.290 0.679  0.233 0.233  0.326 0.326  0.299 0.761 

Mylyn  0.325 0.855  0.347 0.758  0.323 0.323  0.333 0.333  0.348 0.759 

Avg.  0.345 0.643  0.303 0.585  0.304 0.304  0.329 0.329  0.334 0.669 

SD  0.041 0.205  0.039 0.235  0.064 0.064  0.004 0.004  0.031 0.157 

F1-measure 

Data 
 DT  k-NN  NB  SVM  R-SVM 

 Macro Macro  Macro Macro  Macro Macro  Macro Macro  Macro Micro 

JDT Core  0.349 0.445  0.280 0.317  0.350 0.350  0.230 0.230  0.336 0.488 

PDE UI  0.275 0.630  0.275 0.679  0.241 0.241  0.288 0.288  0.296 0.761 

Mylyn  0.307 0.855  0.351 0.758  0.315 0.315  0.311 0.311  0.341 0.759 

Avg.  0.310 0.643  0.302 0.585  0.302 0.302  0.276 0.276  0.324 0.669 

SD  0.037 0.205  0.043 0.235  0.056 0.056  0.042 0.042  0.025 0.157 
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VI. CONCLUSION 

Software defect prediction is a vital part of software 

development. It is crucial to identify the severity levels after 

bugs are detected. Unfortunately, the overall performance of 

the existing techniques are still not satisfied due to two 

major problems. First, the scarcity of defects that have a 

small number of labeled data, while the remaining are left 

unlabeled. Second, some severity levels have defects much 

larger than others causing an imbalanced issue. 

In this paper, we presented the two stage models by 

incorporating R-SVM, semi-supervised learning, and 

oversampling strategy. There are two modules in the system: 

(i) defect prediction and (ii) defect severity ranking. First, 

the R-SVM classifier, our version of SVM tailored to 

domains with imbalanced classes, is created to predict the 

defective class in the software system. It reduces a bias of 

the majority class by using threshold adjustment concept to 

adjust the separation hyperplane. Second, the defected 

classes are identified severity levels by using our algorithm 

called “OS-YATSI.” It employs semi-supervised learning to 

fully utilize both labeled and unlabeled data and 

oversampling defects in the minority class to alleviate the 

imbalanced issue. 

In the experiment, we divided the experiments into two 

parts: (i) software defect prediction and (ii) software defect 

severity ranking. The experiment was conducted on 15 java 

projects. In the software defect prediction, R-SVM was 

compared to four conventional classifiers: Decision Tree, 

Naïve Bayes, k-NN, and SVM. The result showed that R-

SVM enhanced the correct classification of the minority 

class and overcame the imbalanced issue. In the software 

defect severity ranking, we compared OS-YATSI to the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

same four conventional classifiers in the first experiment and 

also compared to original YATSI as well. Experimental 

results revealed that OS-YATSI with USC significantly 

surpassed all baselines on all data sets in terms of macro F1. 

In the future, we plan to study other software defect 

repositories. In addition, it is necessary to investigate further 

algorithms to deal with the imbalanced and scarcity data. 
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TABLE XVII 

COMPARISON PREDICTION PERFORMANCE MEASURES OF OS, OS-YATSI WITH AND WITHOUT USC, AND YATSI.  

THE BOLDFACE METHOD IS A WINNER ON THAT DATASET. 

Precision 

Data 

 
OS  YATSI  

OS-YATSI 

w/o USC 
 

OS-YATSI 

w/ USC 

 Macro Macro  Macro Macro  Macro Macro  Macro Macro 

JDT Core  0.530 0.526  0.510 0.509  0.759 0.777  0.794** 0.791 

PDE UI  0.763 0.761  0.759 0.725  0.737 0.813  0.853* 0.853* 

Mylyn  0.769 0.764  0.693 0.693  0.776 0.820  0.880** 0.873** 

Avg.  0.687 0.684  0.654 0.642  0.757 0.803  0.842 0.839 

SD  0.136 0.137  0.129 0.117  0.020 0.023  0.044 0.043 

Recall 

Data 

 
OS  YATSI  

OS-YATSI 

w/o USC 
 

OS-YATSI 

w/ USC 

 Macro Macro  Macro Macro  Macro Macro  Macro Macro 

JDT Core  0.526 0.526  0.509 0.509  0.763 0.777  0.791 0.791 

PDE UI  0.761 0.761  0.725 0.725  0.716 0.813  0.853* 0.853* 

Mylyn  0.764 0.764  0.693 0.693  0.772 0.820  0.873** 0.873** 

Avg.  0.684 0.684  0.642 0.642  0.750 0.803  0.839 0.839 

SD  0.137 0.137  0.117 0.117  0.030 0.023  0.043 0.043 

F1-measure 

Data 

 
OS  YATSI  

OS-YATSI 

w/o USC 
 

OS-YATSI 

w/ USC 

 Macro Macro  Macro Macro  Macro Macro  Macro Macro 

JDT Core  0.526 0.526  0.509 0.509  0.761 0.777  0.792** 0.791 

PDE UI  0.758 0.761  0.718 0.725  0.724 0.813  0.853* 0.853* 

Mylyn  0.749 0.764  0.681 0.693  0.774 0.820  0.871** 0.873** 

Avg.  0.678 0.684  0.636 0.642  0.753 0.803  0.839 0.839 

SD  0.131 0.137  0.112 0.117  0.026 0.023  0.041 0.043 

 

* and ** represent a significant difference at a confidence level of 95% and 99%, respectively. 
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