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Abstract—In this paper, we propose a new approach to
over-sample new minority-class instances along the borderline
using the Euclidean distance in the feature space to improve
support vector machine (SVM) performance in imbalanced
data environments. SVM has been an outstandingly successful
classifier in a wide variety of applications where balanced
class data distribution is assumed. However, SVM is ineffective
when coping with imbalanced datasets whereby the majority-
class instances far outnumber the minority-class instances.
Our new approach, called Borderline Over-sampling in the
Feature Space, can deal with imbalanced data to effectively
recognize new minority-class instances for better classification
with SVM. The results of our class prediction experiments
using the proposed approach demonstrate better performance
than the existing SMOTE, Borderline-SMOTE and borderline
over-sampling methods in terms of the g-mean and F-measure.

Index Terms—Borderline Over-sampling in the Feature
Space, Imbalanced Dataset, Over-sampling, SVM in
Imbalanced Data Environments

I. INTRODUCTION

SUPPORT vector machine (SVM) is an extremely
successful classifier proposed by Vapnik [1] under the

presumed condition of balanced data distributions among
classes. However, SVM is ineffective when mining data with
imbalanced classes. An imbalanced dataset in which the
representation between classes is not approximately equal.
There are many applications in real-world domains that have
innately imbalanced datasets including fraudulent telephone
call detection [2], oil spill detection in satellite images [3],
telecommunications risk management [4], credit card fraud
detection [5], IVF embryos implantation [6], balancing class
in clinical dataset[7], text categorization, and unusual disease
diagnosis [8].

By mining a large amount of balanced data, SVM
classifiers can extract valuable knowledge for decision
making support and other objectives. Hidden valuable
knowledge sometimes resides in minority-class instances.
Minority-class instances are thus often more useful than
the majority-class instances and are also called positive
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instances. Majority-class instances are also called negative
instances. On imbalanced datasets, the positive instances are
generally misclassified by SVM classifiers because they can
be treated as noise.

In some cases, the issue of class imbalance is critical
and cannot be ignored. One example is the classification
of pixels in mammogram images for possible breast cancer
[9]. In this application, the majority-class of normal pixels
might contain 98% of the data, whereas the minority-class
of abnormal pixels may contain only 2%. If the machine
learning algorithm ignores the abnormal pixels, patients’
lives could be threatened. Classification algorithms often
perform worse in the detection of such unusual cases, which
tend to be the most important ones.

There are several methods [10] for overcoming the imbal-
anced class problem in SVM. The methods are classified into
two main groups. The first group comprises external meth-
ods: data preprocessing methods that adjust the distribution
of class datasets before training SVM classifiers. The second
group comprises internal methods: algorithmic modifications
to SVM to decrease its sensitivity to imbalanced classes.

In this paper, we propose an over-sampling method called
Borderline Over-sampling in the Feature Space (BOSFS)
that fits into the first group of data preprocessing meth-
ods. BOSFS conducts over-sampling by generating new
synthetic minority-class instances with the nearest existing
neighbors focused on the borderline in the feature space.
These new synthetic instances are combined with the orig-
inal imbalanced training dataset to form a new training
dataset. SVM is trained using the new training dataset, and
then assessed on an independent testing dataset. With this
new BOSFS method, the SVM classifier achieves higher
recognition performance for the minority-class instances in
the imbalanced testing dataset.

II. BACKGROUND AND RELATED WORK

In the external methods category, there are two different
approaches: resampling and ensemble learning. First, re-
sampling methods [11] consist of random, focused under-
or over-sampling methods. These methods balance the
minority-class instances and majority-class instances in the
datasets before training SVM models. In the under-sampling
approach, the random instances of the majority-class are
removed until the datasets are balanced. In the over-sampling
approach, the minority-class instances are randomly dupli-
cated to achieve an approximately one-to-one ratio with
the majority-class instances. Some research [12] [13] [14]
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has pointed out that information might be lost by using
the under-sampling method because important minority-class
information might be randomly removed. In contrast, there is
no information loss when using the over-sampling method,
which may lead to better results. Over-sampling methods
include synthetic data generation methods such as SMOTE
[15], Borderline-SMOTE [16], and borderline over-sampling
(BOS) [17] [18].

Second, ensemble learning methods divide the
majority-class dataset into many subdatasets. The number
of majority-class instances in each of these subdatasets
is equal to the number of minority-class instances. These
approaches may use clustering methods or random sampling
with or without replacement (bootstrapping). Different SVM
classifiers are used for each training dataset, which consists
of the same positive dataset combined with a different
negative subdataset.

In this paper, we focus on the external (data preprocessing)
over-sampling methods. SMOTE [15] is one of the most
popular methods that over-samples the minority class by
generating new synthetic minority-class instances rather
than by over-sampling with replacement. This is done
interpolating the k nearest neighbors of randomly-chosen
existing minority-class instances. Borderline-SMOTE [16], a
variant of SMOTE, performs over-sampling by interpolating
the k nearest neighbors of each minority-class instance
focused on the borderline. Concentrating on instances in
the borderline area has been proven to achieve higher SVM
performance. The rest of the minority-class instances in areas
other than the borderline are removed from consideration.

BOS [17] [18], yet another variant of SMOTE, focuses
on using both interpolation and extrapolation techniques
to generate synthetic minority-class instances along the
borderline from existing minority-class instances that are
minority-class support vectors of SVM and a number of
their nearest neighbors. All of these algorithms use the
over-sampling method to generate new synthetic minority-
class instances, but the BOS Algorithm in [17] [18] outper-
forms both SMOTE and Borderline-SMOTE.

When SVM is used as the classifier, SMOTE, Borderline-
SMOTE, and BOS find nearest neighbors of interest in
the input space, not feature space, of SVM. Our proposed
BOSFS uses the kernel function as a mapping function
of those neighbors or minority-class instances in the input
space to the feature space. BOSFS uses specific equations
of Euclidean distance with the kernel function to find such
nearest neighbors to the borderline directly in the feature
space. BOSFS also applies a combination of interpolation
and extrapolation techniques with the Euclidean distance
in the feature space to create new synthetic minority-class
instances or positive instances along the borderline. Thus, we
expect that such synthetic positive instances could become
new support vectors contributing to better SVM performance.

III. IMBALANCED DATA CLASSIFICATION WITH SUPPORT
VECTOR MACHINES

A. Support Vector Machines

The aim of support vector machines [19][20] is to find the
optimal boundary that separates the negative and positive
instances with the largest margin. Consider the training

dataset {(x1, y1) . . . (xi, yi)} where xi represents the train-
ing instance and yi represents the label of the instance:
yi ∈ {−1,+1}. Using the training dataset, SVM creates
an optimal boundary. This boundary can be computed by
minimizing the objective function as follows:

min
w,b,ξ

1

2
w · wT + C

N∑
i=1

ξi (1)

subject to{
∀iyi(wTΦ(xi) + b) ≥ 1− ξi
∀iξi ≥ 0

(2)

where w is the weight vector, yi are the labels, b is the
offset or bias of the hyperplane, Φ(·) is the mapping function
from a point in the input space to a corresponding point in
the feature space, ξi are the slack variables (considering the
non-separable case by admitting misclassification of training
instances), and C is the user-specified parameter for the
penalty on training instances on the wrong side of the
boundary. If the C parameter is very small, SVM classifies
all instances as negative to maximize the margin. Clearly, this
causes more training errors with respect to positive instances.
[21] proposed a solution to this problem by using different
parameters C, such that C+ corresponds to the minority-
class instances and C− corresponds to the majority-class
instances. The tradeoff C+ is chosen to be larger than C−

according to the data imbalance ratio.
In Equation (1), minimizing the objective function by min-

imizing the first and second terms corresponds to maximizing
the margin and minimizing the training errors, respectively.
The dual representation of Equation 1 is as follows:

maxW (α) ≡
N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjK(xi, xj) (3)

subject to {
∀i0 ≤ αi ≤ C∑N
i=1 αiyi = 0

(4)

where yi are the labels, K(xi, xj) represents a Kernel
function (as shown in (7) and (9), also known as the Kernel
trick to compute dot products in the feature space without
knowing the real Φ mapping), and αi’s are the Lagrange
multipliers which are nonzero only for the training instances
that fall within the margin. These training instances are called
support vectors [19] and they are crucial instances of the
training dataset. They define the optimal hyperplane of the
decision boundary to separate positive and negative instances.

B. SVM and imbalanced class data

There are two main problems with using SVM dealing
to classify imbalanced datasets [22]. First, the SVM
classifier is biased towards the majority-class instances and
thereby achieves a poor classification rate on minority-class
instances. Fig. 1 shows that, in imbalanced data environ-
ments, the borderline (solid line) is skewed towards the
minority class instances. In other words, the positive in-
stances (white triangles) are further from the ideal boundary.
This problem occurs because the number of negative in-
stances is higher than the number of positive instances around
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Fig. 1. The borderline (solid line) when training with SVM is skewed
towards the minority instances. The dashed line shows an ideal borderline.

the ideal boundary. This may cause the misclassification of
positive instances by the SVM such that the prediction results
yield all negative instances. In this case, the example of an
ideal borderline (dashed line in Fig. 1) is much less skewed
and should have more generalization ability in classifying
unknown instances.

To overcome this problem in classifying imbalanced
datasets using SVM, the main target is to expand the bor-
derline derived by SVM by over-sampling new synthetic
minority instances (new positive instances) shifted towards
the ideal borderline, as shown in Fig. 1. This has been ap-
proached by using an interpolation technique as proposed by
[23], and by a combination of interpolation and extrapolation
techniques in BOS [17] [18], as further explained in Section
IV C.

Second, soft-margins [22] minimize the objective function
in (1) by minimizing the first and second terms corresponding
to maximizing the margin and minimizing the training errors,
respectively. The weakness of soft-margins lies in the fact
that the C parameter in the second term (C

∑N
i=1 ξi) is a

constant chosen by the user. The C parameter specifies the
tradeoff that the user is willing to allow between maximizing
the margin and minimizing the training errors. If C is too high
or low, it may cause over- or under-fitting problem, respec-
tively. We solve this problem by controlling the sensitivity
of SVM using different parameters C, as proposed by [21].
The sensitivity of SVM is the ratio between the number of
true positive predictions (TP ) and the number of positive
instances in the test set:

sensitivity =
TP

TP + FN
(5)

where FN is the number of false negatives.
The specificity of SVM is the ratio between the number

of true negative predictions (TN) and the number of negative
instances in the test set:

specificity =
TN

TN + FP
(6)

where FP is the number of false positives.
We must control the sensitivity of SVM with different

parameters C by using the cross-validation method. We thus
determine the optimal C to solve this problem.

C. Main drawbacks of existing methods
Before over-sampling by generating new synthetic positive

instances with interpolation or extrapolation techniques, there

is the crucial step of finding the nearest neighbors of the
positive instances along the borderline to determine the
optimal boundary of SVM. Fig. 2 provides an illustration of
the difference between our proposed method and the previous
methods.

In Fig. 2a, the lighter line is a border line in the input
space. The negative instances (black circles) and positive
instances (white triangles) are in the original imbalanced
training dataset or in the input space. xi, xj , and xk are
examples of any positive instances (white triangles) in the
input space. The arrows depict the distances between each
positive instance for each svi (stars) in the input space.
xj (white triangle with circle) is selected to be the nearest
neighbor for svi in the input space. In Fig. 2b the standard
SVM creates the borderline by using the original imbal-
anced training dataset. The borderline (solid line) classifies
the negative instances (black circles) and positive instances
(white triangles) in the feature space. The svi (star) is any
positive instance on the borderline in the feature space.
Some positive instances in the input space are individually
associated to their corresponding positions in the feature
space by double-sided arrows.

In Fig. 2a the Borderline-SMOTE [16] and BOS [17], [18]
algorithms find the nearest neighbors for xi, xj , and xk which
are in the input space to each svi (a corresponding point) in
the input space. The algorithms consider only the positive
instances that are closest to the svi (star) corresponding point
in the input space rather than the svi (star) on the borderline
in the feature space. The white triangle with circle (xj) is
selected to be the nearest neighbors to svi in the input space.
In Fig. 2b The real nearest neighbor to svi in the feature
space is (xk), which is not selected by Borderline-SMOTE
or BOS. The SMOTE [15] algorithm also finds the nearest
neighbors in the same way as Borderline-SMOTE and BOS,
but it considers the existing positive instances of the entire
area rather than just in the borderline area.

The main issue in SMOTE, Borderline-SMOTE, and BOS
is that the nearest neighbor of xi and svi should be found in
the feature space rather than the input space. The proposed
BOSFS uses the kernel function in Equations (7) and (9),
and the Euclidean distance in Equation (8) between any
svi and xi to find the new nearest neighbors of any xi
for each svi in the feature space. [24] showed that the
Euclidean distance using the kernel function in the feature
space can be used effectively with the SVM classifier. These
new nearest neighbors are combined with interpolation and
extrapolation techniques to generate new synthetic positive
instances for the new borderline. Our BOSFS method thus
achieves the main target of expanding the new borderline for
improved SVM performance when dealing with imbalanced
class datasets.

IV. PROPOSED METHOD

A. Main concept of the BOSFS algorithm

We propose BOSFS to allow SVM to better deal with
imbalanced data environments. It has been shown that fo-
cusing on positive instances in the borderline area [16] [25]
is important to achieve better SVM performance. There are
several kernel functions used in SVM including the linear
kernel, polynomial kernel, and radial basis function (RBF)
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Fig. 2. Illustration of the difference between the previous methods and our proposed BOSFS method. a) The arrows depict the distances between
positive instances xi, xj , and xk to each svi on the borderline in the input space. This figure illustrates that the SMOTE, Borderline-SMOTE, and BOS
algorithms find their nearest neighbors to svi (star) in the input space. xj (white triangle with circle) is selected to be the nearest neighbor for svi in
the input space. b) There is a dashed double-sided arrow between svi (star) in the input space and its corresponding point in the feature space. The
arrows depict the distances between corresponding positive instances xi, xj , and xk to each svi on the borderline in the feature space. The real nearest
neighbor xk (white triangle with circle) is selected for svi (star) in the feature space. This figure illustrates that the new BOSFS algorithm finds the real
nearest neighbors to svi (stars) directly in the feature space. This process is an important step in generating new synthetic positive instances for the new
borderline to improve the performance of SVM.

kernel. We conducted several experiments on UCI datasets
using different kernel methods. The best result was obtained
when using the RBF kernel. The RBF kernel may be more
suitable for nonlinear relationships between class labels and
attributes [26] if the number of features is not too large.
Hence, we use the RBF kernel function in SVM and in the
kernel functions in Equations (7), (8), and (9).

BOSFS creates a borderline after training an RBF kernel
SVM on the original training dataset. BOSFS introduces a
new way of computing the nearest neighbor by using the
kernel function in Equations (7) and (9) and the Euclidean
distance in Equation (8) to select the k nearest neighbors
with the nearest distances of positive instances along the
borderline in the feature space. New synthetic positive in-
stances are generated by these new k nearest neighbors with a
combination of interpolation and extrapolation techniques, as
in BOS. The selection between the interpolation or extrapo-
lation technique depends on the density of negative instances
along the borderline[17] [18]. The BOSFS approach finds the
density of negative instances along the borderline by non-
linear mapping of these negative instances of the input space
to their corresponding points in the feature space. Then,
our algorithm over-samples to obtain new synthetic positive
instances and adds these new instances to the original training
dataset. Using the new training dataset, the improved perfor-
mance of SVM is assessed by testing on an independent
testing dataset. We explain these steps in detail below.

B. Euclidean distance in the feature space

Kernel methods [1],[27],[28] are performed on the feature
space H that is generated from the input space X by using
a nonlinear map Φ(xi) . BOSFS uses the following kernel

function (K) representation.

K : X ×X → R, K(a,b) = Φ(a)′Φ(b) (7)

The Euclidean distance between xi and xj in the feature
space [24] [29] is dij and can be computed as follows:

(dij)
2 = ‖Φ(xi)− Φ(xj)‖2

= ‖Φ(xi)‖2 + ‖Φ(xj)‖2 + 2‖Φ(xi)‖‖Φ(xj)‖
= K(xi, xi) +K(xj, xj)− 2K(xi, xj)

(8)
With Equation (8) we can now find the Euclidean distance

in the feature space of any xi, and xj in the input space.
The nearest neighbor xj for each svi on the borderline is
determined by the nearest Euclidean distance in the feature
space.

Fig. 3 illustrates how our BOSFS algorithm finds the
nearest neighbor of each svi on the borderline in the feature
space. The k nearest neighbors (xk) in the input space
for each svi on the borderline are selected by BOSFS to
create new synthetic positive instances for the new training
dataset. The black triangle is an example of a new synthetic
positive instance created by the interpolation technique, while
the black triangle within white triangle is an example of a
new synthetic positive instance created by the extrapolation
technique. These new synthetic positive instances in the new
training dataset serve to improve the performance of SVM
for imbalanced datasets.

We have conducted several experiments with different k =
3, 5, and 7 for k nearest neighbors. There is no significant
difference between the results achieved by using k = 3, 5,
and 7. Hence, we set k to 5 in all experiments, as was done
in SMOTE, Borderline-SMOTE, and BOS.
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Fig. 3. Illustration of creating the new synthetic positive instances by using the proposed BOSFS. a) svi (white star) is an example of any positive
instance in the input space and its corresponding point (black star) is on the borderline created by SVM in the feature space. b) BOSFS uses the RBF
kernel function to map any xi, xj , xk , and svi of positive instances in the input space to their corresponding points Φ(xi), Φ(xj), Φ(xk), and Φ(svi) in
the feature space. The dashed double-sided arrows show the non-linear mapping from points in the input space to their corresponding points in the feature
space. The solid arrows show the Euclidean distance between Φ(svi) and any other positive instances Φ(xi), Φ(xj), and Φ(xk) in the feature space. The
nearest neighbor of Φ(svi) is Φ(xk) (white triangle with circle) in the feature space. xk is selected for the corresponding point in the input space for the
real nearest neighbors of Φ(svi) on the borderline in the feature space. The black triangle is an example of a new synthetic positive instance created by
the interpolation technique. Its position remains in between the black star and the nearest neighbor Φ(xk). The black triangle within the white triangle is
an example of a new synthetic positive instance created by the extrapolation technique. Its position is further from the black star and its nearest neighbor
Φ(xk).

C. Interpolation and extrapolation techniques in BOSFS

We used an interpolation technique as used in SMOTE
[15] to create new data points for a discrete set of known
data points in Fig. 4a. A new synthetic positive instance
(black triangle) is randomly created using the interpolation
technique within the area between the positive instance on the
borderline (star) and the nearest neighbor positive instance
(white triangle). We determine the difference between the
white triangle and star where the minuend is white triangle
and the subtrahend is star. A new synthetic positive instance
is created by multiplying this difference by a random
number between 0 to 1 and adding it to a positive instance

New synthetic instance

Nearest neighbor

Interpolation like in SMOTE Extrapolation like in BOSa) b)

New synthetic instance

Nearest neighbor

Fig. 4. Illustration of the difference between interpolation and extrapolation
technique. a) The star is the instance under consideration. The white triangle
is the nearest neighbor of the positive instance to the star. The new synthetic
instance (black triangle) found by the interpolation technique will be located
between the star and white triangle. b) The new synthetic instance found by
the extrapolation technique will be located further from the star and white
triangle.

(star) under consideration. This computation step of the
interpolation technique is shown in step 4 in the BOSFS
algorithm. The interpolation technique is applied when there
is a crowd density of negative instances near the border-
line. This technique then increases the number of positive
instances in the crowd density area of negative instances near
the borderline.

In addition, we used an extrapolation technique as in
BOS[17] [18] to create new data points by the extension
process of estimating beyond the original observation range
in Fig. 4b. The extrapolation technique performs the same
calculation process as the interpolation technique but the
aforementioned difference between the white triangle and
star is reversed such that the minuend is the star and the
subtrahend is the white triangle. The extrapolation technique
can expand the area of the new synthetic positive instance
(black triangle) further from the positive instance (star) and
its nearest neighbor (white triangle) to the ideal borderline.
This technique is applied when there is a lower density
of negative instances near the borderline. A low density
of negative instances is determined when the number of
negative instances is less than half of the number of its
nearest neighbors in the feature space. It has been shown in
BOS that the new borderline with the extrapolation technique
can be shifted towards the ideal borderline. This computation
step of the extrapolation technique is shown in step 4 in the
BOSFS algorithm.

The BOSFS algorithm uses a combination of Interpolation
and extrapolation techniques, as in SMOTE and BOS. The
main difference between BOSFS and SMOTE, Borderline-
SMOTE and BOS is that BOSFS considers the density
of negative instances near the borderline in the feature
space rather than in the input space. BOSFS maps all
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of the negative instances near the borderline to their
corresponding points in the feature space. It computes the
Euclidean distance to find the nearest negative instances to
the borderline in the feature space. This can be seen in
Fig. 3 but the dashed double-sided arrows map the negative
instances (black circles) instead of the positive instances
(white triangles). The Euclidean distance in Equation (8)
using the kernel function in Equations (7) and (9) is
recomputed to find the nearest negative instances to the
borderline in the feature space.

If the total number of nearest negative instances to the
borderline in the feature space is less than half of the
number of its nearest neighbors (lower density case), we
apply the extrapolation technique. Otherwise, in the crowd
density case, we apply the interpolation technique. We must
determine the total number of nearest negative instances to
the borderline to select the appropriate technique between
interpolation and extrapolation to create the new synthetic
positive instance.

D. BOSFS algorithm

BOSFS is described as follows:
The notations used for our BOSFeatureSpace algorithm

are as follows.
Main variables:
· X : Training dataset
· P+ : Set of positive instances in X
· P− : Set of negative instances in X
· N : Over-sampling rate (N is a percent rate such as

100, 200, · · · )
· SV + : Set of positive instances on the borderline in

support vectors (SV s).
· k : Number of nearest neighbors of positive instances

to the borderline.
· $ : Maximum number of negative instances indicating

the threshold density of negative instances to select
the interpolation or extrapolation technique.

· np : Total number of new synthetic positive instances
to create.

· nn : Total number of negative instances nearest to each
svi in SV + for the borderline.

· § : Array containing the k nearest neighbors of the
positive instances for each sv+i ∈ SV +.

· D : Array of Euclidean distances (dij) for each sv+i ∈
SV + and its nearest neighbors xj in P+ in the
feature space.

· K : RBF kernel function computed as in Equation (9).
· p+new : New synthetic positive instances for new border-

line.
· Xnew: New over-sampled training dataset

Algorithm: BOSFeatureSpace

Input Parameters: X , N , k, $

Output Parameters: Xnew

Begin
1)

np =

(
N

100
× |X|

)

where |X| is the size of the training dataset.
2) Compute SV + by training RBF kernel SVMs on X .
3) For each sv+i ∈ SV + and each xj ∈ P+

Perform the mapping function (x, x
′
) to map x, x

′
into

the feature space by using the RBF kernel function as
follows:

K(x, x
′
) = exp

(
−‖x− x

′‖2

2σ2

)
(9)

where Sigma (σ) is a user-specified parameter.
Compute D to keep the Euclidean distance dij in the
feature space as follows:

dij =
√
K(svi, svj) +K(xj , xj)− 2K(svi, xj)

where i 6= j , i = 1, 2, · · · |SV +| and j = 1, 2, · · ·
|P+| , |SV +| is the size of the set of positive instances
on the borderline, and |P+| is the size of the set of
positive instances in X .
dij are sorted in ascending order to find §[i][k] where k
signifies the nearest neighbors of the positive instances
for each sv+i in the feature space.

4) For each sv+i ∈ SV + and each xj ∈ P−,
repeat step 3 to find the nn negative instances nearest
to xj for each svi in SV + for the borderline.

If nn is less than half of the $ nearest neighbors
of the negative instances (extrapolation case as in BOS)

Create p+new according to np with each §[i] for
synthetic positive instances i using the following
formula:

p+new = sv+i + ρ(sv+i − §[i][j])

where §[i][j] is the j-th positive nearest neighbor of
sv+i and ρ is a random number in the range [0,1].

else (interpolation case as in SMOTE)

p+new = sv+i + ρ(§[i][j]− sv+i )

5) Combine {p+new}, a set of new synthetic positive in-
stances along the borderline, with the original training
dataset to form the new training dataset Xnew as
follows:

Xnew = X ∪
{
p+new

}
(10)

End

V. EXPERIMENTS AND RESULTS

A. Data description

In our experiments, we use a total of five datasets from
the UCI machine learning repository [8]: Abalone (5), Glass
(7), Page-blocks (4), Spect (0), and Yeast (5). The numbers
in the parentheses indicate the class numbers that are selected
as positive instances whereby the remaining classes become
the negative instances. The dataset statistics and the over-
sampling rates performed in our experiments are shown in
Table I. The reason we use these five datasets is because
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TABLE I
FIVE UCI DATASETS WITH OVER-SAMPLING RATE (%).

Dataset Attributes No of Imbalance Over-Sampling rate(%)
Instances ratio

Abalone 8 4177 35 100, 500, 1000, 1500, 2000,
2500, 3000, 3400

Glass 9 214 6 100, 200, 300, 400, 500
Page-blocks 10 5473 61 100, 1000, 2000, 3000,

4000, 5000, 6000
Spect 22 267 4 100, 200, 300
Yeast 8 1484 28 100, 500, 1000, 1500, 2000,

2500, 2700

they cover a variety of imbalance ratios (Minority:Majority):
Spect (1:4), Glass (1:6), Yeast (1:28), Abalone (1:35) and
Page (1:61).

B. Experimental setting
We compare our BOSFS algorithm with the SMOTE,

Borderline-SMOTE and BOS algorithms. It has already been
shown in [17] [18] that BOS outperforms SMOTE [15],
Borderline-SMOTE [16], and standard SVM. The borderline
instances are derived by the support vectors after training an
SVM on the original training set. The number k of nearest
neighbors to positive instances along the borderline is to
five in all experiments, as was done in SMOTE, Borderline-
SMOTE and BOS. We use the RBF kernel SVM as described
in Section IV.

We select the over-sampling rates in each experiment
according to the imbalance ratio of each dataset in Table I.
For example, the imbalance ratio of the Abalone dataset
is 1:35 (Minority:Majority). Suppose there is only one
minority-class instance in the original training dataset. If we
use an over-sampling rate of 100% for the minority-class
instances, we will randomly over-sample one minority-class
instance, and the new imbalance ratio (Minority:Majority)
of the new training dataset after adding the new synthetic
minority-class instances will be (2:35). Hence, the over
sampling rates of Abalone dataset are varied as follows:
100% (2:35), 500% (6:35), · · · to the highest rate of 3400%
(35:35) to achieve the balanced ratio (1:1).

C. Performance metrics
Using accuracy as a metric to evaluate SVM classification

performance is practically useless when coping with
significantly imbalanced datasets. This is because if a dataset
has an imbalance ratio of 95:5, an SVM classifier that
classifies all instances as negative achieves 95% accuracy but
is absolutely useless for the task at hand. Several publications
use the g-means metric [30], [31], [32] to evaluate classifiers
on imbalanced datasets. The g-means metric is defined as
follows in [31]:

g-means =
√
acc+ · acc− (11)

where sensitivity (5) is acc+ and specificity (6) is acc−.
Another useful performance metric, the F-measure [33], is

the harmonic mean of the precision and recall and is defined
as:

F1 = 2 · precision · recall
precision+ recall

(12)

We use these two performance metrics, g-means and F-
measure, to compare SMOTE, Borderline-SMOTE, BOS,
and BOSFS. Tables II through VI show our experimental
results.

D. Experimental process
First, we use a holdout method to separate each dataset in

Table I into two sets: the training dataset and the test dataset.
Second, in Section IV, we conduct the experiments

comparing our BOSFS algorithm to SMOTE [15],
Borderline-SMOTE [16] and BOS algorithms [17], [18]
using MATLAB with the same over-sampling rate or
imbalance ratio listed in Table I for each training dataset.
we add the set of new synthetic positive instances {p+new}
determined by BOSFS, SMOTE, Borderline-SMOTE or BOS
to the original training dataset X to form the new training
dataset Xnew, as in Equation (10).

Third, we perform k-fold cross-validation where k = 5 for
each dataset with a variety of values for the C parameter
in the range of [0,1] and a variety of values for the
Sigma (σ) parameter in the range of [0,1] to determine
the suitable C and Sigma parameters to achieve the best
g-means (Equation 11) and F-measure (Equation 12) using
SMOTE, Borderline-SMOTE, BOS, or BOSFS. This step
solves SVMs soft-margin problem by using different C and
Sigma parameters in the RBF kernel function (Equation 9),
as explained above.

Fourth, we train the SVM on the new training dataset
Xnew with the suitable C and Sigma parameters computed
in the previous step.

Fifth, we execute SVM with the suitable C and Sigma
parameters on the testing dataset previously prepared using
the holdout method in the first step to finally obtain the acc+,
acc−, g-means (Equation 11), and F-measure (Equation 12)
for each experiment. These metrics are recorded and
averaged for each imbalance ratio.

To reduce the effect of randomness in the data division and
sampling, we perform the first step through the fifth step 10
times for each over-sampling rate and dataset combination.
The values of acc+, acc−, g-means, and F-measure are
averaged after 10 experiments.

E. Experimental results and evaluation
In Tables II through VI, the values in bold correspond to

the best values attained in each experiment. It is clear that
BOSFS achieves the greatest number of superior values. For
the Glass dataset with imbalance ratios of (3:6) and (4:6), we
observe that the BOSFS method is only inferior to SMOTE
according to the g-means and F-measure but still better than
BOS. The acc+ values attained by our BOSFS method are
generally better than those of SMOTE, Borderline-SMOTE
and BOS, especially for the Abalone, Glass, Spect, and Yeast
datasets. We observe that the acc+ values of all of the
methods can reach 100% for the low degrees of imbalance
shown in the Glass and Spect datasets. This means that all of
the methods can perform well for low degrees of imbalance,
while the BOSFS method outperforms the other methods
for higher degrees of imbalance such as Abalone (2:35),
Page (2:61), and Yeast (2:28). The values of acc+ and acc−

attained by SMOTE, Borderline-SMOTE, BOS, and BOSFS
vary because of the dependency on the tradeoff between
the C+ and C− parameter and the imbalance ratio of
each dataset. In summary, our BOSFS method accomplishes
better g-means and F-measure performance than the SMOTE,
Borderline-SMOTE and BOS methods at almost all over-
sampling rates and imbalance ratios.
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TABLE II
ABALONE DATASET: acc+ , acc− , G-MEANS, AND F-MEASURE OF SMOTE, BORDERLINE-SMOTE, BOS,AND BOSFS ALGORITHM

USING k = 5 NEAREST NEIGHBORS.

Algorithms / Metrics Imbalance Ratio (Minority : Majority)
2:35 6:35 11:35 16:35 21:35 26:35 31:35 35:35 Average

SMOTE
acc+ 31.97 60.18 75.59 82.75 85.91 87.79 89.69 90.39 73.41
acc− 98.62 99.08 97.85 98.15 98.6 98.21 98.7 98.89 98.46
g-means 56.08 77.2 85.98 90.08 92.03 92.85 94.09 94.54 84.04
F-measure 44.81 74.42 84.86 89.74 91.95 92.98 94.25 94.69 81.86

Borderline-SMOTE
acc+ 37.11 63.08 74.16 80.29 85.08 86.98 93.19 89.61 76.19
acc− 95.97 95.33 98.45 98.95 98.41 98.79 91.8 99.58 97.16
g-means 59.32 77.19 85.44 89.13 91.49 92.69 92.48 94.46 85.28
F-measure 38.94 65.89 84.37 88.67 91.44 92.7 94.04 94.43 81.31

BOS
acc+ 35.13 61.24 74.79 81.67 85.04 87.75 89.47 90.13 75.66
acc− 97.61 99.53 99.19 99.01 98.06 98.34 98.87 99.42 98.66
g-means 58.48 78.06 86.12 89.93 91.31 92.89 94.05 94.66 85.63
F-measure 45.1 75.6 85.14 89.53 91.28 93.02 94.17 94.68 83.51

BOSFS
acc+ 47.61 72.41 81.64 86 89.09 90.93 91.58 92.31 79.89
acc− 97.05 96.16 98.02 98.44 98.31 98.51 97.75 98.86 97.75
g-means 67.94 83.41 89.45 92.01 93.59 94.64 94.61 95.53 87.95
F-measure 55.54 79.22 88.7 91.79 93.64 94.8 94.99 95.75 85.53

TABLE III
PAGE DATASET: acc+ , acc− , G-MEANS, AND F-MEASURE OF SMOTE, BORDERLINE-SMOTE, BOS,AND BOSFS ALGORITHM

USING k = 5 NEAREST NEIGHBORS.

Algorithms / Metrics Imbalance Ratio (Minority : Majority)
2:61 11:61 21:61 31:61 41:61 51:61 61:61 Average

SMOTE
acc+ 94.02 86.55 89.66 92.44 94.72 95.26 96.36 92.72
acc− 95.94 93.06 96.29 98.44 98.09 96.61 97.08 96.50
g-means 94.92 89.60 92.87 95.39 96.38 95.93 96.71 94.54
F-measure 38.47 78.28 91.48 95.33 96.57 96.49 97.33 84.85

Borderline-SMOTE
acc+ 88.58 93.54 93.50 95.67 96.94 96.30 97.31 94.09
acc− 97.55 91.31 91.31 93.60 93.96 96.22 96.55 93.99
g-means 92.84 92.40 92.38 94.62 95.43 96.26 96.93 93.99
F-measure 67.78 81.73 89.74 94.34 95.80 96.86 97.64 87.71

BOS
acc+ 97.67 92.55 94.80 97.42 96.99 97.53 97.43 96.34
acc− 97.35 96.05 94.25 98.36 98.47 98.13 97.81 97.20
g-means 97.48 94.26 94.48 97.88 97.72 97.82 97.62 96.75
F-measure 68.42 90.03 92.31 97.85 97.88 98.13 98.10 91.82

BOSFS
acc+ 98.85 95.35 93.37 94.55 96.67 96.96 97.78 96.13
acc− 97.55 95.56 97.72 98.62 98.98 99.09 99.08 98.16
g-means 98.19 95.41 95.52 96.56 97.81 98.01 98.42 97.12
F-measure 70.63 90.02 94.88 96.51 97.91 98.16 98.62 92.38
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TABLE IV
GLASS DATASET: acc+ , acc− , G-MEANS, AND F-MEASURE OF SMOTE, BORDERLINE-SMOTE, BOS,AND BOSFS ALGORITHM

USING k = 5 NEAREST NEIGHBORS.

Algorithms / Metrics Imbalance Ratio (Minority : Majority)
2:6 3:6 4:6 5:6 6:6 Average

SMOTE
acc+ 100.00 100.00 99.60 92.44 94.72 97.35
acc− 94.60 97.28 99.33 98.44 98.09 97.55
g-means 97.24 98.62 99.46 95.39 96.38 97.42
F-measure 85.29 97.28 99.19 95.33 96.57 94.73

Borderline-SMOTE
acc+ 99.00 96.41 96.83 97.72 96.52 97.30
acc− 94.41 92.69 88.86 89.09 90.15 91.04
g-means 96.67 94.49 92.72 93.26 93.13 94.05
F-measure 86.35 91.56 89.40 92.60 94.27 90.84

BOS
acc+ 100.00 100.00 100.00 99.00 96.82 99.16
acc− 94.00 90.57 90.18 90.93 98.21 92.78
g-means 96.92 95.15 94.94 94.78 97.47 95.85
F-measure 87.57 89.83 92.54 93.09 97.56 92.12

BOSFS
acc+ 100.00 100.00 100.00 99.66 100.00 99.93
acc− 97.06 94.46 93.55 95.98 94.93 95.20
g-means 98.51 97.17 96.71 97.79 97.41 97.52
F-measure 94.80 93.95 95.23 97.67 97.67 95.86

TABLE V
YEAST DATASET: acc+ , acc− , G-MEANS, AND F-MEASURE OF SMOTE, BORDERLINE-SMOTE, BOS,AND BOSFS ALGORITHM

USING k = 5 NEAREST NEIGHBORS.

Algorithms / Metrics Imbalance Ratio (Minority : Majority)
2:28 6:28 11:28 16:28 21:28 26:28 28:28 Average

SMOTE
acc+ 100.00 92.66 85.61 89.40 92.49 92.79 93.23 92.31
acc− 93.35 86.58 93.58 92.28 92.78 91.60 92.51 91.81
g-means 96.61 89.37 89.50 90.82 92.61 92.17 92.86 91.99
F-measure 39.86 66.82 88.47 90.48 93.53 93.85 94.43 81.06

Borderline-SMOTE
acc+ 96.11 94.25 89.16 89.11 91.18 92.65 93.63 92.30
acc− 92.77 85.04 91.45 95.57 96.71 97.67 97.99 93.89
g-means 94.34 89.34 90.26 92.25 93.89 95.13 95.78 93.00
F-measure 34.56 63.75 88.11 92.33 94.28 95.53 96.20 80.68

BOS
acc+ 100.00 91.86 92.65 93.82 95.45 95.58 96.07 95.06
acc− 93.71 94.15 96.56 95.83 95.07 95.04 93.93 94.90
g-means 96.80 92.96 94.58 94.80 95.26 95.31 94.99 94.96
F-measure 55.52 86.59 93.65 94.88 95.85 96.13 96.20 88.40

BOSFS
acc+ 100.00 95.17 96.19 96.47 97.27 97.89 97.99 97.28
acc− 94.96 97.18 96.71 97.13 97.57 97.39 97.79 96.96
g-means 97.44 96.15 96.44 96.80 97.42 97.64 97.89 97.11
F-measure 61.00 93.70 95.74 96.88 97.67 98.13 98.35 91.64
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TABLE VI
SPECT DATASET: acc+ , acc− , G-MEANS, AND F-MEASURE OF SMOTE,

BORDERLINE-SMOTE, BOS,AND BOSFS ALGORITHM USING k = 5
NEAREST NEIGHBORS.

Algorithms / Metrics Imbalance Ratio (Minority : Majority)
2:4 3:4 4:4 Average

SMOTE
acc+ 99.33 94.83 90.41 94.86
acc− 87.35 64.91 51.88 68.05
g-means 93.11 77.60 67.09 79.27
F-measure 90.92 76.47 69.97 79.12

Borderline-SMOTE
acc+ 100.00 94.29 93.18 95.82
acc− 65.61 53.21 49.49 56.10
g-means 80.52 70.28 67.50 72.77
F-measure 60.54 67.37 67.85 65.25

BOS
acc+ 100.00 98.61 96.18 98.26
acc− 87.16 82.75 84.04 84.65
g-means 93.28 90.18 89.62 91.03
F-measure 90.35 93.01 92.08 91.81

BOSFS
acc+ 100.00 100.00 98.66 99.55
acc− 89.99 86.77 83.04 86.60
g-means 94.79 93.07 90.40 92.75
F-measure 93.30 94.19 93.74 93.74

VI. CONCLUSION

The imbalance class data problem has impacted the
prediction performance of SVM classifiers. In this paper,
we proposed a new over-sampling method called BOSFS
that focuses on the k nearest neighbors of the positive
instances along the borderline. BOSFS finds these nearest
neighbors using the Euclidean distance and kernel function
in the feature space, rather than in the input space as is
done in SMOTE, Borderline-SMOTE, and BOS. We also
introduce a new way to find the density of the nearest
negative instances in the feature space along the borderline.
We determine the appropriate technique to generate new
synthetic instances (i.e., interpolation or extrapolation) by
considering the density of negative instances in the feature
space. Thus, the BOSFS algorithm achieves superior SVM
classification performance in terms of g-means and the F-
measure for imbalanced datasets, as shown in Tables II
through VI. We conclude that our BOSFS algorithm is better
suited than the existing SMOTE, Borderline-SMOTE, and
BOS algorithms for effectively determining new positive
instances to improve SVM prediction in imbalanced data
environments.
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