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Abstract—This work reports a test structure to decide on
the correctness of cache performance in chip multiprocessors
(CMPs). The design targets the private L1 cache existing in
Tiled CMPs architecture. It is developed around the cellular
automata (CA) structure proposed by von Neumann in 1950’s.
The theory of 3-neighborhood null-boundary CA is developed
to record the inconsistent behavior of each of the processors L1
caches in CMPs. The special class of single length cycle attractor
cellular automata accepts the (March) read/write status of cache
word/line and evaluates the decision on the defective/inaccurate
functioning of a cache module. This overcomes the inability
of the classical design to identify defective behavior of CMPs
cache. The test design further enables identification of the
region of defective cache module in the CMPs that can help
designers for defect diagnosis at design phase.

Index Terms—CMPs, cache testing, cellular automata, SACA,
TACA, March test

I. INTRODUCTION

Chip Multiprocessors (CMPs) have been widely adopted

[1] [2] [3] [4] [5] as the building block for future com-

puter systems. Instead of building highly complex, power-

hungry, single-threaded processors, CMP designers integrate

multiple, potentially simpler, processor cores on a single

chip to improve the overall throughput while reducing power

consumption and design complexity [6] [7]. As the number of

processor cores increases [8], a key aspect of CMP design is

to provide fast data access for on-chip computation resources.

However, the increasing number of cores in CMPs adds

threats on reliability and dependability of a design. Efficient

solutions are, therefore, demanded to overcome the non-

compliance of the existing solutions designed for the single

processor chip. A number of works has addressed the issue

from different perspectives [9] [10] [11] [12] [13].

Testing is effective in modern microprocessors to detect

both latent hardware defect and new defects appearing in

logic and memory modules. In multithreaded multicore pro-

cessors, caches are organized in multiple levels and multi-

bank architectures that occupy almost 90% of the relative

chip area. An innovative solution, therefore, is to be framed

to find more accurate solution to the problem [14].

In 80s, Wolfram [15] studied a family of simple 1-

dimensional cellular automata (CA) that could simulate

complex system behaviors. A special class of Wolfram’s 3-

neighborhood CA, called the linear/additive CA had been

employed for developing effective methodologies for VLSI

design [16]. The CA had also been found effective for

efficient design of fault detection and diagnosis schemes in

VLSI circuits [17][18][19].
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A cellular automata (CA) based realization of March

algorithm for testing memories is reported in [20] to avoid

bit by bit comparison of memory words, required in the

conventional test designs. It is found to be superior than

that reported in [21]. This provides the basis of this work

that address the issue of high speed decision on the cache

performence in CA framework.

In this background, this work targets solution for taking

decision on the cache behavior to enable high performance /

uninterrupted computation in CMPs. We consider 3-neighbo-

rhood CA, to develop such a solution for the CMPs caches.

The CA defined in 3-neighborhood runs on the status

read from each cache word/line of the processors L1 caches

and computes the behavior of the cells (defective or not)

of an L1 cache module. It memorizes any defect in cache

word during a run of March algorithm. The specific state

of the n-cell CA, indicates the defective behavior (if any)

of cache module. This further enables identification of the

region of defective cache module in CMPs that can provide

an effective solution for design defect diagnosis.

So, the salient features of this work are as follow:

• This basic design has been used in 3-neighborhood CA

for fault detection of CMPs L1 cache to avoid bit by

bit comparison of cache memory words, required in the

conventional test designs.

• The test design also enables identification of the region

of defective cache module in the CMPs and memorizes

the fault along with self-testing approach.

• The study and work on testing the cache module

of CMPs architecture based on 3-neighbourhood CA

revealed that two instead of four rules [22] can be

conveniently applied to memorize and disgnose the

fault.

• In formulating Rule 252 and 255, further studies leading

to theorems, experiments and results, had to be carried

out.

The regular structure of CA suits better for low cost

VLSI implementation of the test logic. The CA based test

hardware for testing cache performance is introduced in

Section IV. Section III reports the design detail. The next

section provides CA preliminaries relevant to the current

work.

II. CELLULAR AUTOMATA

A Cellular Automaton (CA) is an autonomous finite state

machine that evolves in discrete space and time. Each cell

stores a discrete variable at time t that refers to the present

state (PS). The next state (NS) of the cell at (t+1) is affected

by its state and the states of its neighbors at t. In this work,

we consider the 1-dimensional CA, where a cell is having

two states - 0 or 1 and the next state of ith CA cell in 3-

neighborhood is
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TABLE I
RMT S OF THE CA < 116, 222, 252, 254, 255 >

PS 111 110 101 100 011 010 001 000 Rule Logicalfunction

RMT (7) (6) (5) (4) (3) (2) (1) (0)

NS 0 1 1 1 0 1 0 0 116 f = SiS
′

i+1 + Si−1S
′

i

NS 1 1 0 1 1 1 1 0 222 f = Si + S
′

i−1S
′

i+1 + Si+1

NS 1 1 1 1 1 1 0 0 252 f = Si−1 + Si

NS 1 1 1 1 1 1 1 0 254 f = Si−1 + Si + Si+1

NS 1 1 1 1 1 1 1 1 255 f = 1

0

1

00Si−1

Si Si+1

01 11 10

1 1

Rule 255

1111

11

f = 1

0

1

00Si−1

Si Si+1

01 11 10

1

1 1 1

Rule 252

10 1

0

f = S     + S    i+1 i

Fig. 1. Next state function for rule 252 and 255
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The next state function of the ith CA cell can be expressed

in the form of a truth table (Table I). The decimal equivalent

of the 8 outputs (NSs) is called ‘rule’ Ri. In a 2-state 3-

neighborhood CA, there can be 28 (256) rules. Five such

rules 116, 222, 252, 254 and 255 are illustrated in Table I.

The first row shows the combinations of PSs of (i − 1)th,

ith and (i+ 1)th cells at t. The last three rows list the NSs

of ith cell at (t + 1). A combination St

i−1, S
t

i
, St

i+1 of PSi

is referred to as the rule minterm (RMT). The column 011

of Table I is the 3rd RMT. The next states corresponding to

this RMT are 0 for rule 51, and 1 for 254 & 255.

The 1-dimentional CA can be viewed as an array of cells

where each cell configures with a rule. For an n-cell CA (n

number of cells involved in CA), the rules that configure the

cells form the rule vector. Rules of rule vcector of a CA

may be uniform (all are same) or hybrid (nonuniform). The

3-cell CA with rule 254 can be written as CA<254, 254,

254>. The 4-cell CA with rule 250, 252, 254 and 255 can

be written as CA<250, 252, 254, 255>, where the first cell

(/leftmost cell) is set with 250, the second cell with 252, the

third cell with 254 and the fourth cell with 255. The CA

described first is uniform and the latter one is hybrid.

The left neighbour of the left most cell and right neighbour

of the right most cell are considered zeros which are called

null boundaries. In periodic boundary, the left neighbour of

the leftmost cell is the rightmost cell and the right neighbour

of the rightmost cell is the leftmost cell. Thus, it is formed

into circular array.
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Fig. 2. State transition diagram of CA<116,116,116,116>
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Fig. 3. State transition diagram of CA<117,117,117,117>

State transition diagram(STD): State transition diagram of

a CA describes the nature of its transition of states with

time. The diagram shows that the CA goes from one state

to another state with discrete time depending on the present

state of the cell itself and states of its left neighbour and right

neighbour cells. Simultaneously the present states of all three

cells follow the logic of rule applied to that cell (described in

4th row of Table I). The logic of the rule can be derived using

Karnaugh Map (Figure 1). Thus, simultaneously the present

states of neighbors and applied rule take the decision of next

state for a cell of CA.

A set of states can form loop (cycle) in the state transition

diagram of a CA (0→0 and 1→1 of Figure 2). These are

the attractors of the CA. The maximum distance traversed

to reach an attractor from any other state is the depth of the

CA. In Figure 2, the depth of the CA is 5.

After analyzing the state transition diagram, the following

phenomena are observed:

• State transition diagram can consist of single (Figure 3)

or multiple graph (Figure 2).
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• Each graph of STD always have an attractor(/cycle).

• Any graph of STD never has more than one cycle i.e.

one graph one cycle. STD of CA<116,116,116,116>

(Figure 2) has two graphs with two cycles, 0→0 and

1→1.

• An attractor may involve a single node (1→1 of Figure

2) or multiple nodes (13→7→3→9→13 of Figure 3).

The attractor described first is a single length cycle at-

tractor and the the latter is a multilength cycle attractor.

• An STD of a CA may have only single length cycle

attractor graph or multiple length cycle attractor graph

or combination of single length cycle and multilength

cycle attractor graphs.

• Any node may have many predecessors but always

has a single successor, i.e. two or more paths from

predecessors to that node may exist, but more than one

path never exist from that node to any other nodes.

• No of attractors and its magnitude depend on the no of

cells in CA.

The CA with single length cycle attractor (0→0 and 1→1

of Figure 2) is found to be effective for the current design.

The next section reports the identification of CA rules that

can form single length cycle attractor.

A. Single length cycle attractor CA rules

A CA synthesized with arbitrary rules may result in one

or more attractors with multi-length cycles (Figure 2). To

find the CA rules, desired for the proposed design, we need

to analyze the property of the RMTs of a rule since nature

of a CA is directly related to the nature of its RMTs. The

following definitions and theorems are introduced that help

to reduce the search space to identify the rules that only form

single length cyle attractor CA. An attractor involving single

node is called sigle length cycle attractor. It is also known

as the fixed point attractor.

Definition 1 (Passive RMT): An RMT r of a rule is pas-

sive if at time (t+1) a CA cell remains in the same state as

in time t (0 to 0 or 1 to 1) on r. From Table I it can be seen

that the RMTs 0, 2, 3, 6, and 7 of rule 254 are passive.

Definition 2 (Active RMT): An RMT r of a rule is active

if a CA cell flips its state (1 to 0 or 0 to 1) on r. From Table

I, it can be seen that the RMTs 1, 4, and 5 of rule 254 (2nd

row) are active.

Definition 3 (Fixed Point Attractor): An attractor involv-

ing single node is called sigle length cycle attractor. It is also

known as the fixed point attractor.

Observation: All the RMTs of an RMT sequence for a fixed

point attractor state are passive.

Theorem 1: If RMTs- 0, 1, 2 and 3 in any rule R

are simultaneously active, then there exists no fixed point

attractor for the given rule R.

Proof: For a null boundary CA, the next state of the

1st cell (the left-most cell) is determined by the bit 0 (left

neighbour), cell 1 itself and cell 2 (right neighbour). The

different combinations of bits for cell 1 and cell 2 at time t

is given in Table II.

Thus for any CA state, the value of cell 1, in terms of

RMT is one among 0, 1, 2 and 3. Suppose, all the RMTs 0,

1, 2 and 3 are active, then the value of 1st cell at time (t+1)

will be the complement of the value at time t. As a result,

TABLE II
DIFFERENT RMT VALUES FOR CELL 1

0 cell 1 cell 2 RMT

0 0 0 RMT 0

0 0 1 RMT 1

0 1 0 RMT 2

0 1 1 RMT 3

CA can not remain in the same state in the next time step.

Hence no fixed point attractor can be formed.

Theorem 2: If the RMTs 0, 2, 4 and 6 in any rule R

are simultaneously active, then there exists no fixed point

attractor for the given rule R.

TABLE III
DIFFERENT RMT VALUES FOR CELL 4

cell 3 cell 4 0 RMT

0 0 0 RMT 0

0 1 0 RMT 2

1 0 0 RMT 4

1 1 0 RMT 6

Proof: For a null boundary CA, the next state of the

1st cell (the left-most cell) is determined by cell 3, cell 4

and the bit 0 (right neighbour). The different combinations

of bits for cell 3 and cell 4 at time t is given in Table III.

Thus for any CA state, the value of cell 4, in terms of RMT

is one among 0, 2, 4 and 6. Suppose, all the RMTs 0, 2,

4 and 6 are active, then the value of 4th cell at time (t+1)

will be the complement of the value at time t. As a result,

CA can not remain in the same state in the next time step.

Hence no fixed point attractor can be formed.

Theorem 3: An even numbered CA rule can allow for-

mation of at least one fixed point attractor, i.e. the state 0.

Proof: The 4-cell null boundary CA having one state of

all 0s at time t, corresponds to RMT sequence sq<0,0,0,0> .

For any even rule, RMT 0 is a passive RMT (next state 0 for

RMT 0). Hence all the RMTs in the RMT sequence sq are

simultaneously passive then CA would have next state of all

0s at time (t+1) and obviously it can form all 0s fixed point

attractor, otherwise any one RMT in the RMT sequence sq

is active it can not form all 0s attractor. Then CA can transit

to another state at time (t+1).

Theorem 4: If the RMTs 3, 6 and 7 of an even numbered

CA rule are passive, it can allow formation of at least two

fixed point attractors -that is, all 0s state and all 1s state.

Proof: The CA sinthesized with even numbered rule

R always forms all 0s fixed point attractor (Theorem 3). if

sumultaneously that rule R consists of passive RMTs 3, 6,

and 7 then it can also form another fixed point attractor of

all 1s. Since the 4-cell CA having one state of all 1s at

time t, corresponds to RMT sequence sq<3,7,7,6> and if
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TABLE IV
RULES GUIDING NON FORMATION OF FIXED POINT ATTRACTOR

Theorem Rules

Theorem 3 3,19,35,51,67,83,99,115,131,147,163,

179, 195,211,227,243

Theorem 4 17,19,25,27,49,51,57,59,145,153,155,

177, 179,185,187

TABLE V
CA RULES FOR SINGLE LENGTH CYCLE ATTRACTOR (UNIFORM CA)

number of Rule for single

passive RMTs length cycle attractor CA

3 2, 16, 32, 38, 52

4 0, 10, 15, 46, 106, 116, 120, 166,

174, 239, 244, 253, 254

all the RMTs in the RMT sequence sq are simultaneously

passive then CA would have next state of all 1s at time

(t+1). Obviously the even numbered rule with passive RMTs

3, 6 and 7 can allow formation of at least two fixed point

attractors -that is, all 0s state and all 1s state.

Theorem 1 and 2 give a set of rules that can’t form fixed

point attractors for a null boundary CA. These rules are given

in Table IV. It must be noted that the table does not provide

a complete set of rules that can’t form fixed point attractors.

Since the reverse of the theorems 1 and 2, i.e., any of the

RMTs 0, 1, 2 and 3 or RMTs 0, 2, 4 and 6 is passive and does

not imply the existence of a fixed point attractor. However,

Theorem 3 and Theorem 4 can help us to find the rules that

can form single length cycle attractors (Table V).

Theorem 5: An odd numbered CA rule can not allow

formation of all 0s fixed point attractor.

Proof: Any odd numbered rule (for example 207, 145)

has a 1 in the LSB (11001111 for rule 206). Thus the RMT

0 for an odd rule will always have the next state value 1. In

other words, the RMT 0 for an odd rule is active. The state

0 corresponds to 〈0000〉 RMT sequence. Since the state 0

of an odd rule contains all active RMTs, hence state 0 can

not allow a fixed point attractor for an odd rule of a null

boundary CA.

Theorem 6: If the RMTs 3, 6 and 7 are passive in an odd

numbered CA rule, it can allow formation of at least one

fixed point attractor -that is, all 1s state but it can not form

an all 0s fixed point attractor.

Proof: The CA sinthesized with odd numbered rule R

can not allow to form all 0s fixed point attractor (Theorem 5),

but if that rule R sumultaneously consists of passive RMTs

3, 6 and 7, then it can form a fixed point attractor of all

1s. So, the odd numbered rule with passive RMTs 3, 6, and

7 can allow formation of at least one fixed point attractor

TABLE VI
ATTRACTORS FOR RULES WHERE N(ATTRACTOR)=8

Rule Attractors

4 0,1,2,4,5,8,9,10

12 0,1,2,4,5,8,9,10

68 0,1,2,4,5,8,9,10

132 0,1,2,4,5,8,9,10

140 0,1,2,4,5,8,9,10

196 0,1,2,4,5,8,9,10

206 0,8,10,11,12,13,14,15

220 0,1,3,5,7,11,13,15

with all 1s state and can not allow formation of fixed point

attractor with all 0s state.

Table VI gives the 8-attractor rules and their magnitudes

and Table VII provides a summary of all the rules for a 2-

state 3-neighbourhood CA divided on the basis of the number

of attractors. Column 1 of Table VII gives the number of

attractors while column 2 contains their corresponding rules.

III. CACHE TESTING

A tiled CMP architecture consists of a number of repli-

cated tiles connected over a switched direct network (Figure

4). Each tile contains a processing core with primary caches

(both I- and D-caches), a slice of the L2 cache, and a

connection to the on-chip network. The L2 cache is shared

among the different processing cores, but it is physically

distributed between them. Therefore, some accesses to the

L2 cache will be sent to the local slice while the rest will

be serviced by remote slices (L2 NUCA architecture). In

addition, the L2 cache-tags store the directory information

needed to ensure coherence between the L1 caches. On a

L1 cache miss, a request is sent down to the appropriate

tile where further protocol actions are initiated based on that

blocks directory state.

In the design, we consider effective realization of March

C− for determining correctness of the L1 cache function.

However, any March algorithm, that is considered to be

efficient in terms of fault coverage or any other parameter,

can be realizable in the framework of proposed cellular

automata (CA) based test hardware. A March test [23] [24]

[25] [26] consists of a finite sequence of March elements. The

March element is a finite set of operations applied to every

cell in the cache array in sequence. An operation consists

of writing a 0 (w0) into a cell Mi, reading an expected 0

(r0) from the cell Mi; writing an 1 (w1) into Mi and then

reading an expected 1 (r1) from Mi.

A read operation ‘r0’ or ‘r1’ of March algorithm stores

the n-bit word, read from the cache, to a register RG. These

n bits are used to set the cell rules of an n-cell CA. The

ith-bit RGi sets rule for the ith CA cell. If the CA is then

run for some definite time steps, it settles to a state called

attractor. For a fault in the cache, the least significant cell of

the CA (Sigi) becomes ‘1’. On the other hand, Sigi is ‘0’ if

the cache module is fault free. That is, by sensing only the

Sigi, cache module can be declared as faulty or non-faulty.

The signature generated from each test module of Figure

5 is then used to set the ith CA cell rule of an N-cell CA.
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TABLE VII
DIVISION OF RULES ON THE BASIS OF THE NUMBER OF ATTRACTORS

Number of Rules

attractors

0 1,3,9,11,17,19,23,25,27,31,33,35,39,41,43,47,49,51,53,55,57,59,61,63,65,67,75,81,83,87,89,

91, 97,99,103,107,111, 113,115,117,119,121,123,125,127,129,131,137,139,145,147,151,153,155,

159,161,163,167,169,171,175,177,179, 181, 183,185,187,189,191,193,195,209,211,215,225,227,

231,241,243,245,247

1 0,2,7,8,10,15,16,18,21,22,24,26,29,30,32,34,37,40,42,45,48,50,54,56,58,62,64,66,71,73,80,

82,85,86,90,96,98,101,105, 112,114,118,122,126,128,130,135,136,138,143,144,146,149, 150,

152,154,157,158,160,162,165,168,170,173,176,178,182, 184,186,190,192,194,199, 208, 210,

213,214,219,224,226,229,240,242,246,251,255

2 38,46,52,60,74,88,95,102,106,109,116,120,166,174,180,188,203,217,218,230,235,239,244,

249,250,253,254

3 5,6,13,14,20,28,69,70,79,84,93,94,110,124,133,134,141,142,148,156,197,198,212,223

4 72,104,201,202,216,222, 233,234,248

5 207,221,237,238,252

6 36,44,77,78,92,100,164,172,228

7 200,232

8 4,12,68,132,140,196,206,220

9 108,205

10 -

11 -

12 236

13 76

14 -

15 -

16 204

CPU Core Router

L1 I Cache L1 D Cache

D
ire

c
to

ry

L2

Cache

Tile 1 Tile 2 Tile 3 Tile 4

Tile 5 Tile 6 Tile 7 Tile 8

Tile 9 Tile10 Tile11 Tile12

Tile13 Tile14 Tile15 Tile16

Fig. 4. NUCA in CMPs Architecture
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Fig. 5. Architecture of CA based test hardware for NUCA in CMPs
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Fig. 6. State transition diagram of CA with fault free and faulty cache

That is, the signature response indicated in Figure 5 is tested

with a CA as indicated in Figure 5. It checks the correctness

of the signatures resulted out of N processors L1 caches.

If signatures are found to be correct, it can be concluded

that the cache module are working correctly. Otherwise, the

output of the N-cell CA defines the region of defective cache

module of the CMPs.

The design [22] has used the rule 254 and 255 to find

the signature of the cache from the first stage since they can

memorize the fault. We can not assign rule 192 and rule 207,

since they can not memorize the fault. The sencond stage of

the design [22] has used rule 192 and 207 to dignose the

fault after getting all signature responses from the caches.

In this stage, however, the rule 254 and rule 255 can not

be used, since they do not have the diagnostic property. In

our current work we have selected the rules 252 and 255 in

both the stages because they are able to memorize as well

as diagnose the fault. The next section reports the detailed

design of the proposed test structure.

IV. TEST HARDWARE

The proposed test design employs n-cell CA that can settle

to an single length cycle attractor X. Further, the best possible

case can be, for fault free and faulty memory word, we need

to form different CA so that the effect of fault can induce

LSB of X as ‘1’ and ‘0’ for fault free.

In the example design of Figure 6(a) , the CA chosen for

the fault free memory settles to an attractor 0 (all 0s state)

if loaded with all 0s seed; in all other faulty cases, the CA

selected settles to attractor 1 (with lsb 1) (Figure 6(b)(c)(d)).

That is, an incidence of fault in memory is translated as the

switch from 0-basin to another basin with lsb 1.

A. The CA structure

In this design (Figure 7) first stage activity is to test the

cache performance and the second is to locate the fault

region. The signature generated from the first stage gives

forth the final decision in the second stage.

Figure 5 show architecture of the test hardware realizing

March C−. Once 0 is written (WR=0) to each cache cell Mi,
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Fig. 7. CA hardware test logic

the data bit read (r0) from cell Mi (RGi of Figure 7) is

used to set the rule of ith CA cell. The read bit RGi=0 is

encoded as rule 252 ( WR=0, RGi=0 => NSi= xi−1 + xi

i.e. NSi is equivalent to rule 252). When there is a fault in

Mi, RGi=1 i.e. NSi=1. Therefore, rule 255 is set for the ith

cell (Figure 7).

On the other hand, when 1 is written (WR=1) to each

cache cell Mi, the read bit RGi=1 is encoded as the rule

252 (WR=1, RGi=1 => NSi= xi−1 + xi -that is, NSi

is equivalent to rule 252). For a fault in Mi, RGi=0 -i.e.

NSi=1,rule 255 is set.

The activity of second stage is also similar to the first

one. For an N no of L1 cache module, we employ an N -cell

CA. When Signature is generated from ith L1 cache module

(Sigi), it is used to set the rule of the ith CA cell. The Sigi=0
is encoded as the rule 252 (Figure 7) (Sigi=0 => NSi= xi−1

+ xi i.e. NSi is equivalent to rule 252). When there is a fault

in cache module Sigi=1 i.e. NSi=1. Therefore, rule 255 is

set for the ith CA cell (Figure 7).

Once signature is generated to all the cells, the CA is run

for t-steps (t <= N ), initialized with all 0s seed. The CA

for a fault free cache module is a uniform SACA constructed

with rule 252 and so, it reaches the attractor state 0 (Figure

6(a)). On the other hand, for fault at one or more cells

the CA is a hybrid one and it reaches a non-zero attractor

with LSB=1 (Figure 6(b),(c) and (d)) after t-steps. Now, by

sensing the LSB of the CA we can detect a faulty cache

module.

V. PERFORMANCE ANALYSIS

The following discussion is to evaluate the performance

of the test design in response to faults in the cache modules

of CMPs.

A. Fault Detection and memorization

Let us consider the 5×4 cache memory of Figure 8 and

assume that the 2nd cell of word 2 is faulty (write ‘0’ stores

‘1’) as shown in Figure 8. Once ‘w0’ is performed, ‘r0’ on

word 0 constructs an n=4-cell uniform CA with rule 252.

When the CA is initialized with all 0s seed, it produce all
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0s next state (Figure 6(a)). As word 1 is also fault free, the

CA constructed for this is also the uniform CA with rule 252

and the next state is an all 0s state.

The operation ‘r0’ on word 2 results in a hybrid CA

<252,252,255,252>. Its next state is non-zero 0010 (as per

Figure 6(d), dotted box). The CA constructed on ‘r0’ of word

3 and 4 are also uniform CAs. Therefore, the CA for word

3 generates next state from 0010 to 0011 (3) and the CA

for word 4 from 0011 to 0011 (3) (Figure 6(a)). The CA at

word 4 is then run for n=4 steps and settles to the attractor

state with least significant bit(lsb) 1 (Figure 8). Its lsb (1)

defines that the memory is faulty. Figure 9 depicts that the

cache is fault free.

That is, if the kth (k < m) cache memory word is faulty,

the test hardware [20] captures it as and only when the r0

[r1] is performed for the kth word and memorizes it till the

read operation on all the words are completed.

B. Fault diagnosis

The rule 252 and 255 applied in the first phase are to

memorize the fault during performance measure of each

cache module and the rules 252 and 255 applied in the

second phase are to locate the region of faulty cache module

during the analysis of signature. For instance, if the kth cache

module have a fault, the pattern will stuck to all 0s from msb

to (k− 1)th position and all 1s from kth to N th position of

the N-cell CA. The faulty L1 cache region can be located

by analyzing the attractor state generated. For example, in

Figure 6(c) the CA settles to the attractor 0111 (7) due to

faulty signature from L1 of 2nd processor core. To identify

the region of faulty L1 cache the N

2

th

(that is, 2nd bit from

left) of the attractor 0111 is checked. The bit is 1 implies that

the fault is between 1st and 2nd cores. In a system with 16

processor cores (16 L1 caches), let say 5th cache produces

faulty signature in stage 1. Then the stage 2 CA settles to an

attractor 0000111111111111. To find the region of faulty L1

cache, the N

2
= 8th bit of the attractor is to be checked. It is

1, which implies that the defective L1 is in between 1st and

8th cores. To find the exact region, we further need to check
N

4

th

bit; it is zero in the present case and implies fault is

in between N

4

th

and N

8

th

cores. The similar steps continues

with the bit position to be checked is N

12

th

. Therefore, the

identification of exact faulty region in worst case requires

log N time steps.

C. Self testability

In the current design, we devise a technique to test the

test hardware that can be tested without pushing additional

logic. For this, the uniform CA with rule 252 in the first

(second) phase of the test logic is initialized with 10000...0

seed. Then the CA is run for n-step (N -step) and settles to

an attractor (all 1s for fault free test hradware, and for s-a-0

in test hardware the attractor with LSB 0). The LSB of the

attractor then indicates faults in the test hardware.

D. Low hardware overhead

Apparently, by the analysis of CA, it seems that the

component cost will increase but infact, our architecture

place the CA on data path. So, considering the high density

of memory, there will be no substantially increase in

the entire chip area. It will be able to cater to varing and

numerious demands. The overhead cost also be economically

viable.

Table VIII describes the comparison among ex-or logic

[21] and 3-neighborhood logic (with different rules) of test

hardware. Ex-or logic [21] is simple enough to be applied

for detection of cache fault in CMPs. Ex-or logic is a

combinational circuit that can compare bit by bit but can

not memorize and diagnose the fault. It can not test itself,

however, if we want to test, we need extra hardware logic to

test its functional correctness. This feature is shown in the

first row of Table VIII. Cellular automata is a softcomputing

approach that has a highly parallel and distributed computing

ability. So, the 3-neighborhood CA based logic can detect the

fault as well as incorporate the other capabilities or features

depending on selection and application of a rule in CA. Rule

192/207 logic can detect and locate the fault but this logic can

not memorize the fault in cache module. This logic is only

applicable to the second phase of the test hardware design

but not to the first phase at all (second row of Table VIII).

Rule 254/255 logic can detect and memorize the fault but

it can not diagnose the fault. So, this logic can be used in

first phase, but can not be used in second phase (third row

of Table VIII). Therefore, the proposed design is based on
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TABLE VIII
PERFORMANCE EVALUATION

Test Hardware logic Capability of

Fault Detection Fault Memorization Fault Dignosis Self Testability

Ex-or logic Yes No No No

3-neighborhood rule 192/207 logic Yes No Yes Yes

3-neighborhood rule 254/255 logic Yes Yes No Yes

3-neighborhood rule 252/255 logic Yes Yes Yes Yes

the rule 252/255 logic to test, memorize and also diagnose

the cache fault of CMPs (fourth row of Table VIII).

VI. CONCLUSION

This work proposes an efficient test structure for CMPs

cache system. The solution is developed around the regular

structure of 1-dimentional 2-state 3-neighborhood cellular

automata (CA) with the target to achieve a self testing test

structure. The special class of CA rules, forming single

length cycle attractor CA, are chosen for the design. The

logic, based on rule 252 and 255, is most suitable for our

design compared to the rule 254/255 and 192/207 logic.

The cellular automata have imense power to design an

efficient circuit. The fault tolerant feature is posssible to be

incorporated in the test design but the strategy for it has to

be devised . To do this the rule, suitable for implementation

in hardware circuit, has to be searched. This opens up future

scope of work in CA based reliable test hardware design.
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