
Image Analysis on a Scanned Journal Page
Yung-Sheng Chen, Pao-Hsien Li, and Chin-Hung Teng

Abstract—Document image analysis is of great importance in
the field of image processing and pattern recognition, where the
scanned document analysis receives much more attention due to
its significance in the fast growing digital libraries. Three types
of scanned journal pages including one-column, two-column
as well as two-column mixed with one-column are studied
in this paper. A journal page is basically composed of four
lines including texts, figures or tables, isolated mathematical
expressions and embedded mathematical expressions. In order
to identify these useful lines for future recognition application,
an effective approach is presented. The main steps of this
approach consist of skew restoration, line extraction, page
orientation checking, page inversion checking as well as line
detection. The step of line detection is used to classify the
detected lines. A series of experiments are conducted and the
results show that our system can achieve 90% above accuracy
of line detection without the use of OCR and thus confirms the
feasibility of the proposed approach.

Index Terms—Document image analysis, Journal page, Math-
ematical expression, Skew restoration

I. INTRODUCTION

DOCUMENT image analysis (DIA) is a long-lasting
research topic in image processing and pattern recog-

nition. Document image analysis means that we want to
recognize each object in a document and then understand
the document or transfer it to another format. Document
image analysis is closely correlated with optical character
recognition as if we can recognize each word in a document,
then we may understand the content of the document. In
the past decades, many optical character recognition and
document image analysis technologies have been extensively
developed. Among the documents we want to analyze, jour-
nal or conference page is one of notable targets since the
academic digital archives are growing very fast at present
and there is a strong need to digitize a journal page into an
editable digital format, not just a “journal image”.

Journal page is quite different from ordinary text document
as it may contain a number of figures, tables, and math-
ematical expressions especially for scientific journal page.
It is a challenge to identify all of these objects since their
positions vary from page to page. Moreover, the journal
page may be in the format of one-column, two-column, or
two-column mixed with one-column, or the page may be
skew or inverted because of inappropriate scan. All of these
may complicate the analysis of a journal page. To analyze
such a page, an effective approach needs to be developed
for segmenting and detecting each object in a journal page,
including texts, figures, tables as well as isolated/embedded

This work was supported in part by the National Science Council, Taiwan,
Republic of China, under the grant numbers NSC 101-2221-E-155-056.

Yung-Sheng Chen and Pao-Hsien Li are with the Department of Elec-
trical Engineering, Yuan Ze University, Taoyuan, Taiwan, ROC. (Email:
eeyschen@saturn.yzu.edu.tw)

Chin-Hung Teng is with the Department of Information Communication,
and Innovation Center for Big Data and Digital Convergence, Yuan Ze
University, Taoyuan, Taiwan, ROC. (Email: chteng@saturn.yzu.edu.tw)

mathematical expressions. In the literature, some methods
are developed for analyzing journal page based on OCR
technologies. However, OCR is another significant topic and
requires a dictionary for its implementation. Moreover, the
OCR for different languages is quite different. Therefore, we
get rid of the use of OCR technology so as the complexity
of proposed system is greatly simplified. We merely use the
bounding boxes and contours of a journal page to analyze
the document and perform subsequent line classification. A
journal image used in this study is scanned from a journal
page and has been binarized as a black-white image, the J-
image. The following five inherent properties existing in the
J-image are considered for designing our approach.

1) A J-image may possibly be skewed or not.
2) A J-image may possibly be inverted or not.
3) There are possibly tables, graphics, figures, mathemat-

ical expressions, and texts involved simultaneously in
a J-image.

4) It is possible to mix one-column and two-column
formats in a J-image.

5) The mathematical expression may be embedded in a
text line (embedded expression) or not (isolated expres-
sion) as shown in Fig. 1. The embedded expression is
also known as inline expression mixed with ordinary
texts within lines, whereas the isolated expression is
known as a display expression typed in a separated
line.

Fig. 1. Illustration of (A) embedded and (B) isolated mathematical
expression.

In the following, we first give some related works and then
present our approach to dealing with the journal pages with
the mentioned properties.

Mathematical expression detection is a very important step
for journal page analysis and there are many approaches
developed focusing on this issue. Although OCR of mathe-
matical expression is not the main consideration of this paper,
it is worthy of noting some researches on the mathematical
expression recognition. Guo et al. [15] presented an auto-
matic mathematical expression understanding system. Li et
al. [22] devised a baseline structure analysis for studying the
mathematical formula recognition. Tian et al. [28] presented

IAENG International Journal of Computer Science, 44:1, IJCS_44_1_05

(Advance online publication: 22 February 2017)

 
______________________________________________________________________________________ 



a symbol recognition method for mathematical expressions.
Chowdhury et al. [7] developed a segmentation algorithm
for positioning math-zones from document images. These
methods deal only with isolated expressions. Contrarily,
Garain et al. [12] presented a method to identify the embed-
ded expressions. Researches on both isolated and embedded
mathematical expression segmentation and detection can be
found in Refs. [2], [13], [14], [16], [17], [18], [19], [29].

Due to the skewed problem existed in scanned document
images, Das and Chanda [8] proposed a method using mor-
phological operations to draw baselines of the text lines, and
calculating slopes of these baselines to estimate skew angle,
which is used to restore skewed document images. Pal and
Chaudhuri [25] presented improved method using bounding
box of characters to find mean line and base line, and then
to estimate skew angle. Shivakumara and Kumar [27] put
forward a similar method which used pixel coordinates of
centroid, uppermost and lowermost of characters to estimate
skew angle. Although these skew detection methods can
work well for documents with pure texts, they cannot deal
with complex document images involving simultaneously ta-
bles, graphics, figurers, mathematical expressions, and texts.

Recently, many skew detection methods for complex
scanned document images have been proposed. Li et al. [21]
presented a skew angle estimation algorithm using wavelet
decomposition and projection profile analysis. The method
proposed by Liu et al. [23] used borderline extraction of
connected component to estimate skew angle. Fan et al. [11]
proposed a rectangular active contour model to calculate
skew angle in document images. Chou et al. [6] proposed
using piecewise covering by parallelograms to detect skew
angle. This method created non-overlapping slabs and scan
lines as features for skew detection. This method was further
improved by Dey and Noushath [9]. Dhandra et al. [10]
presented using region labeling and image dilation to detect
skew angle, in which the detail of the number of times of
image dilation is unknown. In addition, Manjunath Aradhya
et al. adopted the background growing, thinning, and mo-
ments methods for the skew estimation [24]. A short survey
of skew detection of scanned document images can be found
in [26] and an application to video news system is worthy
of reading [20]. However, the issues of page inverted (180◦)
and page orientation (−90◦ or 90◦) restoration have not been
investigated yet in these skew detection methods.

Text line (or “line” in this paper) extraction is a major
preprocessing for locating a mathematical expression in a
printed document. Some researchers applied the line extrac-
tion for mathematical expression detection or lines removal
of texts, tables, graphics and figures [1], [2], [16], [19], [30].
Tsujimoto and Asada [30] adopted adjacent connected com-
ponents to extract segments and defined four thresholds to
determine words so that they can merge the words into lines.
Similar methods can also be found in Refs. [16], [19], where
line locations are determined based on many thresholds and
therefore these methods require more processing time. Chang
et al. [1] proposed another method which uses projection
profile to determine threshold of space between words and
finally extracts lines. However, their report lacks detailed
statistics analysis for further suggestions.

Typically, extracting isolated mathematical expressions
does not require character recognition. Lee and Wang [19]

defined some detection rules based on the properties of
isolated expression in a printed document, e.g. isolated
expressions printed in a separate line usually is taller than
ordinary texts. Similar method can be found in Ref. [16],
where a number of more detailed rules are defined. Chaud-
huri and Garain [2] analyzed the connected component of
texts to calculate Standard Deviation (SD) of lines, and then
find isolated mathematical expressions that have large SD.
Although it can perform well on some cases, this paper did
not provide further statistics analysis on how to determine
the threshold for the calculated SDs in detecting isolated
mathematical expressions, in particular, how to differentiate a
mathematical expression from figures since the SD of figures
is also very large. Chowdhury et al. [7] used the amount and
the positions of superscripts and subscripts to detect isolated
expressions. However, all of these mentioned approaches do
not consider yet the isolated expression extraction of figures,
graphics and tables.

Methods of extracting embedded mathematical expres-
sions can be performed by using or without using character
analysis. The former methods [2], [12], [14], [19] recognize
each character in each line and perform syntactic analysis to
obtain a high accuracy of embedded expression extraction
with a higher time complexity. The approaches without
character recognition typically produce a lower accuracy
but are more efficiency. For example, Jin et al. [16] used
horizontal projection analysis of lines to detect the positions
of embedded expressions. Kacem et al. [18] adopted the
property of superscripts and subscripts in lines and used
the relative size and position of their contours for embedded
expression extraction.

In this paper, we propose an approach which can effec-
tively restore the skewed and inverted J-images, and identify
large regions possibly having tables, graphics, and figures,
as well as isolated and embedded mathematical expressions.
All algorithms presented in this paper do not use any OCR
process like the method presented in [31]. The flowchart of
the proposed approach is depicted in Fig. 2, which mainly
includes (1) skew restoration, (2) line extraction, (3) page
orientation checking, (4) page inversion checking, (5) large
region identification, as well as (6) isolated and embedded
mathematical expression detection. In what follows, we
present the detailed procedures of each block in Fig. 2
in Sections II-VI. The experiments and analyses will be
discussed in Section VII. The conclusion and future works
are drawn finally in Section VIII.

II. SKEW RESTORATION

A skewed J-image may degrade the performance of line
extraction and therefore skew restoration is a necessary
preprocessing for extracting lines in a J-image. In this study,
we employ a contour based approach to estimate the skew
angle of a J-image. By analyzing the histogram of slopes
of contours in an image, we may find the orientation of the
image. This approach has been well applied in restoring the
orientation of Chinese seal images [3] and printed music
documents [5]. Since a J-image has many text lines, we can
expect that this approach can also be applied in restoring the
orientation of a J-image. However, because a J-image may
contain many large regions such as tables, figures, and graph-
ics, such a contour analysis method may receive a degraded

IAENG International Journal of Computer Science, 44:1, IJCS_44_1_05

(Advance online publication: 22 February 2017)

 
______________________________________________________________________________________ 



Fig. 2. Flowchart of proposed approach.

performance due to the interference of the contours from
these large regions. Hence, for J-image skew restoration, a
more dedicated approach should be developed.

In our system, we get rid of the influence of tables, fig-
ures, and graphics by first applying morphological dilations
to assemble texts into smooth regions. Subsequently, the
contour of each region in the image is extracted and the
inner contours (i.e. the contour inside another contour) are
removed. Only the extreme outer contours are remained for
further processing. Following this, the areas of remained
contours are calculated and the largest mtop contours are
removed. These mtop contours are typically from tables,
figures as well as graphics; and removing them can make
the skew angle estimation more accurate. In our analysis,
mtop is set to 10 and from a series of experiments, the skew
estimation approach can produce an accuracy with mean
error of skew angle below 1◦ for arbitrary image rotation as
presented in Section VII-A. The reader can refer to Ref. [4]
about the detailed procedures of the skew angle estimation,
the determination of mtop, and the experimental results in
our skew restoration method.

(a)

(b)

(c)

(d)

Fig. 3. (a) Original J-image. (b) A(x, y) of (a). (c) DRDE image of (a).
(d) Ã(x, y) of (a).

III. LINE EXTRACTION

Except for the text line, a line in a J-image defined here
may also be a table, figure, graphic, isolated or embedded
mathematical expression, which will be finally identified as
a result of the presented approach. In order to segment a line
in a J-image, the vertical projection, Av(y), and horizontal
projection, Ah(x), of a J-image are defined as follows:

Av(y) =

{
Cb, ∃J(x, y) = Cb,∀x = 0, 1, . . . ,W − 1
Cw, otherwise

(1)
and

Ah(x) =

{
Cb, ∃J(x, y) = Cb,∀y = 0, 1, . . . ,H − 1
Cw, otherwise

(2)
where J(x, y) denotes pixel value at image coordinates
(x, y); W and H are image width and height; and Cb and
Cw represent the black and white pixels, respectively. Av(y)
and Ah(x) tell us the rough vertical and horizontal positions
of a line and by intersecting Av(y) and Ah(x) we can define
a two-dimensional array that includes the blocks of all lines
in a J-image. The two-dimensional array, A(x, y), is defined
as follows:

A(x, y) =

{
Cb, if Av(y) = Cb and Ah(x) = Cb

Cw, otherwise
(3)

Figure 3(b) shows an example of the resulting A(x, y) for
the J-image in Fig. 3(a). From this figure we can observe that
each line in the J-image has been roughly identified. Since
A(x, y) may contain some blocks without any information
in it (i.e. no black J(x, y) in the block), such a block will be
filtered out (i.e. changed to white) before further processing.
Moreover, by examining Fig. 3(b) we can find that some
blocks are not compact. For example, the final block in
Fig. 3(b), which corresponds to the isolated mathematical
expression, contains a large white area in the original J-
image as shown in Fig. 3(a). To obtain more compact lines,
a DRDE image is formed by first identifying the bounding
box of each line using the block in A(x, y). Then, for each
pixel in the bounding box in the original J-image, if there is a
black pixel in that column, the pixel is set to black. This step
can fill some small white gaps in the J-image. Subsequently,
the resulting J-image is dilated two times, reduced to 15%
of its original size, dilated one time and enlarged back to its
original size; and the so-called DRDE image is thus obtained.
The dilation can prevent the disappearance of small symbols
such as ‘-’ and ‘|’, and image size reduction and restoration
is used to find the rough layout of a J-image. The reason of
selecting 15% image reduction will be discussed in Section
VII-B.

Figure 3(c) shows the resulting DRDE image for the J-
image in Fig. 3(a). From this figure we can find that by
image dilation and reduction, DRDE image is able to roughly
locate the regions which contain information of a J-image. By

IAENG International Journal of Computer Science, 44:1, IJCS_44_1_05

(Advance online publication: 22 February 2017)

 
______________________________________________________________________________________ 



(a)

(b)

(c)

(d)

Fig. 4. (a) Original J-image. (b) Ã(x, y) of (a). (c) Ã(x, y) after filtering
out some gray regions. (d) The J-image as well as the resulting bounding
boxes from the extracted blocks.

combining DRDE and A(x, y), an image with more compact
blocks of lines is defined as follows:

Ã(x, y) =

 Cb, if A(x, y) = Cb and DRDE(x, y) = Cb

Cg, if A(x, y) = Cb and DRDE(x, y) = Cw

Cw, otherwise
(4)

where Cg indicates a gray pixel. Figure 3(d) shows the
resulting Ã(x, y) for the J-image in Fig. 3(a). The gray
regions in Ã(x, y) is typically generated from the indent of
a new line or the white space of an isolated mathematical
expression. Hence, removing them can perform a more
compact line extraction for a journal page. However, directly
removing the gray regions may sometimes result in undesired
effects. Figure 4 shows another example for line extraction.
In this case if we remove all the gray regions, the isolated
mathematical expression will be divided into two parts due to
the small gray gap in the line as Fig. 4(b) shows, which is an
unwanted situation since these two parts belong to a single
mathematical expression indeed. To avoid such a situation,
we devise a simple rule to remove the gray regions. For each
block, we only remove the largest two gray regions, reserving
the other gray regions in the block. Figure 4(c) shows the
resulting Ã(x, y) after removing the largest two gray regions
in each block. The resulting line extraction is more accurate
for the isolated mathematical expression. According to the
resulting Ã(x, y) we can find the bounding box of each
block as shown in Fig. 4(d) where the red rectangles are
the extracted bounding boxes.

Examining Fig. 4 we can observe that the text lines are
sometimes merged to form a large block. This is not what
we want and we can decompose it by checking the pixels of

J-image inside the detected bounding box. If there is a row
in the bounding box consisting entirely of white pixels, the
pixels in the row of corresponding Ã(x, y) are changed to
white. This can divide a large block of Ã(x, y) into several
small blocks, where each block represents a line in the J-
image. Following this, the bounding boxes for the resulting
Ã(x, y) are detected again. Figure 5 shows the results of
our line extraction for a J-image. We can observe that most
lines in the journal page are well extracted by proposed line
extraction algorithm.

Fig. 5. Results of line extraction. Each line is identified by a red bounding
box.

IV. PAGE ORIENTATION CHECKING

Page orientation checking indicates that we want to de-
termine the orientation, i.e. portrait or landscape, of a J-
image. In most cases, our skew restoration can amend the
incorrect page orientation but sometimes an image would be
rotated to a landscape orientation because of incorrect scan
process. Therefore, we include the page orientation checking
to correct such a situation.

Because we have extracted the lines of a journal page in
previous stage, we can employ the results of line extraction to
check page orientation. A published journal paper is usually
printed in portrait orientation and in such a situation the
resulting bounding box of each line has typically a larger
width than height. Hence, by counting the number of portrait
and landscape bounding boxes we can easily determine the
orientation of a J-image. Let Nw denote the number of

IAENG International Journal of Computer Science, 44:1, IJCS_44_1_05

(Advance online publication: 22 February 2017)

 
______________________________________________________________________________________ 



(a) (b)

(c)

Fig. 6. (a) Base line and top line of English letters. (b) The upper and low bounding curves for three extracted lines. (c) The variances of upper and low
bounding curves of extracted lines in a journal page.

bounding boxes of extracted lines whose width is greater
than height, and Nh be the number of bounding boxes whose
height is greater than width. Then, if Nh > Nw, the J-
image is in landscape orientation and should be rotated 90◦

to restore it orientation.

V. PAGE INVERSION CHECKING

Sometimes a journal page may be inverted due to scanning
failure or if the page has greater than 180◦ image skew,
it may also be inverted after skew restoration. Hence, page
inversion detection is necessary to correct such error. In this
study, we achieve this by checking the variances of upper
and lower bounding curves of extracted lines.

Since most journal pages are typed using lowercase En-
glish letters, only the lowercase English letters are considered
to design our page inversion checking process. By observing
the lowercase English letters, we have the base and top lines
as illustrated in Fig. 6(a). For the 26 lowercase English
letters, 5 letters, i.e. ‘g’, ‘j’, ‘p’, ‘q’ and ‘y’, have strokes
below the base line, while the 9 letters, namely ‘b’, ‘d’,
‘f’, ‘h’, ‘i’, ‘j’, ‘k’, ‘l’ and ‘t’, have strokes above the top
line. Hence, we believe that for a non-inverted J-image the
probability of black pixels above top lines is greater than that
of black pixels below base lines. However, the base and top
lines are not easy to locate in a J-image. Hence, we employ
the curves enveloping an extracted line to design our page
inversion checking. The upper and lower curves enveloping

an extracted line are named the upper bounding curve (UBC)
and lower bounding curve (LBC), respectively. Figure 6(b)
shows three text lines and the associated UBCs and LBCs.
To find UBC and LBC, we first find the contours in a line
and then determine the bounding boxes of these contours.
For an ordinary text line, a contour is typically from a letter
and therefore the UBC is obtained by connecting the left-
top corner of the bounding boxes in a line. Similarly, the
LBC is obtained by connecting the left-bottom corner of the
bounding boxes in the line. If a text line has many black
pixels above the top line, the variance of the y-coordinates
of its UBC (or the variance of UBC in short) should also be
high. Hence, by comparing the variances of UBC and LBC,
we can determine whether the page is inverted or not.

Figure 6(c) shows the obtained variances of UBC and LBC
for a non-inverted journal page. From this figure we can
find that for most lines the variance of UBC is greater than
that of LBC. Hence, our page inversion checking is achieved
by counting the number of lines whose variance of UBC is
greater than that of LBC. If the number of such lines is
greater than half of the number of total lines in the page,
the page is not inverted. Otherwise, the page is inverted and
should be corrected by flipping the image vertically.

To test the effectiveness of proposed page inversion check-
ing process, we collected 859 non-inverted J-images and
inverted them to form 859 inverted J-images. These inverted
J-images as well as the 859 non-inverted J-images were then

IAENG International Journal of Computer Science, 44:1, IJCS_44_1_05

(Advance online publication: 22 February 2017)

 
______________________________________________________________________________________ 



used to test our page inversion checking algorithm. Exper-
imental results showed that all inverted and non-inverted
J-images were correctly detected. This confirms the good
performance of our page inversion checking method.

VI. LINE DETECTION

We now describe our approach for classifying the extracted
lines. They are classified into four categories, namely, or-
dinary text lines; lines for table, graphic and figure; lines
for isolated mathematical expression; and embedded math-
ematical expression lines. In the process of line detection,
some extracted lines may also be combined to form a more
correct object. We will first differentiate ordinary text lines
from other objects.

A. Text line detection

In Section V, we have defined LBC and use its variance,
i.e. Var(LBC), to detect inverted J-image. In fact, the variance
of LBC can also be used to distinguish text lines from non-
text lines. We found that a text line has typically much
smaller Var(LBC) than that of non-text lines. Hence, by
simple thresholding on Var(LBC) of detected lines, the text
lines can be identified easily.

In order to minimize classification error, we adopted 100 J-
images to support the selection of threshold value. The lines
in the 100 J-images are detected and then classified into text
and non-text lines via human inspection. Subsequently, the
Var(LBC) of each line is calculated and the histograms of
text and non-text lines are computed and plotted as shown
in Fig. 7. This figure tells us that a threshold of 6.0 can yield
a minimal classification error. Hence, if a line with Var(LBC)
less than 6.0, this line is classified as Otext, indicating it is
an object of text line. Otherwise, the line is classified as
Onon−text for further processing.

Fig. 7. Histograms of variances for text and non-text lines. The intersection
of the two curves is at variance 6.0.

An unexpected situation is however found that sometimes
the superscript and subscript of an isolated mathematical
expression may be extracted as individual lines as illustrated
in Fig. 8. These lines have very small Var(LBC) and therefore
are classified as Otext. To amend this problem, each line in
Otext are re-examined. We found that if a line is extracted
from superscripts or subscripts of an isolated mathematical
expression, it typically has a lot of white pixels inside the

bounding box of that line (see Fig. 8). Hence, by thresholding
the density of black pixels of the bounding box of a line,
we are able to differentiate the lines of superscripts or
subscripts from ordinary text lines. Specifically, let Dk be
the density of black pixels for the kth line in Otext, and
let µD and σD denote the mean and standard deviation of
the density of black pixel for all the lines in Otext. Then, if
Dk < µD − 2σD, the line is classified as Oscript, indicating
that it is a line from the superscript or subscript of an isolated
mathematical expression. The lines in Oscript will be further
processed in Section VI-C. Typically, it will be combined
with the line of an isolated mathematical expression to obtain
more accurate classification.

Fig. 8. Extracted lines for isolated mathematical expressions. Note that
sometimes the subscript or superscript is in an individual line.

B. Table, graphic, figure, and mathematical expression de-
tection

Now we classify the objects or lines in the class
Onon−text. We first extract the objects belonging to tables,
graphics, and figures, leaving isolated and embedded math-
ematical expressions in Onon−text. Because tables, figures,
and graphics are typically higher than the lines of math-
ematical expressions, we can distinguish them by simply
thresholding the height of these objects. Let W̄ and H̄
denote the average width and height of all extracted lines
in a J-image. From our experiments, we found that the
height of table, figure, and graphics is usually greater than
3H̄ . Therefore, if the height of an object in Onon−text is
greater than 3H̄ , this object is classify as Ofig . However,
this simple rule cannot completely distinguish mathematical
expressions from tables or figures. Some large lines of isolate
mathematical expression may be falsely classified as Ofig .
Hence, the objects in Ofig need further checking to find such
isolated mathematical expressions.

A mathematical expression is typically composed of num-
bers, variables, and operators, and has many white gaps
between these elements. On the other hand, a table or figure
is typically more compact with few large and vertical white
gaps inside them. Hence, by dividing an object into several
parts according to vertical white gaps, we may differentiate a
mathematical expression from figures and tables. To achieve
this, for each object in Ofig we first perform two dilations on
the image. The two dilations can fill some small white gaps
of a figure or graphic, while insufficient to fill the large white
gaps of a mathematical expression. An example of applying
dilations on a figure is shown in Fig. 9, where the figure is no
longer divided into two parts after dilations. After performing
dilations, we then decompose the object according to vertical
white gaps. Subsequently, two rules are designed and if an
object from Ofig satisfies these two rules, it is re-classified

IAENG International Journal of Computer Science, 44:1, IJCS_44_1_05

(Advance online publication: 22 February 2017)

 
______________________________________________________________________________________ 



as OiMath, the class of isolated mathematical expression.
The two rules are listed as follows.

1) If the number of parts of an object after white gap
division is greater than 3, the object may be an isolated
mathematical expression and should be verified by the
second rule. The threshold 3 is obtained from the
simplest case, y = x, where the number of parts after
white gap division should be 3. For more complicated
cases, the number of parts is usually greater than 3.

2) Because some symbols in a complex isolated mathe-
matical expression have very large width or height, we
further check the average width and height of symbols
in an object. We first find the contour of each symbol
in the object and then find the bounding boxes of these
symbols. Let Wm and Hm denote the average width
and height of the bounding boxes of symbols in the
object. If Hm is greater than 3H̄ or Wm is greater
than 3H̄ , the object is assigned to OiMath.

(a)

(b) (c)

Fig. 9. (a) A figure in a journal page. (b) The corresponding Ã(x, y)
without dilations. (c) Ã(x, y) with dilations.

C. Further mathematical expression checking
After detecting table and figure objects in Onon−text,

the remaining objects in Onon−text are mostly isolated and
embedded mathematical expressions. Note that we have a
class Oscript in which the objects are typically generated
from superscripts or subscripts of a mathematical expression.
These objects should be combined with an isolated or embed-
ded mathematical expression to obtain a more accurate line
detection. Hence, for each object in Oscript, we compare
its position with the objects in Onon−text. If two objects
have overlapped horizontal position and their shortest vertical
distance is smaller than H̄ , the two objects are combined
and put back to Onon−text. If we cannot find an object in
Onon−text satisfying this condition, the object in Oscript is
re-classified to the class of Otext.

After processing all objects in Oscript, we then examine
the objects in Onon−text to differentiate isolated math-
ematical expressions from embedded expressions. In this
study, a line of embedded mathematical expression indicates
that there is a mathematical expression in a text line. We
do not segment the mathematical expression from the text
line, thus the width of the line is roughly the same as a
typical text line. On the other hand, an isolated mathematical
expression is located in a separate line and its width is
typically less than that of an ordinary text line. Moreover,
the height of an isolated mathematical expression is typically
greater than that of an ordinary text line. According to these
observations, we design the following rule to distinguish
isolated mathematical expression from embedded one. For
each object in Onon−text, we define Wblock as the horizontal
distance between the leftmost and rightmost black pixels in
the bounding box of the object. If Wblock is less than W̄ or
the height of the object is greater than 1.5H̄ , the object is
classified as OiMath. Otherwise, the object is classified as
OeMath, the class of embedded mathematical expression.

D. Equal mark checking

In this study, we employ Var(LBC) to differentiate ordi-
nary text lines from other objects. However, the Var(LBC) of
an embedded mathematical expression line is quite similar to
that of ordinary text lines. Moreover, section titles of a paper
have typically large Var(LBC) and may be mis-classified
as isolated mathematical expression lines. Hence, a refine-
ment process may be designed to improve the classification
accuracy. Fortunately, mathematical expressions often have
an equal mark (‘=’) which can be employed to correct the
mentioned classification failure.

We observed that an equal mark is composed of two
horizontal lines, and hence we can exploit this property to
detect it. We first extract every symbol in an extracted line by
detecting contours in the line. Following this, the bounding
box of each contour is identified. If the width of a box is
larger than 3 times of its height, this symbol is recognized
as a horizontal line. If there are two such lines in a local
area, an equal mark is identified. We apply this equal mark
detection technique to the lines or objects in the classes of
Otext, OiMath, and OeMath. For an object in Otext, if an
equal mark is detected, the object is then re-classified to the
class of OeMath. Similarly, for a line in OiMath or OeMath,
if we cannot detect an equal mark, the line is re-classified as
Otext. The refinement process by equal mark detection can
further improve our classification accuracy of line detection.

VII. EXPERIMENTS AND DISCUSSION

A. Performance of our skew estimation approach

We used 859 J-images being converted into 200 dpi
resolution from the PDFs of technical journals, which in-
clude tables, graphics, figures mathematical expressions, and
normal text, for the validation of the performance of our skew
angle estimation method. Two categories of skewed J-images
were used in this validation as listed in Table I. According
to our early study in [4], the range of dilation times between
14 and 24 is suggested for use in the skew estimation
approach. Hence, for each case, we compute all PTAD, D
= 14, 15, · · ·, 24. Then we use (a) mean∀D(PTAD) and

IAENG International Journal of Computer Science, 44:1, IJCS_44_1_05

(Advance online publication: 22 February 2017)

 
______________________________________________________________________________________ 



(b) median∀D(PTAD) to represent the final skew estimation
result. After performing the skew estimation on all cases,
all PTAs are obtained. The plots of mean error between the
computed PTA and the corresponding ground truth versus
the skewed angles are given in Fig. 10(a) and Fig. 10(b)
using mean∀D(PTAD) and median∀D(PTAD), respectively.
In these two plots, we found that the small mean errors about
0.1◦ are apparently located at the range of skewed angles
between 1◦ and 25◦, as well as between 70◦ and 90◦. This
confirms that our skew estimation method can perform an
effective skewed J-image adjustment for normal cases.

TABLE I
TWO CATEGORIES OF SKEWED J-IMAGES WERE USED FOR VALIDATING

THE PROPOSED SAE METHOD.

Category 1 Category 2
1◦ 20◦
2◦ 25◦
3◦ 30◦
4◦ 35◦
5◦ 40◦
6◦ 45◦
7◦ 50◦
8◦ 55◦
9◦ 60◦
10◦ 65◦
11◦ 70◦
12◦ 75◦
13◦ 80◦
14◦ 85◦
15◦ 90◦

B. Determining image reduction size in line extraction

In our line extraction algorithm in Section III, we used
a DRDE image to help us find the rough layout of a J-
image. In forming the DRDE image, the original J-image is
dilated, reduced in size, dilated again, and finally restored
to its original size. Image reduction is a critical step in
this algorithm as it can neglect the detailed information of
a J-image while preserving the global view of the image.
However, the size of reduction has a great impact on the
final result of line extraction. If an image is slightly reduced,
some holes in the image will be preserved and a single text
line may break into several lines. On the other hand, if the
reduction is too much, the regions of different lines may
merge into a large block and the extraction of individual
line may fail. Figure 11 shows two examples of different
reductions. We can see that for large image reduction (e.g.
reduced to 5% of its original size), some lines are missed and
some large blocks are produced; while for slight reduction
(e.g. 95% of its original size), some broken lines are detected.
Hence, we need a suitable size of image reduction to obtain
satisfactory line extraction.

We conducted an experiment to determine the size of re-
duction. We use three types of J-images, namely one-column,
two-column, and two-column mixed with one-column, for
the experimental test. The lines on these images are extracted
using different size of image reduction. The results are
depicted in Fig. 12, where the number of extracted lines is
plotted against image reduction from 1% to 95%. As there
are several thousands of lines in these images, checking

(a)

(b)
Fig. 10. Plots of mean error between the computed PTA and the correspond-
ing ground truth against the skewed angles for using (a) mean∀D(PTAD)
and (b) median∀D(PTAD), respectively

the correctness of these lines is very tedious and time-
consuming work. Hence we tried to find the suitable size
of image reduction by an observation. If a line is correctly
extracted, then it should also be extracted when the size of
reduction is slightly changed. In other words, the number
of extracted lines should be quite stable at a certain range
of size reduction. Figure 12 confirms this observation where
the number of extracted lines is very stable at the range of
10% to 20% image reduction. Hence, we select the median
of the range, i.e. 15% image reduction, for the generation
of DRDE image in our line extraction algorithm. From
our experiments, 15% image reduction can produce very
satisfactory line extraction results.

C. Line detection results

We now evaluate the performance of proposed line extrac-
tion and detection algorithm. 417 journal pages scanned by a
Panasonic KV-S3065C Scanner with resolution 200 dpi were
used to test the proposed algorithm. In addition to ordinary
text, these journal pages also contain many tables, graphics,
figures, and mathematical expressions. Figure 13 shows the
detection results of three J-images, where different objects
are enclosed by rectangles of different colors. Ordinary texts
are enclosed by red rectangles, while figures, isolated, and
embedded mathematical expressions are enclosed respec-
tively by green, black, and blue rectangles. This figure can
let us roughly understand the region and position of extracted

IAENG International Journal of Computer Science, 44:1, IJCS_44_1_05

(Advance online publication: 22 February 2017)

 
______________________________________________________________________________________ 



(a) (b)

Fig. 11. Line extraction under different sizes of image reduction. In (a), the J-image is reduced to 5% of its original size, while in (b) the reduction is
95%.

Fig. 12. Number of extracted lines against different sizes of image reduction
for three types of J-images.

lines and its classification results. Most objects in the images
are well localized and identified.

To further understand the classification accuracy of pro-
posed approach, each extracted line in the 417 J-images
is investigated to verify its correctness. Table II lists the
number of objects, number of detected objects, and number
of detected but mis-classified objects for the four categories
of objects. The table also shows the classification accuracy
of each category, which is defined as one minus the number
of detected but mis-classified objects over the number of

TABLE II
ACCURACY OF OBJECT DETECTION USING PROPOSED APPROACH.

HERE N1 , N2 , AND N3 REPRESENT NUMBER OF OBJECTS, DETECTED
OBJECTS, AS WELL AS DETECTED BUT MISS-CLASSIFIED OBJECTS,

RESPECTIVELY.

Otext Ofig OiMath OeMath All objects
N1 25686 509 1682 1588 29465
N2 25610 483 1757 1615 29465
N3 218 46 164 159 587
Accuracy 99.2% 91% 90.2% 90% 98%

objects in that category. From this table we can see that for
ordinary text which occupies a very large portion of detected
lines, the accuracy approaches 99%, while for the other three
categories of objects, the accuracies are about 90%. The
accuracy considering all four types of objects can achieve
to nearly 98%. This demonstrates the potential of proposed
approach to be an effective technique for analyzing scanned
journal pages without employing any OCR technology.

In order to further improve the accuracy of proposed
system in the future, some lines that are falsely classified are
examined. Four cases of mis-classified objects are displayed
in Fig. 14 and discussed in the following.

1) Some embedded mathematical expressions are located
at the final line of a paragraph and hence the lines have
smaller width. These lines are classified as isolated
mathematical expressions as shown in Fig. 14(a).

IAENG International Journal of Computer Science, 44:1, IJCS_44_1_05

(Advance online publication: 22 February 2017)

 
______________________________________________________________________________________ 



(a) (b)

(c)

Fig. 13. Some J-images with detected lines for the cases of (a) one-column, (b) two-column, and (c) two-column mixed with one-column. The red, green,
black, and blue rectangles indicate the extracted lines are ordinary texts, figure objects, isolated mathematical expressions, and embedded mathematical
expressions, respectively.

2) Some isolated mathematical expressions have a con-
junction such as “and” between them. Because its posi-
tion (and density of black pixels) is very similar to that
of a superscript or subscript of isolated mathematical
expressions, it is possibly detected as a superscript or
subscript as shown in Fig. 14(b).

3) Some headers and footers in a J-image consisting of
complex logos or images are possibly classified as an
isolated mathematical expression as the example shown
in Fig. 14(c).

4) Some text lines have large embedded mathematical

expressions in them. These lines are not easily to
decompose by simple horizontal scanning of white
pixels along a row. Hence, these lines may merge to a
large block which may be classified as a figure object
as show in Fig. 14(d).

Although some lines were not correctly classified, our
approach still performed well for most objects. Moreover, our
approach has strong capability in J-image skew restoration,
page orientation recovering, and page inversion correction.
We believe that it could be a useful preprocessing tool for
further journal page understanding.

IAENG International Journal of Computer Science, 44:1, IJCS_44_1_05

(Advance online publication: 22 February 2017)

 
______________________________________________________________________________________ 



(a)

(b)

(c)

(d)
Fig. 14. Four cases of false line detection.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we have presented an effective journal page
analysis system which can extract the lines in the page and
classify them into four categories including ordinary text
lines, figures or tables, isolated mathematical expressions,
and embedded mathematical expression lines. Image skew,
incorrect image orientation, and page inversion that might be
produced from scanning imperfections were also considered
in the system. The proposed system can perfectly detect such
imperfections and correct an image to an appropriate orienta-
tion. The system design is based on very fundamental image
processing techniques such as vertical and horizontal image
scanning, image dilation, and size reduction. Most lines in a
journal image were correctly extracted by these techniques.
The classification of extracted lines is also achieved by
simple techniques such as variance of lower bounding curve
of a line, width or height of the extracted line, and equal
mark checking. No OCR technique is applied in our approach
which makes the system easy to be implemented. Although
the design of the system is simple, experimental results on
417 journal pages showed that the system can achieve to 90%
above detection accuracy for extracted lines. This confirms
the feasibility of the proposed approach.

In addition to improving detection accuracy, along this
research the mathematical expression analysis is worthy of
studying in the near future, which may include three main
processes. They are to recognize the symbols and operators
in a mathematical expression line, construct the relationships
among the recognized objects, and translate the mathematical
expression into a Tex (LaTex) format for further application.
It is expected that such a future work may benefit the
transformation of a J-image into a well-structured document
as well as the application of document retrieval.

REFERENCES

[1] T.-Y. Chang, Y. Takiguchi, and M. Okada, “Physical structure segmen-
tation with projection profile for mathematic formulae and graphics
in academic paper images,” in International Conference on Document
Analysis and Recognition, vol. 2, pp. 1193–1197, 2007.

[2] B. Chaudhuri and U. Garain, “An approach for recognition and in-
terpretation of mathematical expressions in printed document,” Pattern
Analysis and Applications, vol. 3, pp. 120–131, 2000.

[3] Y.-S. Chen, “Registration of seal images using contour analysis,” in
Proc. 13th Scandinavian Conference on Image Analysis, vol. LNCS
2749, pp. 255–261, 2003.

[4] Y.-S. Chen and P.-H. Li, “Skew detection using contour analysis for a
scanned journal page,” in Proc. The 13th IAPR International Conference
on Machine Vision Applications, pp. 81–84, 2013.

[5] Y.-S. Chen, F.-S. Chen and C.-H. Teng, “An optical music recognition
system for skew or inverted musical scores,” International Journal of
Pattern Recognition and Artificial Intelligence, vol. 27, no. 7, 1353005
(23 pages), 2013.

[6] C.-H. Chou, S.-Y. Chu, and F. Chang, “Estimation of skew angles for
scanned documents based on piecewise covering by parallelograms,”
Pattern Recognition, vol. 40, no. 2, pp. 443–455, 2007.

[7] S. Chowdhury, S. Mandal, A. Das, and B. Chanda, “Automated seg-
mentation of math-zones from document images,” in Proc. International
Conference on Document Analysis and Recognition, pp. 755–759, 2003.

[8] A. Das and B. Chanda, “A fast algorithm for skew detection of doc-
ument images using morphology,” International Journal on Document
Analysis and Recognition, vol. 4, no. 2, pp. 109–114, 2001.

[9] P. Dey and S. Noushath, “e-PCP: A robust skew detection method for
scanned document images,” Pattern Recognition, vol. 43, no. 3, pp.
937–948, 2010.

[10] B. V. Dhandra, V. S. Malemath, H. Mallikarjun, and R. Hegadi, “Skew
detection in binary image documents based on image dilation and
region labeling approach,” in Proc. International Conference on Pattern
Recognition, vol. 2, pp. 954–957, 2006.

[11] H. Fan, L. Zhu, and Y. Tang, “Skew detection in document images
based on rectangular active contour,” International Journal on Docu-
ment Analysis and Recognition, vol. 13, no. 4, pp. 261–269, 2010.

[12] U. Garain, B. Chaudhuri, and A. Chaudhuri, “Identification of em-
bedded mathematical expressions in scanned documents,” in Proc.
International Conference on Pattern Recognition, vol. 1, pp. 384–387,
2004.

[13] U. Garain and B. Chaudhuri, “Segmentation of touching symbols
for OCR of printed mathematical expressions: an approach based on
multifactorial analysis,” in Proc. International Conference on Document
Analysis and Recognition, pp. 177–181, 2005.

[14] U. Garain, “Identification of mathematical expressions in document
images,” in Proc. International Conference on Document Analysis and
Recognition, pp. 1340–1344, 2009.

[15] Y. S. Guo, L. Huang, C. P. Liu, and X. Jiang, “An automatic
mathematical expression understanding systems,” in Proc. International
Conference on Document Analysis and Recognition, vol. 2, pp. 719–
723, 2007.

[16] J. Jin, X. Han, and Q. Wang, “Mathematical formulas extraction,” in
Proc. International Conference on Document Analysis and Recognition,
pp. 1138-1141, 2003.

[17] A. Kacem, A. Belaid, and M. Ben Ahmed, “EXTRAFOR: automatic
extraction of mathematical formulas,” in Proc. International Conference
on Document Analysis and Recognition, pp. 527–530, 1999.

[18] A. Kacem, A. Belaid, and M. Ahmed, “Embedded formulas extrac-
tion,” in Proc. International Conference on Pattern Recognition, vol. 1,
pp. 676–680, 2000.

[19] H. J. Lee and J. S. Wang, “Design of a mathematical expression
understanding system,” Pattern Recognition Letters, vol. 18, no. 3, pp.
289–298, 1997.

[20] J.-H. Lee, M.-Y. Wu and T.-H. Tseng, “A framework of video news
system using image segmentation and augmented reality,” Lecture Notes
in Engineering and Computer Science: Proceedings of The World
Congress on Engineering 2011, WCE 2011, 6-8 July, 2011, London,
U.K., pp. 1663–1668.

[21] S. Li, Q. Shen, and J. Sun, “Skew detection using wavelet decompo-
sition and projection profile analysis,” Pattern Recognition Letters, vol.
28, no. 5, pp. 555–562, 2007.

[22] Y. Li, K. Wang, W. Guan, and L. Tang, “The research of mathematical
formula recognition method base on baseline structure analysis,” in
Proc. International Conference on Internet Computing in Science and
Engineering, pp. 53–59, 2008.

[23] H. Liu, Q. Wu, H. Zha, and X. Liu, “Skew detection for complex
document images using robust borderlines in both text and non-text
regions,” Pattern Recognition Letters, vol. 29, no. 13, pp. 1893–1900,
2008.

IAENG International Journal of Computer Science, 44:1, IJCS_44_1_05

(Advance online publication: 22 February 2017)

 
______________________________________________________________________________________ 



[24] V. N. Manjunath Aradhya, G. Hemantha Kumar and P. Shivakumara,
“Skew estimation technique for binary document images based on
thinning and moments,” Engineering Letters, vol. 14, no. 1, pp. 127–
134, 2007.

[25] U. Pal and B. B. Chaudhuri, “An improved document skew angle
estimation technique,” Pattern Recognition Letters, vol. 17, no. 8, pp.
899–904, 1996.

[26] S. B. Rezaei, A. Sarrafzadeh and J. Shanbehzadeh, “Skew detection
of scanned document images,” Lecture Notes in Engineering and
Computer Science: Proceedings of The International MultiConference
of Engineers and Computer Scientists 2013, IMECS 2013, 13-15 March,
2013, Hong Kong, pp. 451–456.

[27] P. Shivakumara and G. Hemantha Kumar, “A novel boundary growing
approach for accurate skew estimation of binary document images,”
Pattern Recognition Letters, vol. 27, no. 7, pp. 791–801, 2006.

[28] X. D. Tian, H. Y. Li, X. F. Li, and L. P. Zhang, “Research on symbol
recognition for mathematical expressions,” in Proc. International Con-
ference on Innovative Computing, Information and Control, vol. 3, pp.
357–360, 2006.

[29] J. Y. Toumit, S. Garcia-Salicetti, and H. Emptoz, “A hierarchical and
recursive model of mathematical expressions for automatic reading
of mathematical documents,” in Proc. International Conference on
Document Analysis and Recognition, pp. 119–122, 1999.

[30] S. Tsujimoto and H. Asada, “Major components of a complete text
reading system,” Proceedings of the IEEE, vol. 80, no. 7, pp. 1133–
1149, 1992.

[31] S. Yadav and S. Sawarkar, “Retrieval of information in document
image databases using partial word image matching technique,” Lecture
Notes in Engineering and Computer Science: Proceedings of The
International MultiConference of Engineers and Computer Scientists
2009, IMECS 2009, 18-20 March, 2009, Hong Kong, pp. 902–907.

IAENG International Journal of Computer Science, 44:1, IJCS_44_1_05

(Advance online publication: 22 February 2017)

 
______________________________________________________________________________________ 




