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Abstract—Power system is an essential system in satellite, 

which ensures the security and stability of energy in the whole 

satellite system. This paper presents a mixed relevance vector 

machine with modified particle swarm optimization 

(MPSO-RVM) algorithm to forecast parameters intervals of 

satellite power system involved the main bus load current and 

the main bus voltage. First, RVM with radial basis kernel 

function is established to solve the regression problems of the 

data in satellite power system. Next, modified PSO algorithm is 

utilized to find out the optimal parameters of RVM to enhance 

the generalization capability. In addition, the self-adaptive 

parameter setting mechanisms is conceived to avoid the MPSO 

algorithm trapping into the local optima. Moreover, 

MPSO-RVM model can obtain desirable prediction intervals 

rather than prediction values. Experimental results 

demonstrate that MPSO-RVM model can achieve better 

prediction accuracy, sparser solution and shorter test-time than 

RVM model and PSO-SVR model. Meanwhile, the majority of 

samples are located into the prediction interval obtained at 

higher confidence level. Therefore, the proposed MPSO-RVM 

model vividly depicts the variation tendency of parameters in 

satellite power system, which is conducive to adopt available 

measures for avoiding satellite accidents and faults initiatively. 

 

Index Terms—Satellite Power System, Prediction Interval, 

Relevance Vector Machine (RVM), Modified Particle Swarm 

Optimization (MPSO) 

 

I. INTRODUCTION 

ower system is an important subsystem in 

multi-functional and complicated satellite system [1]. 

The satellite power system mainly includes solar array, 

storage battery, power cable, power regulation circuit and 

corresponding control system [2]. Fig. 1 shows the schematic 

structure of satellite power system with the process of 

supplying and discharging. As an important equipment in 

satellite power system, the main bus has two crucial 

parameters included the load current (denoted by IN1) and 

the load voltage (denoted by VN1). The main bus load 

current represents the current inflowing into the load through 
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main bus filter capacitor. Similarly, the main bus voltage 

expresses the voltage among main bus. Up to now, there are 

many catastrophic accidents or temporary malfunctions in the 

satellite resulting from power system failures, see 

http://www.sat-nd.com/failures/ [3]. Therefore, it is one of 

the most significant subjects for researchers to prevent 

satellite accidents by detecting anomalous states of power 

system. 
 

solar cellsolar cell

diversion 

coordinator

diversion 

coordinator

output current

and voltage

bus voltage 

sampling 

signal

bus voltage 

sampling 

signal

main busmain bus
output current and voltage

main bus 

filter 

capacitor

main bus 

filter 

capacitor

 main bus output 

current and voltage

loadload

main bus  load 

current and voltage

storage 

battery

storage 

battery

output of the 

charging current

and voltage

state of Charge for

 Storage Battery

boost 

coordinator

boost 

coordinator

 output bus 

of storage 

battery

 output bus 

of storage 

battery

 storage battery

supply current 

and voltage

 storage battery

output current 

and voltage

 
Fig. 1 The schematic structure of satellite power system 

 

Recent years, many methods are proposed to predict 

anomalies of satellite power system [4]. Pan et al. [5] 

presented a data-driven method to monitor satellite power 

system anomalies using kernel principal component analysis 

(KPCA) and association rule mining. This method achieves 

better performance on distinguishing anomalies, but it is not 

suitable for on-line anomaly detection system. Wang et al. [6] 

proposed an approach to detect satellite power system’s 

faults based on wavelet which reduces the effects of the noise 

data. Xie [7] et al. researched the fault detection of satellite 

power system using Bayesian Network, the results indicate 

the model deals with the uncertainties of fault diagnosis 

efficiently. Fang et al. [8] researched the health state 

evaluation on component-level and system-level satellite 

power system respectively and proposed a method based on 

SVM [9] to find health degradation and hidden danger of 

satellite power system. This method achieves the automation 

management of satellite power system and improves the 

system’s accuracy. But SVM has problems of worse sparse 

capability, a deterministic output rather than a probability 
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distribution, and high time-consuming [10] [11]. After 

researching to solve this problems, a new thought called 

relevance vector machine (RVM) [12] is proposed. Wang 

and Liu [13] studied on forecasting the short-term load in 

electric power systems using RVM model with PSO 

algorithm. The results show that PSO-RVM model is sparser 

and can obtain higher forecasting accuracy compared with 

conventional models. Jin [14] presented a fault recognition 

method for automobile engine using improved PSO-RVM, 

and the method could obtain a sparser solution and the time 

spent on testing is smaller. In addition, the RVM relaxes the 

restrictions on the kernel function, and obtains the probability 

distribution of output [15]. Similarly, PSO-RVM model 

could also be applied to forecast satellite power parameter 

interval. 

However, the difficulty in selecting proper RVM 

hyper-parameters slows down the velocity to resolve the 

practical problems significantly [16]. There are many 

efficient algorithms proposed in handling optimization 

problems in recent researches, such as particle swarm 

optimization (PSO) [17], genetic algorithms (GA) [18], and 

so on. Among these intelligent algorithms, PSO algorithm 

displays some significant features, like excellent 

performance and easy-to-implement virtue [19]. Therefore, 

PSO algorithm is an attractive option to optimize RVM 

parameter. To improve original PSO, a modified PSO 

(MPSO) is proposed by modifying accelerating factors, 

random variables and inertia weight. 

In this paper, we propose a mixed MPSO-RVM model for 

forecasting the satellite power system parameters (IN1 and 

VN1 respectively) intervals. In the model, a modified PSO 

algorithm is utilized to find out optimal parameters of RVM 

to enhance the generalization capability. In order to validate 

the superiority of the model, we carry out research on the 

performance of MPSO-RVM compared with RVM and 

PSO-SVR. The remainder of the paper is organized as 

follows: The fundamental principle of RVM is introduced in 

Section II briefly and then section III elaborates the basic 

theory and algorithm of MPSO. A mixed MPSO-RVM 

model to forecast the satellite power system parameter 

interval is proposed in Section IV. Section V discusses the 

experimental analysis of MPSO-RVM model. Finally, this 

paper draws some conclusions in Section VI. 

 

II. RELEVANCE VECTOR MACHINE 

Relevance Vector Machine (RVM) [12] proposed by 

Doctor Michael E Tipping is a new supervised learning 

algorithm based on Bayesian Theorem, Markov Property, 

automatic relevance determination (ARD), maximum 

likelihood and many kinds of theories [12][20][21]. RVM 

has similar structure of SVM, which can solve the nonlinear 

regression problems with small and high dimension samples, 

and also overcomes some problems of large number of free 

parameters, the difficulty in determining the parameters, and 

the kernel function abided by Mercer conditions [22]. In 

addition, the training model of RVM is sparser, and it can 

obtain the probability distribution of output. Because the 

test-time is shorter, thus it is more suitable for real-time 

prediction or online prediction [23] [24].  

In the process of general regression prediction modeling, 

firstly give a training sample set including the input vector 

1{ }N

n nx   and corresponding target value 1{ }N

n nt  , where 
nt  is the 

actual value. According to RVM theory [12], the function of 

RVM obeys the following form: 

0

1

( ; ) ( , ) ( )
N

T

i i

i

y x w w K x x w w x


                     (1) 

where w represents weight vector whose value is 

0 1( , , , )T

nw w w w , K denotes kernel function, and ( )x is the 

linear combination of kernel functions defined as 

1 2( ) [1, ( , ), ( , ), , ( , )]T

Nx K x x K x x K x x  . Thereby, in order to 

estimate the specific form of model, we need to select 

appropriate kernel function and determine the value of each 

weight vector. The target value of each sample is independent 

and has Gaussian error, so the form is  

                       ( ; )i i it y x w                                        (2) 

In terms of equation (2), the target value of each sample 

satisfies the Gaussian distribution with ( ; )ny x w  as average 

value and 2 as variance, so it can be regarded as  
2( | ) ~ ( | ( ; ), )i i i ip t x N t y x w                              (3) 

In equation (3), the Gaussian distribution could be denoted 

as 2( | , ( ), )i ip t w x  . Thus, for each individual target value, 

the likelihood function of the whole sample set can be 

expressed as  

2 2

1

2 /2 2

2

( | , ) ( | ( ; ), )

1
                 (2 ) exp{ || || }

2

N

i i

i

N

p t w N t y x w

t w

 










  


               (4) 

where 1 2[ , , , ]T

Nt t t t , 

1 2

1 1 1 2 1

2 1 2 2 2

1 2

[ ( ), ( ), , ( )]

1 ( , ) ( , ) ( , )

1 ( , ) ( , ) ( , )
   

1 ( , ) ( , ) ( , )

T

N

N

N

N N N N

x x x

K x x K x x K x x

K x x K x x K x x

K x x K x x K x x

   

 
 
 
 
 
 

 

In equation (4), adopting maximum-likelihood estimation 

to estimate w  and 2  might lead to severe over-fitting 

problem. In order to avoid this problem, the exponential term 
2|| ||t w  in equation (4) can be briefly expressed as 

2|| ||t y  which can be regarded as the errors between the 

actual value and the measured ones. Let 2|| ||  express the 

errors, where 1 2[ , , , ]T

N    , so the number of the 

exponential term is the square of errors. Maximizing the 

likelihood function is equivalent to minimize the square of 

errors, and the maximum likelihood function is inclined to 

obtain the model which fits the training set best. However, 

overcomplicated model will lead to poor generalization 

capability, it doesn’t have practical significance. To avoid 

this, RVM defines a Gaussian prior distribution with zero as 

average value of the weight vector w , as shown in equation 

(5), 

1

1

( | ) ( | 0, )
N

i i

i

p w N w  



                             (5) 

in which each 1

i
  monitors the velocity of the 

corresponding weight component iw  tending to zero. 

According to the hypothesis of RVM, the super prior 
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distributions of 
i  and 2  satisfy Gamma distribution which 

are shown in equation (6) and (7), 

0

( ) ( | , )
N

i

i

p Gamma a b 


                           (6) 

2 2( ) ( | , )p Gamma c d                              (7) 

and where 
1 1( | , ) ( ) a a bGamma a b a b e                      (8) 

with the “gamma function” 1

0
( ) a ta t e dt


    , and 

a=b=c=d=0. According to the priori theory of ARD, the vast 

majority of 
i  approach to infinity and the corresponding 

1

i
  concentrate at zero after enough iterating and updating. 

The corresponding weight components not equal to zero are 

relevance vectors, therefore the model becomes sparser.  

In terms of Sparse Bayesian Theory, the posterior 

probability distribution can be expressed as follows: 
2 2

2 ( | , , ) ( , , )
( , , )

( )

p t w p w
p w

p t

   
                       (9) 

For a new input vector
*x , in terms of prediction 

distribution, the corresponding target 
*t  can be predicted as 

follows: 
2 2

* *

2 2 2

*

( | ) ( , , , | )

            ( | , ) ( , , | )

p t t p t w t dwd d

p t w p w t dwd d

   

    








       (10) 

In equation (10), because we could not compute the 

integral 2 2 2( ) ( | , ) ( , , )p t p t w p w dwd d      , so we could 

not compute the posterior 2( , , | )p w t   directly. Instead, we 

decompose the posterior 2( , , | )p w t   as follows: 
2 2 2( , , | ) ( | , , ) ( , | )p w t p w t p t                     (11) 

2
2

2

( | , ) ( | )
( | , , )

( | , )

p t w p w
p w t

p t

 
 

 
                       (12) 

Since 2( | , )p t w   and ( | )p w   have been notified, then 
2( | , )p t    could be computed by equation (13). 

2 2

1
/ 2 1/ 2

( | , ) ( | , ) ( | )

                 (2 ) | | exp{ }
2

T
N

p t p t w p w dw

t t

   




 




 


             (13) 

where 2 1 TI A     ,
0 1( , , , )NA diag a a a .  

Thus, the posterior probability distribution 2( | , , )p w t    

of the weight   is given via equation (14). 
1

2 ( 1)/2 1/2 ( ) ( )
( | , , ) (2 ) | | exp{ }

2

T
N w u w u

p w t   


     
    (14) 

where the posterior covariance and average are as follows 

respectively: 
2 1( )T A                                      (15) 

2 Tu t                                             (16) 

where 0 1( , , , )NA diag a a a . 

On the basis of delta function, the remainder 2( , | )p t   

can be accurately approximated by  2 2( , | ) ,MP MPp t      

where 
MP  is the most probably value of  , similarly 2

MP  is 

the most probably value of 2 . 

Finally, *( , )p t t  is approximated by equation (17). 

2

2

* *

2 2

,

( | ) ( | , , )

( , ) argmax ( , | )

MP MP

MP MP

p t t p t w dw

p t
 

 
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 







                    (17) 

According to equation (17), the aim of RVM model is 

converted into attaining the solution of 
MP  and 2

MP  to 

maximize 2( , | )p t  . However, 2( , | )p t  is proportional to 
2 2( | , ) ( ) ( )p t p p    , where ( )p  and 2( )p   obey uniform 

distribution. Thus maximizing 2( , | )p t  is equivalent to 

maximize 2( | , )p t   .  

In equation (13), the maximum values of   and 2  can’t 

be obtained easily, thus we summarize the formula of their 

iterative re-estimation. Calculate the derivatives of equation 

(13), and make them equal to zero then rearrange them. 

2

new i
i

i





                                               (18) 

2
2 || ||

( )new

ii

t

N










                                (19) 

where 1i i ii     ,
ii is the i-th diagonal element in   and 

N refers to the number of data examples. 

Thus, the algorithm calculates   and   iteratively, and 

updates the posterior probability distribution 2( | , , )p w t    

until the convergence criteria has been satisfied.  

During the hyper parameter estimation procedure, we 

should set up a proper iterative convergence condition in 

advance. The iterative convergence condition is set up as 

reaching the maximum number of iteration or determining 

whether 
i  is convergent, that is whether 5| | 10new old

i i    . 

Then, we initialize   and 2  and make predictions based on 

the posterior distribution of the weight. Ultimately, we attain 

the optimal solution of 
MP  and 2

MP  via the above iteration 

process.  

For a new input sample 
ix , we can calculate the prediction 

distribution from equation (10) and it can be given by 

applying equation (20). 
2 2 2

* *( | , , ) ( | , ) ( | , , )MP MP MP MP MPp t t p t w p w t dw            (20) 

In equation (20), because both terms in the integrand 

satisfy Gaussian distribution, so the result still obeys 

Gaussian distribution, giving: 
2 2

* * * *( | , , ) ~ ( | , )MP MPp t t N t y                           (21) 

where * *( )Ty x   and 2 2

* * *( ) ( )T

MP x x      . 

In equation (1), kernel function ( , )iK x x  is defined 

as ( , ) ( ) ( )i iK x x x x  . Introducing kernel functions could not 

only avoids the problem of “Curse of Dimensionality” 

effectively, but also solves the question of nonlinear 

regression efficiently. The three common kernel functions 

are shown in Table I. 

 

 

Table I 

Three common Kernel Functions 

polynomial function  ( , ) (( ) )d

i iK x x a x x b   

Radial basis function 

(Gauss kernel function) 

2 2( , ) exp( || || /2 )i iK x x x x     

Cauchy function 
2

|| ||
( , ) 1 / exp(1 )i

i

x x
K x x




   
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In the process of general regression prediction modeling, 

RBF usually achieves more satisfactory performance than 

other mentioned functions, thus we choose RBF as the kernel 

function of RVM model. 

 

III. MODIFIED PARTICLE SWARM OPTIMIZATION 

Particle Swarm Optimization (PSO) [25] algorithm is a 

stochastic optimization technique developed by Kennedy and 

Eberhart. It has attracted worldwide attention in various 

optimization problems and becomes the hotspot in field of 

evolutionary computation owing to its excellent performance 

and easy-to-implement virtue [26].  

Suppose there is a swarm formed by m particles in an S 

dimensional search space. The i-th particle is initialized with 

a position vector 
1 2( , , , )i i i iSx x x x  and a velocity vector 

1 2( , , , )i i iSv v v v  where i  is from 1 to m. The current optimal 

position of the i-th particle is denoted 

as
1 2( , , , )iS i i isp p p p and the global optimal position 

determined by the whole swarm is denoted 

by 1 2( , , , )gS g g gSp p p p . During the searching procedure, 

each particle updates its position vector and velocity vector 

according to the following equations [25] [27] [28]: 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))is is is is gs isv t wv t c r p t x t c r P t x t        (22) 

                    ( 1) ( ) ( 1)is is isx t x t v t                            (23) 

where i  is from 1 to m , s  is from 1 to S , t  represents the 

current iteration, accelerating factors 
1c  and 

2c are 

nonnegative constants, 1r  and 2r  are mutually independent 

random number, ( )w t  stands for inertia weight, ( )isx t  ranged 

max max[ , ]x x , ( )isv t  ranged 
max max[ , ]v v , ( )isp t  and ( )gsp t  are 

the position, velocity, current optimal position and global 

optimal position of particle i  on dimension s  at iteration 

t respectively. 

In order to accelerate convergent performance and 

enhance global optimization capability, two accelerating 

factors 
1c  and 

2c  adopt continuously decreasing function 

and continuously increasing function respectively in 

modified PSO algorithm. Thus the two factors are illustrated 

as follows: 

1 1, 1, 1,( ) ( ) ( ) /start end max max endc t c c t t t c               (24) 

2 2, 2, 2,( ) ( ) ( ) /start end max max endc t c c t t t c              (25) 

where t represents the current iteration and maxt represents the 

maximum number of iteration, 1,startc  and 2,startc  stand for the 

initial values of 
1c and 

2c , 1,endc  and 2,endc  stand for the final 

values of 
1c and 

2c . 

In modified PSO algorithm, random variables obey 

Gaussian distribution in equation (26) rather than uniform 

distribution on [0, 1]. The distributions of 1r  and 2r  are as 

follows: 
2 2

1 1 2 2(0, ),  r (0, )r N N                           (26) 

1

( )

( )

i

iS

Fitness x

Fitness p
                                         (27) 

2

( )

( )

i

gS

Fitness x

Fitness p
                                        (28) 

where ( )Fitness X  represents the fitness of vector X. 

In order to obtain a reliable and stable model, we select 

k-fold cross-validation to evaluate the fitness of each particle. 

The average of errors in k-subset is approximated as the 

fitness of each particle. It is estimated by the equation (29): 
2

1

1

1

kl

j jk
j

i k

y y

fitness
k l







 
 

 



                            (29) 

where 
kl  represents the length of the subset 

ks , y


 is the 

prediction value, y is the actual value. Eventually, store the 

optimal position and fitness of each particle. 

The Gaussian random variables dominate the increment of 

velocity vector [29]. Thus, MPSO maintains the diversity of 

the swarm by escaping from local optima and attains the 

global optima with a high possibility. 

The inertia weight w controls the influence of the previous 

velocity on the current velocity [30]. Therefore, the 

adjustment of w adopts the linearly decreasing weight 

strategy ranging from 0.9 to 0.4, that is expressed as follows: 

( ) ( ) ( ) /start end max max endw t w w t t t w                   (30) 

where t represents the current iteration and 
maxt represents the 

maximum number of iteration. 
startw  stands for the initial 

weight and 
endw  denotes the final weight.  

In the procedure of iteration, termination condition is 

reaching the maximum number of iteration or satisfying the 

predetermined minimum adaptive threshold.  

The evolution procedure of searching global optimal 

solution with modified PSO is elaborated in Algorithm 1. 

 
Algorithm 1: modified Particle Swarm Optimization 

 
Input: Dimension of searching space S , number of particles 

in the swarm m, maximum iteration 
maxt , initial accelerating 

factors 1,startc  and 2,startc , final accelerating factors 1,endc  and 

2,endc , random numbers 
1r  and 

2r , initial weight 
startw , final 

weight 
endw . 

Output: Global optimal position gSp . 

// Initialize the parameters of MPSO 

1. Initialize the original iteration: 0t  , accelerating factors: 

1, 2.5startc  , 1, 0.5endc  , 2, 0.5startc   and 2, 2.5endc  , 

initial weight: 0.9startw  , final weight: 0.4endw   

2. Set up initial accelerating factors, random numbers and 

inertia weight: 

1 1,(0) startc c , 2 2,(0) startc c .
1(0) (0,1)r rand ,

2(0) (0,1)r rand , (0) startw w  

// Initialize the particle’s position, velocity, current 

optimal position and global optimal position 

3.  For each particle 1,2,i m  do: 

4.          Initialize the particle's position with a uniformly 

distributed random vector : iSx   

5.          Initialize the particle's current optimal position:  

iS iSp x  

6.          If (  ( )iS gSFitness p Fitness p )  

7.               Update the swarm's global optimal position:  
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gS iSp p  

8.          End if 

9.          Initialize the particle's velocity with a uniformly 

distributed random vector: 
iSv  

10. End for 

// Search the global optimal solution in 

searching-space 

11. Until termination condition is satisfied, loop: 

12.      For each particle 1,2,i m  do: 

13.           For each dimension 1,2,s S  do: 

14.                Update the particle's velocity by equation (22). 

15.           End for 

16.           Update the particle's position by equation (23). 

17.           If (  ( )iS iSFitness x Fitness p ) 

18.                Update the particle's current optimal position:  

iS iSp x  

19.                If (  ( )iS gSFitness p Fitness p )  

20.                     Update the swarm's global optimal 

position:  
                gS iSp p  

21.                End if 

22.           End if 

23.      End for 

24.      1t t    

25.      Update the accelerating factors, random variables 

and inertia weight by equation (24)-(28), and (30). 

26. End loop 

27. Output gSp  holds the global optimal solution 

 
Notes: 

(1) The position vector of i-th particle 
max max~ ( , )ix U x x  

where 
maxx is the maximum position; the velocity vector 

of i-th particle 
max max~ ( , )iv U v v where 

maxv is the 

maximum velocity. 

(2) The termination condition is achieving the maximum 

number of iteration, or finding a solution corresponding 

with the predetermined minimum adaptive threshold. 

 

IV. MPSO-RVM MODEL IN FORECASTING SATELLITE 

POWER SYSTEM PARAMETER INTERVAL 

Procedure of establishing the prediction model includes 

four steps: data preprocessing, parameter optimization of 

RVM with modified PSO, model establishing and prediction. 

The specific process of MPSO-RVM model is shown in Fig. 

2. The circumstantial procedure of optimizing parameter of 

RVM with modified PSO and establishing MPSO-RVM 

model are summarized as an important part in Fig. 2. 

A. Data Preprocessing 

The experimental dataset in this work is some telemetry 

data comes from the power system of an anonymous satellite 

in space. First, we carry out experiments on satellite power 

system parameter interval prediction with telemetry dataset 

between June 12, 2011 and June 13, 2011, approximately 50 

thousand records. Then we select the important parameters 

the main bus load current (denoted by IN1) and the main bus 

voltage (denoted by VN1) in satellite power system as the 

predictive objects in accordance with the suggestions 

proposed by space experts. Next, we preprocess the satellite 

telemetry data with the following steps. 

Step 1: data cleaning 

Based on expert knowledge, outliers are the data which are 

beyond 30 times range of the normal data while appearing 

less than three times per minute. Find out them and then 

delete. 

Step 2: date conversion 

Transform the initial data which are in equivalent time 

interval into standard deviation sequences. 

Step 3: data transformation  

Transform each parameter sequence 
tx  into data pattern 

      1

1

1 1 1 , ,.. (.,  , , , , )i i n n m

m

m

nT X Y X Y XX Y Y  

        

where m denotes the embedding dimension.  

Step 4: data normalization 

Normalize the experimental data ranged in [0, 1]. Then 

divide the processed data into two non-overlapping and 

independent parts with the ratio 90% and 10%, the former as 

training data is applied for RVM parameter optimization and 

model establishment and the latter as testing data is used to 

evaluate the model prediction efficiency and robustness.  

B. Performance Criterion 

At present, the effective method to judge the performance 

of the prediction model is mainly based on the accuracy of 

the prediction model. The following three common methods 

are used in this paper. 

(1) Mean Absolute Percentage Error (MAPE) 

Mean absolute percentage error reflects the overall 

credibility of the measured data. The computational formula 

is as follows: 

1

1
100%

n
i i

i i

y y
MAPE

n y






                           (31) 

(2) Root Mean Square Error (RMSE) 

Root mean square error is relatively sensitive to the 

measured data in large or small error, which reflects the 

measurement precision. The computational formula is as 

follows: 

2

1

( )
n

i i

i

y y

RMSE
n










                                 (32) 

(3) Normalized Mean Square Error (NMSE) 

Normalized mean square error focuses on the relationship 

between the deviation among the prediction value with the 

actual value and the fluctuation intensity of the measured 

data. The computational formula is as follows: 

2

2
1

1
( )

n

i i

i

NMSE y y
n





                               (33) 

where 2 2

1

1
( )

1

n

i i

i

y y
n




 

 , y



 represents the prediction 

value, y stands for the actual value, y  indicates the average 

of the actual value, n is the number of samples. 
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Fig. 2 The flow chart of MPSO-RVM. 

 

V. EXPERIMENTAL ANALYSIS 

In this work, we propose a mixed MPSO-RVM model to 

forecast satellite power system parameter interval. We 

develop a MPSO-RVM model based on Sparse Bayesian 

toolbox (http://www.miketipping.com/downloads.htm), to 

achieve the purpose of monitoring the operation state of 

satellite power system. 

A. Setting of Experimental Parameters 

(1) Embedding Dimension 

In the procedure of data preprocessing, the data 

transformation stage needs to determine the value of the 

embedding dimension in advance. Therefore, we carry out 10 

different experiments on crucial parameters IN1 and VN1 in 

satellite power system with the value of embedding 

dimension ranged from 1 to 10 and the parameter of kernel 

function set to 2. The influence of the embedding dimension 

m and the forecasting performance is shown in Fig. 3. Then 

the optimal embedding dimension is the one which is 

minimizing the MAPE on the testing set. Thus the optimal 

dimensions of crucial parameters IN1 and VN1 in satellite 

power system are all 4 respectively. 

 

 
Fig. 3 Influence of embedded dimension m and forecasting performance 

 

(2) Parameter of MPSO algorithm 

In the process of parameter optimization of RVM with 

modified PSO, we set the dimension of searching space 

S =19, the number of particles m=30, maximum iteration 

max 100t  , accelerating factors 1, 2.5startc  , 1, 0.5endc  , 

2, 0.5startc   and 2, 2.5endc  . Random numbers 1r  and 2r obey 

Gaussian distribution on equation (26). The adjustment of w 

adopts the linearly decreasing weight strategy ranging from 

0.9 to 0.4 via analyzing the time spent in optimizing the 

search procedure and the accuracy of the solution 

comprehensively.  
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Fig. 4 Inferred weights and forecasting performance when 0.1    

 

 
Fig. 5 Inferred weights and forecasting performance when 0.5    

 

 
Fig. 6 Inferred weights and forecasting performance when 5   
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(3) Parameter of Kernel Function 

In this paper, we choose RBF as the kernel function, owing 

to it is suitable to solve the nonlinear mapping problems. 

There is only one parameter to be determined, namely, the 

kernel width parameter  of RBF. 

As shown in Fig. 4 - Fig. 6, with the increasing of  , the 

iteration number decreases gradually but the inferred noise 

increases correspondingly. The number of relevance vectors 

reduces significantly because the Gaussian distribution 

becomes smoother. Although the structure of model becomes 

sparser with the increasing of  , the generalization ability 

and fitting performance degrade due to a small number of 

relevance vectors does not satisfy to express the actual result 

accurately.  

When 0.1   as shown in Fig. 4, although RVM model 

trains very well, the generalization ability is not good, and the 

relevance vectors are too many, so the model is not sparse. 

When 0.5   as shown in Fig. 5, RVM model not only 

obtains better fitting result, but also has better generalization 

and prediction performance, the number of relevance vectors 

reduces significantly, so the model is sparser. However, 

when the value of   is large enough, see 5   in Fig. 6, 

although the model is sparse enough, the generalization 

ability and fitting performance are poor, the prediction values 

diverge from the actual values, thus the result is not 

reasonable. 

In practice, kernel width   has a great influence on the 

performance of the RVM model. Thus we apply MPSO 

algorithm with 10-fold cross-validation to optimize the 

parameter of RBF for RVM model. The obtained optimal 

parameters of MPSO-RVM model are achieved in TABLE 

II. 

 

 
 

B. Experiment Result and Discussion 

In this paper, we propose a mixed MPSO-RVM model to 

predict the crucial parameters intervals in satellite power 

system. Based on Sparse Bayesian toolbox 

(http://www.miketipping.com/downloads.htm), we develop a 

MPSO-RVM model to achieve the purpose of monitoring the 

operation state of satellite power system. 

In the modeling stage, we set the optimal solution obtained 

by MPSO algorithm as kernel parameter of RBF. Then 

establish RVM model and attain the prediction interval. 

Eventually, calculate the average of the prediction interval as 

prediction value, and calculated the accuracy criteria to 

evaluate the prediction model. In order to analyze the 

performance of MPSO-RVM model, we compare it with 

RVM model and PSO-SVR model. RVM model only adopts 

the theory of RVM to predict the telemetry data in satellite 

power system without having the stage of parameter 

optimization, in which the RBF kernel parameter σ=2. 

PSO-SVR model adopts PSO algorithm to optimize the hyper 

parameter of SVR model, in which the penalty factor 

C=89.85, the RBF kernel parameter σ=1.51 and the 

ε-insensitive loss function parameter ε=5.56E-4. Then 

establish SVR model to predict the values of crucial 

parameters in satellite power system. 

Comparisons of performance among the MPSO-RVM 

model, RVM model and PSO-SVR model are shown in Table 

III and Table IV. The prediction accuracies of three models 

established in the experimental data are summarized in Table 

III. As shown in Table III, both the prediction results and 

prediction accuracies of MPSO-RVM model and PSO-SVR 

model are more excellent than RVM model, and the 

performance of MPSO-RVM model is similar to PSO-SVR 

model in the IN1 and VN1 sequences. However, the fitting 

accuracy, generalization ability and prediction accuracy of 

MPSO-RVM model is slightly higher than PSO-SVR model 

and the MPSO-RVM model plays better performance in 

solving the nonlinear mapping problem than PSO-SVR 

model. Moreover, comparing with RVM model, the 

employment of MPSO algorithm avoids the problem of 

over-fitting, and it also accelerates convergent performance 

and enhances global optimization capability. In addition, the 

prediction error in MPSO-RVM model is smaller than that of 

other two models. It can be seen that root mean squared error 

(RMSE), mean average percentage error (MAPE) and 

normalized mean square error (NMSE) are 0.0397, 0.0734 

and 0.9841 in VN1 sequence, thus the prediction accuracy of 

MPSO-RVM is better than other two models. The results 

indicate the MPSO-RVM model is more suitable to avoid 

satellite accidences and faults via predicting the parameters 

in the satellite power system. 

 

 

 
 

Table II 

Parameter of Kernel Function Optimized by MPSO  

Parameter in Power System kernel width parameter   

IN1 1.202 

VN1 1.027 

 

Table III 

Comparisons of Prediction Accuracies among MPSO-RVM, RVM and PSO-SVR 

Parameter in 

Power System 
Prediction Model 

 Training set   Testing set  

RMSE MAPE (%) NMSE RMSE MAPE (%) NMSE 

IN1 

MPSO-RVM 0.2379 1.0367 0.8165 0.2439 1.2159 0.8354 

RVM 0.7876 3.170 8.1084 8.4474 6.0512 8.6821 

PSO-SVR 0.2405 1.0486 0.8179 0.3229 1.4432 0.8805 

VN1 

MSPO-RVM 0.0246 0.0501 0.9511 0.0397 0.0734 0.9841 

RVM 0.0122 0.0248 0.8140 18.6935 8.0334 9.5292 

PSO-SVR 0.0283 0.0523 1.2614 0.0421 0.0798 1.3542 
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The train-time, test-time and the number of relevance 

(support) vectors of three models established in the 

experimental data are summarized in Table IV, where the 

number of relevance (support) vectors reflects the sparse 

properties of the model. As shown in Table IV, the train-time 

of RVM model is smallest owing to the training procedure of 

it does not have the stage of parameter optimization. While 

the train-time of MPSO-RVM model is longer than 

PSO-SVR model, because the procedure of MPSO-RVM 

model searching iteratively the hyper parameter with 

maximum marginalized likelihood function is more complex 

than the procedure of PSO-SVR model solving convex 

quadratic programming problem. However, the number of 

relevance vectors of MPSO-RVM model is smaller than that 

of PSO-SVR model. Thus the MPSO-RVM model obtains 

sparser structure, which makes the time spent in the testing 

procedure less. Although the number of relevance vectors of 

RVM model is least and the train-time and test-time of it are 

smallest, the prediction performance is worse due to too 

small number of relevance vectors does not make the 

prediction result reasonably. As a consequence, MPSO-RVM 

model plays an excellent role in the actual problems which 

require more stringent response time, such as online 

prediction system and real-time testing system. 

In experiment analysis, Fig. 7 and Fig. 8 demonstrate the 

weight component of IN1 and VN1 respectively. Based on 

Fig. 7 and Fig. 8, the vast majority of weight components 

tend to zero, the number of relevance vectors is small 

correspondingly, therefore the structure of the MPSO-RVM 

model is sparser. 

 

 
Fig. 7 The schematic diagram of weight component in IN1  

 

 
Fig. 8 The schematic diagram of weight component in VN1 

 

According to the regression principle of RVM introduced 

in Section II, the final prediction model obtained by 

MPSO-RVM is a normal probability distribution. Therefore, 

the MPSO-RVM model could obtain the prediction interval 

under a certain confidence level according to the knowledge 

of probability theory. In general, we select the average of the 

prediction interval as the prediction value of the input sample. 

In order to present a visualized performance of MPSO-RVM 

model, Fig. 9 and Fig. 10 depict the prediction results of IN1 

and VN1 at the confidence level of 95.45%, respectively. The 

prediction results not only display the prediction values, but 

also show the prediction intervals of volatility. As shown in 

Fig. 9 and Fig. 10, only one experimental sample out of the 

prediction interval of IN1, and all experimental samples fall 

into the prediction interval of VN1. The results indicate the 

MPSO-RVM model has higher reliability and reference in 

parameter interval prediction of satellite power system.  

 

 

 
Fig. 9 Prediction result of IN1 at the confidence level of 95.45%. 

 

Table IV 

Comparisons of MPSO-RVM, RVM and PSO-SVR 

Parameter 

in Power 

System 

Prediction 

Model 

Train- 

time(s) 

Test- 

time(s) 

Number of 

relevance 

(support) 

vectors 

IN1 

MPSO-RVM 95.2554 0.2322 9 

RVM 1.5109 0.1410 3 

PSO-SVR 56.1248 1.2356 21 

VN1 

MPSO-RVM 82.3715 0.1537 5 

RVM 1.2106 0.0898 1 

PSO-SVR 53.5683 1.1379 18 
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Fig. 10 Prediction result of VN1 at the confidence level of 95.45%. 

 

 

Comparing with existing prediction models, the model we 

proposed has several advantages: 

1) The existing prediction models usually apply traditional 

regression methods such as Artificial Neural Network, SVM 

and so on whose results are just prediction values. 

Unfortunately the prediction value could not estimate the 

actual value without bias estimation, so they could not obtain 

creditable prediction results. However, the prediction result 

of the MPSO-RVM model is an interval which obtains the 

range of satellite power system parameter under a certain 

confidence level, and avoids the problem of unbiased 

estimation. 

2) Procedure of MPSO-RVM model optimizing the hyper 

parameter is more complex than that of PSO-SVR model, but 

the test-time spent in MPSO-RVM model is much less than 

that of PSO-SVR model. At the same time, the prediction 

efficiency and performance of MPSO-RVM model is much 

higher than that of PSO-SVR due to a sparser solution 

obtained by MPSO-RVM model.  

3) For complex satellite power system data, although 

PSO-SVR has a better performance on short-term prediction, 

once the prediction value deviates from the actual value, the 

prediction result also deviates from the actual result 

correspondingly. However, the prediction result of the 

MPSO-RVM is a desirable prediction interval rather than 

prediction value. The prediction interval describes the 

probability distribution of the parameter in satellite power 

system.  

In addition, the performance of the method we proposed 

on forecasting satellite power system parameter interval can 

be further improved as well. Here are some guidelines for 

future studies in work. 

1) The prediction intervals are symmetric with the 

prediction values. Although the method could depict the 

variation range of parameters vividly, the prediction values 

may diverge from the actual values in some situations. 

2) In order to reduce the train-time cost, other optimization 

algorithms can be applied to find out the optimal parameter 

instead of MPSO algorithm. 

 

VI. CONCLUSIONS 

The power system is one of the important subsystems in 

satellite, which has a direct influence on the working state, 

reliability and operational life span of the satellite. In this 

paper, a new thought is presented to improve the accuracy of 

parameter forecasting. It believes that the key solution is to 

establish a RVM model and optimize its kernel parameter. 

Based on this, a mixed MPSO-RVM model to forecast the 

satellite power system parameter interval is proposed. The 

experimental results display that RMSE, MAPE and NMSE 

are respectively 0.0397, 0.0734 and 0.9841 in VN1 sequence. 

It demonstrates MPSO-RVM model has higher prediction 

accuracy than RVM model and PSO-SVR model. The 

number of relevance vectors is 5 in VN1 sequence which is 

less than that of support vectors. Thus, the structure of the 

model is sparser which makes the test-speed faster, the 

test-time shorter and the generalization ability higher. As a 

consequence, MPSO-RVM model is more suitable for the 

practical requirements. Similarly, the shortcomings of the 

MPSO-RVM model are also obvious. The training process is 

more complex and the train-time is slightly longer.  

Significantly, the prediction results of MPSO-RVM model 

are normal distributions, thus the prediction intervals in a 

certain confidence level can be obtained by the theory of 

normal distribution. The forecasting results show that the 

majority of the samples are located in the prediction intervals 

obtained at the confidence level of 95.45%. The results also 

indicate the MPSO-RVM model simulates the dynamic trend 

of satellite power system parameter well. Thus it is more 

suitable for the practical requirements to avoid satellite 

accidences and faults. More importantly, the proposed 

method could be further applied to forecast the crucial 

parameters of other components in satellite. 
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