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Abstract—Deep Belief Network (DBN) via stacking Restricted
Boltzmann Machines (RBMs) has been successfully applied
to time series forecasting. In this paper, a novel DBN model
composed of two RBMs is proposed for time series forecasting,
in which Gaussian-Bernoulli RBM (GBRBM) is adopted for
continuous input and an Artificial Neural Networks (ANN)
is exploited to supervised learning respectively. Specifically,
a novel error correction algorithm is introduced to further
improve the forecasting accuracy. Experiments results verify
the effectiveness of our proposed DBN model and show better
forecasting performance.

Index Terms—restricted boltzmann machine, gaussian-
bernoulli restricted boltzmann machine, deep brief network.

I. INTRODUCTION

T IME series forecasting is used for forecasting the future
based on historical observations in various domains,

such as Egypt Wheat Imports [1], stock forecasting [2],
etc. In Statistics, the majority of the reported time series
forecasting models (such as, Autoregressive Moving Average
Models (ARMA), Autoregressive Integrated Moving Aver-
age Models (ARIMA) [3], etc.) focus on the analysis of
linear problems as regression methods rather than nonlinear
problems. However, in practice, many nonlinear problems
exist in the real world where traditional linear estimators
are not applicable any more. Recent works on time series
forecasting models have also shown that the performance of
forecasting results can be significantly improved by capturing
the nonlinear relationship associated to the structure of a
given input datasets.

The majority of existing machine learning methods, e.g.
Support Vector Machines (SVMs) [4] and ANN [5], demon-
strated to be powerful non-linear estimators, not only have
been used on the field of pattern recognition or dimen-
sionality reduction [6], but also have been used in time
series forecasting. Although these models achieved fairly
good results, they are still not the most effective models due
to their defect of shallow learning. In 2006, Hinton et al.
found that the performance of a deep neural network could
be significantly improved when a non-supervised learning
algorithm is used, pretraining one layer after another, starting
from the first layer [7]. The deep learning algorithm can
be regarded as a learning process, which can learn more
abstract features of data represented by higher levels [8]. It
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can be more useful in extracting information for classification
or prediction for more abstract representations [9]. Besides
these advantages, the learned intermediate features can be
shared among different tasks. Therefore, to learn the kind of
complicated features that can represent high-level abstrac-
tions, deep learning architectures are needed [10]. DBN [11]
consisting of a stack of RBMs [12], as a deep architecture,
has been successfully applied to many complex and high-
dimensional sequences [13].

In [14], a greedy layer-wise unsupervised training strategy
is adopted based on DBN to bring better generalization.
In [11], the authors proposed an approach depending on
DBN in clustering and classification of continuous input
data, which has a better performance than the traditional
ANN due to the initialization of the connecting weights
rather than just using random weights in ANN. In [13],
a 3-layer DBN network of RBMs is proposed to capture
the feature of input space of time series data, in which
particle swarm optimization (PSO) is adopted during the
training processes. In [15], an ensemble of multiple DBNs
is proposed for time series forcasting, in which the outputs
from various DBNs were aggregated by a Support Regression
Vector (SVR) model. Similarly, an ensemble of classifiers
is proposed by integrating RBMs with bagging to generate
diverse and accurate individual classifiers [16]. Authors of
[17] proposed a DBN architecture composed of RBM and
multi-layer perceptron (MLP) to predict chaotic time series
data. In [18], the conventional RBMs are extended to model
high-dimensional motion time series data by introducing an
extra term in the energy function to explicitly model the local
spatial interactions in the input data. Furthermore, the authors
proposed a method using not only a kind of DBN with
RBM and MLP but also ARIMA to improve the forecasting
accuracy in [19].

In the conventional RBM, each visible neuron is represent-
ed by a binary variable, and real-valued data is normalized to
[0, 1] and treated as a probability, that is RBM learns distri-
butions over binary vectors. However, this representation is
restricted to bounded variables. Therefore, in [6], the binary
visible neurons are replaced with Gaussian ones to address
this problem. The corresponding model is called Gaussian-
Bernoulli Restricted Boltzmann Machine (GBRBM). In [20],
a few remedies to the conventional training methods for G-
BRBM are proposed. In [21], GBRBM and Deep Boltzmann
Machine (DBM) are combined together in a single model,
allowing their joint optimization. The corresponding model is
called Gaussian-Bernoulli Deep Boltzmann Machine (GDB-
M).

In this paper, we introduce a novel DBN model for time
series forecasting that can further improve the forecasting
accuracy. The proposed DBN model is composed of two
RBMs, in which GDBM using Gaussian units in the visible
layer of DBM is adopted. An ANN after the unsupervised
learning is exploited to forecast and error back-propagation
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(BP) [22] is adopted to fine-tuning. Specifically, a novel error
correction algorithm is introduced to further improve the
forecasting accuracy.

Extensive evaluations, carried out on the three well-known
datasets, show that the proposed novel DBN model leads to
improvement in forecasting accuracy compared to the two
state-of-the-art models.

The rest of this paper is organized as follows. Section 2
provides a brief review of the theories of RBM. In Section 3,
a novel DBN model together with error correction algorithm
is proposed. Experiments are presented in Section 4, and
some concluding remarks are given in Section 5.

II. REVIEW TO RESTRICTED BOLTZMANN MACHINE

Boltzmann Machines (BMs) can be regarded as undirected
graphical models also known as Markov Random Fields
(MRF). An RBM is an MRF associated with a bipartite
undirected graph, which consists of m visible units v =
(v1, · · · , vm) to represent observable data and n hidden units
h = (h1, · · · , hn) to capture dependencies between observed
variables. In binary RBMs, the random variables (v, h) take
values (v, h) ∈ {0, 1}m+n. An RBM has only connections
between the layer of hidden and visible variables but not
between two variables of the same layer.

Being energy-based model, RBM has an energy with a
joint configuration (v, h) of the visible and hidden units as
follows

E(v, h) = −
n∑
i=1

m∑
j=1

wijhjvi −
n∑
i=1

civi −
m∑
j=1

bjhj

where vi, hj are the binary states of visible unit i and hidden
unit j respectively, ci, bj are their biases and wij is a real
valued weight between them.

Considering that there is the link between the adjacent
layers and no connection within the RBM layer, the posterior
distributions given another neighbouring layer for the hidden
and visible units take the form:

P (hj = 1|v) = sigm(
n∑
i=1

wijvi + bj)

P (vi = 1|h) = sigm(
n∑
j=1

wijhj + ci)

where sigm(.) is the nonlinear activiation function. The
logistic fuction, sigm(x) = 1

1+e−x , is a common choice.
The learning process of RBM is to find the model param-

eters b = (b1, · · · , bm), c = (c1, · · · , cn),W = (wij), i ∈
(1, · · · , n), j ∈ (1, · · · ,m) to make the energy of the system
minimum. Therefore, updating rules of parameters are given
as follows

∆wij = ε(〈vihj〉data − 〈vihj〉model)

∆ci = ε(〈vi〉data − 〈vi〉model)

∆bj = ε(〈hj〉data − 〈hj〉model)

where ε is a learning rate, 〈.〉data and 〈.〉model are used
to represent the expected values of the data and the model
respectively.

To fast the learning procdure, a simple and efficient
method called Contrastive Divergence (CD) is proposed in
[12], which starts by setting the states of the visible units
as a training vector. Moreover, conventional RBM defines
the state of each neuron to be binary, which seriously limits
their application area. To solve this problem, GBRBM is
introduced, in which the binary visible units are replaced by
linear units with independent Gaussian noise [6]. The energy
function is then extended as

E(v, h) =
n∑
i=1

(vi − ci)2

2σ2
i

−
n∑
i=1

m∑
j=1

wijhj
vi
σi
−

m∑
j=1

bjhj

where σi is the standard deviation of the Gaussian noise for
visible unit i.

With the GBRBM energy function, the conditional prob-
abilities could be achieved as follows.

P (hj = 1|v) = sigm(
n∑
i=1

wijvi
σ2
i

+ bj)

P (vi = 1|h) = N(vi|
n∑
j=1

wijhj + ci, σ
2
i )

where N(.|µ, σ2
i ) is probability density of Normal distribu-

tion with a mean µ and a standard deviation σi.
Then the corresponding updating rules of RBM parameters

are as follows

∆wij = ε(〈vihj
σi
〉data − 〈

vihj
σi
〉model)

∆ci = ε(〈 vi
σ2
i

〉data − 〈
vi
σ2
i

〉model)

∆bj = ε((hj)data − (hj)model)

where ε is the learning rate.

III. PROPOSED DBN MODEL

In this section, an novel DBN model is proposed for time
series forecasting. The architecture of the proposed DBN
model is given in Section 3.1. An error correction algorithm
contained in the model will be stated in Section 3.2.

A. Architecture of proposed DBN model

The proposed DBN model for time series forecasting is
a type of deep learning architecture, which is composed of
three modules as shown in Fig.1.

Assume the time series data as x(t), t = 1, · · · , T , where
T is the number of samples of the time series. The input
data for forecasting is denoted as x(t− τ), · · · , x(t−Mτ),
where M is the window size of input data and τ is a
positive integer representing the interval between delays. The
forecasting output of our proposed DBN model is y(t).

From Fig.1 we can see that there are three modules from
bottom to top. The bottom module contains two RBMs
used for unsupervised learning. The hidden units extract
relevant features from the input data of previous M times
{x(t−τ), · · · , x(t−Mτ)}. These features can serve as input
to another RBM. By stacking RBMs in this way, features
can be learned in the expectation of arriving at a high-level
representation.
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Fig. 1. Architecture of proposed DBN model

The middle module includes an ANN used as a supervised
learning system. A common ANN is the feedforward neural
network (FNN). In the proposed DBN model, the features
extracted by the bottom module will serve as input. In fact,
the hidden layer of the second RBM is the input of the FNN.
In this module, BP algorithm is used for fine-tuning, which
repeatedly adjusts the weights of the connections in the FNN
network so as to minimize the measurement of difference
between the actual output vector of the network and the
desired output vector [22]. By this module, the forecasting
output of current time could be achieved, which is denoted
as ym(t) in Fig.1.

The top module is involved in an error correction algo-
rithm used for improving the forecasting accuracy further.
Generally, in time series, the values of the neighboring times
show good correlation. Hence, the known actual value of
previous time can be exploited to forecast the value of current
time. In this case, an error correction algorithm is proposed
to forecast the output y(t) of current time, which will be
described in detail in next subsection.

B. Error correction algorithm

The proposed error correction algorithm could be imple-
mented as shown in Fig.2.

Fig. 2. Schematic diagram of error correction algorithm

In the Fig.2, x(t−1) represents the actual value of previous
time, ym(t) represents the output of FNN network, and
variable θ is a parameter used to adjust the final output y(t).
Specifically, a formula is given according to the Fig.2 as
follows

y(t) = ym(t) + θ [x(t− 1)− y(t− 1)] , θ ∈ [0, 1] (1)

The parameter θ in Eq.(1) will be calculated in the training
phase according to the following rule

argmin
θ

√∑N1

i (y(t)i − x(t)i)
2

N1

where N1 represents the number of forecasting values able
to be obtained in the training phase, y(t)i is the forecasting
output corresponding to its actual value x(t)i for the i-th
forecasting value, which is represented by Eq.(1).

The pseudo-code for the procedure of searching the opti-
mal θ is presented in Table I.

TABLE I
ALGORITHM OF SEARCHING OPTIMAL θ

Input : output value ym(k) of FNN, the known actual value x(k),

for k = 1, · · · , n.
Output : the optimal θopt according to Eq.(1).
Step : updating step size of searching optimal θ.

for all index ∈
[
0,

(1−0)
step

]
do

for every k = 1, · · · , n do

y(k)← ym(k) + θ(index) [x(k − 1)− y(k − 1)]

end

RMSE [index]← sqrt{
∑

j(x(j)− y(j))2/n}

end

[RMSE(min), θopt]← min{RMSE [1] , · · · , RMSE [k] ,

· · · , RMSE [n]}

return θopt

IV. EXPERIMENTS

To evaluate the effectiveness of the proposed DBN model,
three time series, Australia Energy Production [Energy] and
Dollar to Libra Conversion [Dollar] obtained in [23] and
Taiwan Stock Exchange Capitalization Weighted Stock Index
[TAIEX] available in [24] are used to make predictions.
[Energy] shows the electric energy monthly production from
Australia from January 1956 up to August 1995 with 476
samples, [Dollar] shows monetary information monthly from
US$ dollars conversion to Libra from January 1981 up to
July 2005 with 295 values, and [TAIEX] from January 2004
to December 2004 is composed of 260 samples.

Moreover, based on the aforementioned three datasets,
comparison experiments of the proposed model and the two
state-of-the-art models, i.e., FNN model and GDBM+FNN
model in [23], are conducted.

In the experiments, 70% of the samples for each time
series are used to train and 30% used to test. The parameter
of window size M is set to 8, 5 and 7 for [Energy], [Dollar]
and [TAIEX] respectively, and the interval τ between delays
is set to 3, 2 and 1 accordingly.
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(f) GDBM+FNN Model with [TAIEX]
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Fig. 3. Forecasting results of different models with [Energy], [Dollar] and
[TAIEX]

The forecasting results of the FNN model, the GDB-
M+FNN model and proposed DBN model using three
time series [Energy], [Dollar] and [TAIEX] respectively are
shown in Fig.3.

In the Fig.3, (a), (d) and (g) show the results of three

models using time series [Energy], and (b), (e) and (h) show
the results of three models using time series [Dollar], and (c),
(f) and (i) show the results of three models using time series
[TAIEX]. From Fig.3, we can see that the forecasting results
of our proposed model fit more close to the actual values of
each time series compared to FNN model and GDBM+FNN
model.

To obtain comprehensive evaluation for the performance
of the proposed DBN models in the testing phase, three
criteria, i.e., root mean square error (RMSE), mean absolute
error (MAE) and percentage of mean absolute error (MAPE),
are proposed, which are defined in Eq.(2), Eq.(3) and Eq.(4)
respectively.

RMSE =

√∑P
i=1

∑N2

j=1 (x(t)ij − y(t)ij)
2

P ∗N2
(2)

MAE =
1

P ∗N2

P∑
i=1

N2∑
j=1

|(x(t)ij − y(t)ij)| (3)

MAPE =
1

P ∗N2

P∑
i=1

N2∑
j=1

|(x(t)ij − y(t)ij)|
|x(t)ij |

(4)

where P is the number of patterns in the data set, N2

represents the number of output units of the model, x(t)ij
and y(t)ij(i = 1, · · · , P, j = 1, · · · , N2) are the actual value
and forecasting value in the training phase respectively. In
the experiment, N2 is set to 1 for time series prediction.

TABLE II
THE RESULTS OF THREE CRITERIA ON DIFFERENT VALUES OF EPOCH

FOR ENERGY

Times Series Criterion FNN GDBM+FNN Our DBN

[Energy]
RMSE 320.5760 304.4497 289.3716
MAE 258.9582 226.5737 211.8005
MAPE 2.0825 1.7931 1.6689

[Dollar]
RMSE 0.0147 0.0140 0.0106
MAE 0.0122 0.0119 0.0089
MAPE 1.8793 1.8369 1.3689

[TAIEX]
RMSE 72.7805 68.1714 57.6623
MAE 55.2538 50.1753 41.4932
MAPE 0.9368 0.8492 0.7034

In terms of RMSE, the results for three time series under
FNN model, GDBM+FNN model and proposed DBN model
are shown in Table II.

It can be seen from that Table II, for time series [Energy],
FNN model and GDBM+FNN model achieve 320.5760 and
304.4497 of RMSE values respectively. The RMSE of our
proposed DBN model is 289.3716. Also, for the time series
[Dollar] and [TAIEX], our proposed model shows its priority
compared to the other two models. Similarly, smaller values
of MAE and MAPE could be achieved by our proposed
model based on time series [Dollar] and [TAIEX] compared
to FNN model and GDBM+FNN model.

Next, to further evaluate the performance of the proposed
DBN model, the evolution of each criterion is investigated as
the number of the training epochs increases from 10 to 130
for the GDBM+FNN model and our proposed DBN model
based on the three time series and the results are shown in
Fig.4.
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In Fig.4, (a), (b) and (c) represent the RMSE values of
GDBM+FNN model and our proposed DBN model based
on time series [Energy], [Dollar] and [TAIEX] respectively.
Fig.4 (d), (e) and (f) represent the MAP values of the two
models based on three time series respectively. And Fig.4 (g),
(h) and (i) represent the MAPE values accordingly. The hor-
izontal axis represents the number of the training epochs and
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(f) MAE with [TAIEX]

the vertical axis represents the corresponding error values. In
Fig.4, the red solid lines represent results of GDBM+FNN
model, while the blue dotted lines represent results of our
proposed DBN model respectively. It is illustrated from Fig.4
that no matter which criterion is used, our proposed DBN
model has smaller values. The forecasting performance of
our proposed DBN model is thereby verified.
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(h) MAPE with [Dollar]

Epochs
0 20 40 60 80 100 120 140

M
A

P
E

 o
f r

ec
on

st
ru

ct
io

n(
T

A
IE

X
)

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15
GDBM+FNN Model
Proposed DBN Model

(i) MAPE with [TAIEX]

Fig. 4. Evolution of criteria based on different time series with [Energy],
[Dollar] and [TAIEX] for GDBM+FNN Model and Proposed DBN Model

V. CONCLUSION

A novel DBN model composed of two RBMs and an
ANN is proposed for time series forecasting in this paper, in
which GBRBM for continuous input is adopted. Moreover,
to further improve the forecasting accuracy, a novel error cor-
rection algorithm is proposed. The forecasting performance

of the proposed DBN model is verified based on three time
series such as [Energy], [Dollar] and [TAIEX]. Experiments
results show that the proposed model is effective and able to
achieve higher forecasting accuracy compared to FNN model
and GDBM+FNN model.
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