



Abstract—This paper deals a problem with detecting the

critical nodes in order to achieve minimum pair-wise

connectivity in the residual graph after removing a limited

number of nodes from the graph. It is called the critical node

detection problem (CNDP). In this paper, we propose a new

hybridization scheme of greedy randomized adaptive search

procedure (GRASP) with exterior path-relinking. Exterior

path-relinking, a recently proposed metaheuristic method,

creates paths of successive solutions starting from two high-

quality solutions to other high quality solutions. A randomly

selected solution from the elite solution pool collecting

throughout GRASP iterations and the resulting solution from

each GRASP iteration are relinked by exterior path-relinking

for finding better solutions. The proposed algorithm is assisted

on test instances from the literature. Computational

experiments demonstrate that the proposed method

outperforms other existing algorithms in the area of CNDP.

Index Terms—critical node detection problem, exterior path-

relinking, greedy randomized adaptive search procedure,

heuristic algorithms

I. INTRODUCTION

HE critical node detection problem (CNDP) finds a set

of nodes (S) to be removed from a given undirected

graph G=(V, E) in order to fragment the graph. The aim of

the problem discussed in this paper is to minimize the

number of pair-wise connectivity of the nodes in the

remaining graph G[V \ S]. A set of k critical nodes S is

searched to meet with the objective function as shown in (1)

so that the total number of pair-wise connectivity of nodes in

the remaining graph can be minimized. An integer linear

Manuscript received July 30, 2016; revised December 30, 2016. This

work is supported by the National Science Foundation of China under

Grant No.61402131; the China postdoctoral science foundation under

Grant No.(2014M551245, 2016T90293); the Heilongjiang postdoctoral

science foundation under Grant No.LBH-Z13105 and the Fundamental

Research Funds for the Central Universities under Grant

No.HIT.NSRIF.201651.

Dalaijargal Purevsuren is with the Harbin Institute of Technology,

Harbin, 150001, China (corresponding author, phone: 86-18746017740; e-

mail: dalaijargal@gmail.com).

Gang Cui is with School of Computer Science and Technology, Harbin

Institute of Technology, Harbin 150001, China. (e-mail: cg@ hit.edu.cn).

Mingcheng Qu is with School of Computer Science and Technology,

Harbin Institute of Technology, Harbin 150001, China. (e-mail:

qumingcheng@hit.edu.cn).

Nwe Nwe Htay Win is with School of Computer Science and

Technology, Harbin Institute of Technology, Harbin 150001, China. (e-

mail: nwenwehtaywin@yahoo.com).

programming based definition and the proof of NP-hard for

CNDP are presented in [1].

f(S):= |{u, v  V \ S: u and v are in a same component of G[V \ S]}| (1)

CNDP problem has been recently attracting some

attentions in many applications. Indeed, identifying a small

number of key nodes in a network plays an important role

for many cases in the real world. For example, when it is

expensive to vaccinate all members of a network, a possible

solution is to vaccinate key members of the network so it is

essential to find them in this research [2]. Detecting critical

members in a network are widely used not only in academic

area but also in political issues i.e., it may be useful to find

pivotal members of a terrorist network for a government. It

would be effective to maximize damage of the terrorist

network if the key members are destroyed [3].

In this paper, we introduce a hybridization of GRASP

with exterior path-relinking (GRASP with ePR) to identify

the critical nodes in graphs. To the best of our knowledge,

we are the first of introducing GRASP with ePR in CNDP,

and this paper focuses to show how ePR could improve

GRASP with our proposed GRASP with ePR algorithm.

Regarding to path-relinking, there are two variants, namely

interior path-relinking and exterior path-relinking introduced

in [4] and [5], respectively. Interior path-relinking is firstly

introduced in the context of GRASP by Laguna and Marti

[6]. In the last decade, the hybridization of GRASP with

interior path-relinking demonstrates its ability that provides

high quality outcomes for some types of hard optimization

problems.

Although many researchers have paid great attention of

GRASP improvement by combining with interior path-

relinking, there are only few researches that consider

“exterior” path-relinking in the context of GRASP. In this

study, we consider exterior path-relinking to intensify

GRASP in a new way with our proposed GRASP with ePR

algorithm. Exterior path-relinking is used as intensification

method to explore the neighbors beyond the resulting

solution of each GRASP iteration and a randomly selected

member from the elite set as well. Elite set is a small-sized

set of high quality solutions that is obtained throughout

GRASP iterations. In addition, we modify the local search

usage in exterior path-relinking defined in its original

proposal [5]. The modification to local search usage is

accomplished by applying a local search procedure to each

member in a path instead of considering only the best

member in a path. The modification is experimentally

evaluated in section IV-B.

Hybridization of GRASP with Exterior Path

Relinking for Identifying Critical Nodes in

Graphs

Dalaijargal Purevsuren, Gang Cui, Mingcheng Qu, and Nwe Nwe Htay Win

T

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_04

(Advance online publication: 24 May 2017)

__

The proposed algorithm is tested on benchmark test

instances from the literature. The performance of GRASP

with ePR is compared with existing other methods for

solving CNDP such as simulated annealing (SA) [8],

population-based incremental learning (PBIL) [8], and

Variable Neighborhood Search (VNS) [9]. The results of

computational experiments show that GRASP with ePR

outperforms the other methods.

The remainder of the paper is structured as follows. In

section two, the related works to CNDP and GRASP with

path-relinking are critically reviewed and analyzed. Section

three describes the proposed algorithms in detail. The results

of the computational experiments are presented in section

four. Finally, we conclude the paper and discuss some

possible future work.

II. RELATED WORKS

A. CNDP

CNDP finds a set of certain nodes for network

fragmentation. A plenty of researches [8], [9], [10], [11]

have focused on the issues of detecting critical nodes in

graphs with significant methodologies and algorithms. The

work described in [8] approached CNDP problem using

population-based incremental learning and simulated

annealing optimization algorithms with the help of a

combinatorial unranking-based problem representation. The

study defined in [9] presented two metaheuristics for CNDP

using iterated local search and variable neighborhood search

frameworks.

B. GRASP

To grasp the underlying methodology of GRASP, the

related literatures are studied as follows. The GRASP is a

multi-start metaheuristic introduced by Feo and Resende,

1989, 1995, [12], [13]. A recent complete survey of this

method is presented in the work [14]. As far as we studied

the literature related with GRASP, we can see them into two

kinds of researches such as those which consider interior

path-relinking and those which exploit exterior path-

relinking in GRASP.

1) GRASP with exterior path-relinking

A new variant of path-relinking, exterior path-relinking, is

proposed by Glover [5]. Instead of exploring trajectories

“between” solutions, exterior path-relinking focuses on

trajectories “beyond” two solutions. They regarded exterior

path-relinking as beyond-form of path-relinking that focuses

on its relevance for diversification in binary optimization.

Abraham Duarte et al. 2015 [7] proposed several types of

new hybrid heuristics which are composed of GRASP with

sampled greedy construction and exterior path-relinking.

They firstly introduced exterior path-relinking in the context

of GRASP for solving the differential dispersion problem.

The heuristic maintains an elite set of high-quality solutions

throughout the GRASP iterations to integrate exterior path-

relinking. Exterior path-relinking is used after a fixed

number of iterations for only intensifying the elite set.

Extensive computational experiments are executed, and

experimental results show the competitiveness of this

algorithm.

2) GRASP with interior path-relinking

The idea of using interior path-relinking (also called path-

relinking) in GRASP procedure was proposed by Laguna

and Marti [6]. Celso C. Ribeiro et al. [15] reviewed the

fundamentals and implementation strategies about interior

path-relinking for advanced hybridizations with

metaheuristic schemes such as GRASP, genetic algorithms,

tabu search, scatter search, etc. The readers may explore the

studies [14], [15] for detailed survey of GRASP with interior

path-relinking.

III. A NEW HYBRIDIZATION SCHEME OF EXTERIOR PATH-

RELINKING WITH GRASP

This paper introduces a new hybridization scheme of

exterior path-relinking with GRASP. First of all, we describe

the structure of proposed hybridization scheme and later the

inside sub-procedures will be presented in the following sub-

sections in detail. GRASP developed by Feo and Resende

[12], [13] is a multi-start meta-heuristics that iteratively

executes two main phases, namely construction and local

improvement procedures. At every iteration of GRASP, a

solution is created by a construction method, and improved

by a local improvement method. Both of construction and

local improvement methods are needed to be defined for the

concrete problem. These two phases are repeated until they

reach to a pre-defined number of iterations. For a more

complete description and recent surveys of GRASP, we refer

the readers to the studies [14].

In our GRASP with ePR algorithm, we propose a

construction and local improvement method for CNDP. A

small-sized set of high quality solutions (elite set) is

maintained throughout GRASP iterations to integrate

exterior path-relinking. In this scheme, exterior path-

relinking is used as intensification method for GRASP. The

resulting solution obtained from each GRASP iteration is

relinked with a randomly selected member from the elite set

by using exterior path-relinking. Exterior path-relinking

creates a path by exploring neighbors beyond the two

solutions. The best solution in the path will be a candidate

for inclusion in the elite set. An updating rule for the elite set

is defined in section III-D. Path-relinking can also be used as

intensification tool for elite set [15]. To intensify the elite

set, path-relinking is periodically applied to several members

of the elite set. In this study, only interior path-relinking is

used for this purpose.

The pseudocode of GRASP with ePR is presented in

Algorithm 1, where ES is the elite set, t is the counter of

GRASP iterations, q is the number of consecutive iterations

without an improvement, elite_set_size is the size of elite

set, τ is the step of evolutionary path-relinking, symbol %

indicates the module operation, and min finds the element

whose objective function has minimum value. The detailed

processes of each function used in GRASP with ePR are

explained in the following sub-sections.

A. Construction Phase

We propose a construction method based on a random

walk technique. A random walk on a graph creates a path

that consists of succession of random steps over the graph.

To make a random step from a node, the next node is

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_04

(Advance online publication: 24 May 2017)

__

randomly selected from the current node's neighbors based

on transition probabilities. For more detailed explanation of

random walk, the readers are referred to [16].

Algorithm 1: GRASP_ePR

1: ES   ;

2: t  0;

3: q  0;

4: repeat

5: s  Construction();

6: s1  Local_Improvement(s);

7: if (|ES| < elite_set_size) then

8: ES  ES s1;

9: else

10: s2  Select_Random_Solution(ES);

11: s3  Exterior_Path_Relinking(s2, s1);

12: ES Update_Elite_Set(ES, s3, q);

13: end

14: t  t + 1;

15: if (t % τ = 0) then

16: ES  Intensifying_Elite_Set(ES);

17: end

18: until (reach to termination condition);

19: return min{ES};

In this study, we consider that all nodes have the same

roles, so transition probabilities for all nodes equal to 1/|V|

where |V| represents the number of vertices of the input

graph. Random walk starts a selected node, and then

randomly selects the next node with a probability of 1/|V|.

The length of the path created by the random walk is 2*k

where k is the number of critical nodes. The set of nodes in

the path can be considered as a solution for CNDP, but it is

infeasible because the number of nodes in the path is larger

than k. To make the solution feasible, we use an algorithm

proposed in [1] that iteratively removes one node at a time in

which contribution of objective function value is minimum.

The pseudocode of the construction phase is presented in

Algorithm 2, where Nu is the neighbors of node u, S is the

constructing solution, and random(Q) is a function that

randomly selects a node from a set of vertices Q. The output

of Construction() is a feasible CNDP solution.

Algorithm 2: Construction()

1: S   ;

2: u  random(V);

3: S  Su;

4: repeat

5: v  random(Nu);

6: S  S v;

7: until (|S| > 2*k);

8: repeat

9: w = argmin{f(S \ {w}) – f(S)};

10: S  S \ {w};

11: until (|S| = k)

12: return S;

B. Local Improvement Phase

We use a simple neighborhood structure for local

improvement function. Neighborhood of a solution is

defined as a set of solutions that can be visited by swapping

two nodes: which is one from S while another is from SV \ .

With this structure, local improvement is accomplished by

executing the swapping | V | times. The neighbor solution

that has maximum improvement in objective function value

and has better improvement than the current solution is

selected as the next move. Local improvement stops if the

number of consecutive attempts without an improvement

reaches to the pre-defined limit (λ) that is an input

parameter. The best solution is returned as the local optimal

solution. This procedure is indicated in Algorithm 1 as

“Local_Improvement(s)” which receives a solution as input,

improves it, and finally the best improved solution is

returned as output.

C. Exterior Path-Relinking

Exterior path-relinking generates the paths beyond

(exterior) two high quality solutions in the neighborhood

space. Let A and B are the high quality (local optimal)

CNDP solutions to be linked by exterior path-relinking. To

shed some light on the problem of exterior path-relinking,

set representation diagrams are presented in Fig. 1 where 

is the CNDP solution space. Exterior path-relinking solely

focuses on the elements that lie in BA and)(\ BA ,

and there are no changes on elements that lie in A\B and B\A

(see Fig. 1 (b) and (c)).

Fig. 1. A set representation diagram for solution A and B where

white space indicates inactive region for exterior path-relinking.

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_04

(Advance online publication: 24 May 2017)

__

The processes of exterior path-relinking are as follows.

First of all, it starts with A and gradually transforms itself

with a direction which becomes farther from A and B by

successively removing elements from BA , and adding

elements from)(\ BA . The pseudocode of exterior

path-relinking is described in Algorithm 3 that receives two

solutions as input, relinks them, and returns the best solution

as output where ρ (0 < ρ ≤1) is an input parameter. A

conceptual illustration of exterior path-relinking is presented

in Fig. 2.

In exterior path-relinking algorithm, every step selects two

elements by examining contribution in objective function’s

value. The first element is a node from BA whose

deletion from A is a minimum increase (worst node in A) in

objective function’s value (line 4). It is the node having

minimum impact in objective function. The reason is

because the objective function value increases or does not

change by deleting an element from A i.e., f(A)  f(A\{i})

and therefore, the node that has minimum objective function

value by deleting it from A has minimum impact in objective

function value of A. The second element is a node from

)(\ BA whose insertion to B is maximum improvement

(best node in B) in objective function’s value (line 5). That

is because the objective function value decreases or does not

change by adding a node into solution B i.e.,

}){()(iBfBf  and therefore, the node having minimum

objective function value by adding it to B has maximum

impact in objective function value. The first element is then

removed from A and the second element is added into A

(line 6 and 7 respectively). The modified solution A is

improved by using the local search method defined in

section III-B. If the improved solution is better than the

current best solution, the best solution is replaced with the

new solution. These steps are repeated until the termination

condition meets.

Algorithm 3: Exterior_Path_Relinking (A, B)

1: C A;

2: N |AB|;

3: repeat

4: a argmin{f(A \{i}) : i A B};

5: b argmin{f(B {i}) : i)(\ BA };

6: A A \ {a};

7: A A {b};

8: Als Local_Improvement(A);

9: if (f (Als) < f (C)) then

10: C Als;

11: end

12: until (|AB| < (1- ρ)*N);

13: return C;

D. Updating Elite Set

The candidate solution for inclusion in the elite set is

replaced with its own parent solution in the elite set if it

satisfies the following two conditions:

1. It is better than its own parent in terms of the quality

of solution

2. It is different from all member of the elite set.

This process refers to “Update_Elite_Set(ES, s3, q)” of

Algorithm 1. It receives the elite set (ES), a candidate

solution (s3), and a variable for counting the number of

consecutive iterations without an improvement (q) as input.

Then it carries out the abovementioned updating conditions.

If the candidate satisfies the updating conditions, the

updated elite set is returned as output, and q is set by zero. If

the candidate cannot satisfy the conditions, it is simply

discarded, q is increased by one, and the last elite set is

returned as output.

Fig. 2. A conceptual illustration of exterior path-relinking.

E. Intensifying Elite Set (Also known as evolutionary

path-relinking)

The members in elite set do not mix with each other

because the updating rule we propose does not allow it.

However, mixing the members in elite set each other could

give promising solutions. For this propose, we use interior

path-relinking to intensify the elite set. Therefore, in our

paper, interior path-relinking is called at every fixed number

of iterations to intensify the elite set. Each pair of the elite

set is relinked by executing interior path-relinking, and the

best solution in the path will be a candidate for inclusion in

the elite set. The initial solution (solution A in Algorithm 4)

of interior path-relinking is considered as its parent. This

procedure is denoted by “Intensifying_Elite_Set(ES)” in

Algorithm 1. It receives the elite set as input, intensifies that

elite set, and returns the intensified elite set as output.

Interior path-relinking is described in the following section.

F. Interior Path-Relinking

We propose interior path-relinking (also known as path-

relinking) to relink two high quality CNDP solutions in the

elite set. Interior path-relinking procedure starts with A, and

it is gradually transformed into B by successively swapping

elements from A \ B and B \ A. The pseudocode of interior

path-relinking is presented in Algorithm 4. It receives two

solutions as input, relinks them, and returns the best solution

as output. At each step of interior path-relinking, two

elements are selected by examining contribution in objective

function’s value. The first element is a node from A \ B

whose deletion from A is a minimum increase (worst node in

A) in objective function’s value (line 3). The second element

is a node from B \ A whose deletion from B is a maximum

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_04

(Advance online publication: 24 May 2017)

__

increase (best node in B) in objective function’s value (line

4). Then the first element is removed from A and the second

element is added into A (line 5 and 6 respectively). The

resulting solution A is improved by executing the local

search method defined section III-B (line 7). If the improved

solution is better than the current best solution in the path,

the best solution is replaced with the new solution. These

steps are repeated until solution A reaches to solution B.

Algorithm 4: Interior_Path_Relinking (A, B)

1: C A;

2: repeat

3: a argmin{f(A \ {i}):i A \ B};

4: b argmax{f(B \{i}):iB \ A};

5: A A \ {a};

6: A A {b};

7: Als Local_Improvement(A);

8: if (f (Als) < f (C)) then

9: C Als;

10: end

11: until (|A \ B| = 0);

12: return C;

G. Termination conditions

We use two different termination conditions for

GRASP_ePR defined in Algorithm 1. The first condition is

based on the total number of GRASP iterations. The

maximum number of iterations (T1) is defined by input

parameter. The GRASP_ePR with iteration based a

termination condition is denoted by “GRASP_ePR1” in

section IV. The second condition is based on the number of

consecutive iterations without an improvement. The

maximum number of consecutive iterations without an

improvement (T2) is defined as input parameter. The

GRASP_ePR with a termination condition based on

consecutive no improvement is denoted by “GRASP_ePR2”.

These two termination conditions enable us to control trade-

off between running time and the solution quality.

IV. COMPUTATIONAL EXPERIMENT

In this section, we evaluate the performance of proposed

GRASP_ePR1 and GRASP_ePR2 algorithms. For testing

purposes, we use benchmark test instances defined in [8],

publicly available at

http://individual.utoronto.ca/mventresca/cnd.html. The main

characteristics (number of vertices and edges of graphs, the

number of critical nodes to be removed, and the number of

cut points of graphs) and optimal solution’s objective

function value (OFV) of the benchmark test instances are

presented in Table I.

The proposed algorithms are implemented in C++ and

compiled with gcc 4.9.3 using optimization flags –O2. All

experiments were performed on a Lenovo machine equipped

with Windows 7 x64 operating system and an Intel Core i5-

3210M (CPU 2.50GHz) processor, RAM 6GB. Running

time is limited to 5000 seconds for all algorithms assisted in

this work.

A. Parameter study

As mentioned in section III, termination conditions enable

us to control trade-off between running time and solution

quality. We design GRASP_ePR1 with a goal that finds

good quality solutions in reasonable time, whereas

GRASP_ePR2 is designed to find high quality solutions

without much concerning running time except the general

requirement of 5000s for running time limit. To define

promising region of parameters, a large number of

preliminary experiments are executed. As a result, several

possible choices for each parameter are considered as the

following: λ = {5, 10, 15, 20}; τ = {4, 6, 8, 10}; ρ = {0.1,

0.3, 0.5, 0.7}; T1 = {25, 50, 75, 100}; T2 = {2, 10, 20, 30}.

Parameters’ value is selected from experimental evaluation

results with a great care of the design goal of each algorithm.

The parameter elite_set_size is a standard parameter in

GRASP with path-relinking. As discussed in [17], parameter

elite_set_size should be small (around ten). In our case, the

number of total iterations is relatively small. In addition,

updating conditions for the elite set are strict to mix elite set

members each other. Thus, the parameter elite_set_size is

selected by a smaller value “3”. We selected two

representative test instances, WS500 and ER500, for

experimental evaluation of parameter study and investigation

on GRASP with ePR because they are instances of the

hardest graphs for CNDP [9], and their sizes are moderate.

The average value over 30 independent runs for each

parameter combination is considered for parameter

evaluation.
TABLE I

CHARACTERISTICS OF BENCHMARK TEST INSTANCES

Benchmark

test instances
Vertices Edges

Critical

nodes

of cut

points

Optimal

solution’s

OFV a

ER250 235 250 50 48 N/A

ER500 466 700 80 84 N/A

ER1000 941 1400 140 177 N/A

ER2500 2344 3500 200 419 N/A

BA500 500 499 50 164 195

BA1000 1000 999 75 324 558

BA2500 2500 2499 100 825 3704

BA5000 5000 4999 150 1672 10196

WS250 250 1246 70 0 N/A

WS500 500 1496 125 0 N/A

WS1000 1000 4996 200 0 N/A

WS1500 1500 4498 265 0 N/A

FF250 250 514 50 83 194

FF500 500 828 110 195 257

FF1000 1000 1817 150 362 1260

FF2000 2000 3413 200 725 4545
a Optimal solution’s OFVs are reported in [9]. The optimal solutions are

calculated by using an exact method with running time limit of 5 days.

GRASP_ePR’s result over different parameter values is

reported in Table II - VI where Cost is the objective function

value and Time is the running time. First parameter λ is

evaluated with fixed values of T1 = 50, τ = 6, and ρ = 0.3

(see Table II). Then, parameter τ is evaluated with fixed

values of T1 = 50, λ = 5, and ρ = 0.3 (see Table III). After

that, parameter ρ is evaluated with fixed values of T1 = 50, λ

= 5, and τ = 6 (see Table IV).

TABLE II

GRASP_EPR’S RESULTS FOR EVALUATION ON PARAMETER λ

 5 10 15 20

 Cost Time Cost Time Cost Time Cost Time

WS500 2175 246 2146 479 2137 719 2120 914

ER500 1603 74 1584 149 1561 199 1549 269

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_04

(Advance online publication: 24 May 2017)

__

TABLE III

GRASP_EPR’S RESULTS FOR EVALUATION ON PARAMETER τ

 4 6 8 10

 Cost Time Cost Time Cost Time Cost Time

WS500 2181 204 2178 193 2188 184 2197 170

ER500 1612 89 1603 79 1606 77 1604 77

TABLE IV

GRASP_EPR’S RESULTS FOR EVALUATION ON PARAMETER ρ

 0.1 0.3 0.5 0.7

 Cost Time Cost Time Cost Time Cost Time

WS500 2197 44 2172 170 2174 281 2179 369

ER500 1628 23 1591 78 1589 136 1595 224

 From Table III, when parameter τ equal to 6, the

algorithm is more likely to be efficient and effective.

According to the experimental results in Table IV, when

parameter ρ is higher than 0.3, there is almost no benefit in

the solution quality and large increase in time consumption.

Thus, we select ρ = 0.1 for GRASP_ePR1, and ρ = 0.3 for

GRASP_ePR2 with considering their design goals. When

parameter ρ = 0.1, the algorithm saves time, but the solution

quality is not high. To compensate the solution quality of

GRASP_ePR1, another parameter is assigned by a value,

parameter λ = 20, with high solution quality. We select

parameter λ = 5 for GRASP_ePR2 because it already has a

slow but a good for quality parameter value i.e., ρ = 0.3.

Finally, termination conditions for both algorithms,

parameter T1 and T2, are evaluated with fixed values of τ =

6, λ = 20, and ρ = 0.1 for GRASP_ePR1, and τ = 6, λ = 5,

and ρ = 0.3 for GRASP_ePR2. There is a sharp decrease in

OFV with T1 = 50 according to the results in Table V. With

increase in T1 value such as 75 and 100 there is a slight

improvement in OFV and a huge increase in time

consumption. Therefore, parameter T1’s value is set by “50”

with concerning its design goal.

GRASP_ePR obtains steady improvements in OFV until

value of T2 reaches 20 (see Table VI). To promote the goal

of GRASP_ePR2, parameter T2 is set by “20”. The selected

parameters for algorithms are summarized in Table VII.

TABLE V

GRASP_EPR’S RESULTS FOR EVALUATION ON PARAMETER T1

 25 50 75 100

 Cost Time Cost Time Cost Time Cost Time

WS500 2201 111 2155 193 2147 288 2139 386

ER500 1613 49 1580 102 1570 140 1565 175

TABLE VI

GRASP_EPR’S RESULTS FOR EVALUATION ON PARAMETER T2

 2 10 20 30

 Cost Time Cost Time Cost Time Cost Time

WS500 2200 134 2171 337 2146 502 2145 777

ER500 1661 40 1598 127 1580 169 1574 269

B. Some investigations on GRASP with ePR

In this section, we investigated two components, not

typical in this field, of the proposed GRASP with ePR,

namely having evolutionary path-relinking (we called it

“evoPR”), and calling local search (LS) method for each

member of paths generated by path-relinking (we called it

“path-inside LS”). As mentioned in previous section, WS500

and ER500 are also used for this investigation.

TABLE VII

PAREMETERS USED IN GRASP_EPR1 AND GRASP_EPR2

Parameters
Values for

GRASP_ePR1

Values for

GRASP_ePR2

T1 50 --

T2 -- 20

Elite_set_size 3 3

Τ 6 6

Λ 20 5

Ρ 0.1 0.3

To evaluate the impact of evoPR and path-inside LS on

GRASP_ePR, we executed GRASP_ePR with a termination

condition of running time limitation (50, 100, 150, 200,

and/or 250 seconds). For a test instance and a fixed time

limitation, GRASP_ePR are executed 30 independent runs.

The average value over 30 runs is considered for evaluation.

The comparison graphic is displayed in Fig. 3 for evaluation

of evoPR, and Fig. 4 for evaluation of path-inside LS.

According to the result in Fig. 3, having evoPR is an

efficient and effective way to improve the performance of

GRASP_ePR. With increase in the running time, path-inside

LS improves the performance of GRASP_ePR according to

Fig. 4. A conclusion rising from the abovementioned two

facts is that GRASP_ePR with evoPR and path-inside LS

may open a door of a promising hybridization scheme for

hard optimization problems.

(a) WS500 test instance

(b) ER500 test instance

Fig. 3. Comparison between GRASP_ePR with evoPR and without evoPR.

C. Experimental Results and Comparison with Existing

Other Methods

Experimental results of GRASP_ePR1 and GRASP_ePR2

are summarized in Table VIII, and Table IX respectively.

We show the values of best, worst, average (avg.), and

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_04

(Advance online publication: 24 May 2017)

__

standard deviation (sd.) over 30 independent runs.

GRASP_ePR2 finds the optimal solution for all instances of

BA, and FF (see Table I, and Table IX). GRASP_ePR1

finds the optimal solution for most of BA and FF instances.

(a) WS500 test instance

(b) ER500 test instance

Fig. 4. Comparison between GRASP_ePR with path-inside LS and without

path-inside LS;

To evaluate the performance of the proposed algorithms,

we chose three recently proposed algorithms from the

literature. The authors in [9] propose several heuristic

algorithms for CNDP, and we chose the best one among

those algorithms, namely Variable Neighborhood Search

with first improvement strategy (called VNS-F). The two

heuristic algorithms, Simulated Annealing (SA), and

Population-based Incremental Learning (PBIL), proposed in

[8] are used for performance evaluation because we use the

benchmark instances defined in that work. To test these

methods in a same experimental environment, we re-

implemented these methods in C++ according to the

guidelines of the original publications. All algorithms have

been executed 30 times at each of the instances, using

different random seeds for each run. The results of SA,

PHIL, VNS-F, GRASP_ePR1, and GRASP_ePR2 are

summarized in Table X.

According to comparison in Table X, GRASP_ePR2

outperforms other methods. More specifically,

GRASP_ePR2 has large difference (improvement) on the

densest graphs (WS and ER) from others.

Computational time consumed by GRASP_ePR1 and

GRASP_ePR2 is compared with that consumed by VNS-F.

Their computational times (average over 30 runs) are

tabulated in Table XI. From Table X and Table XI, we can

conclude that the proposed GRASP_ePR2 clearly

outperforms the other methods in terms of solution quality.

In addition, the proposed GRASP_ePR1 finds competitive

results with less time than other methods.

TABLE VIII

SUMMARY RESULTS (BEST, WORST, AVERAGE (AVG.), STANDARD DEVIATION

(SD.)) FOR GRASP_EPR1

Benchmark

test instances
best worst avg. sd.

ER250 297 300 297.8 0.9

ER500 1566 1668 1620.9 29.2

ER1000 5500 6078 5807.5 214.8

ER2500 1048464 1070207 1058018.1 6523.8

BA500 195 195 195.0 0.0

BA1000 558 558 558.0 0.0

BA2500 3704 3704 3704.0 0.0

BA5000 10196 10196 10196.0 0.0

WS250 4301 5509 4791.7 279.5

WS500 2102 2220 2173.6 42.7

WS1000 134006 137748 135877.0 1871.0

WS1500 14047 15051 14427.0 261.3

FF250 194 194 194.0 0.0

FF500 257 259 258.1 0.5

FF1000 1260 1271 1262.9 2.9

FF2000 4549 4590 4564.7 13.4

TABLE IX

SUMMARY RESULTS (BEST, WORST, AVERAGE (AVG.), STANDARD DEVIATION

(SD.)) FOR GRASP_EPR2

Benchmark

test instances
best worst avg. sd.

ER250 295 301 297.3 1.8

ER500 1536 1635 1580.1 25.4

ER1000 5102 5696 5442.2 176.3

ER2500 1010487 1087914 1049958.1 19515.3

BA500 195 195 195.0 0.0

BA1000 558 558 558.0 0.0

BA2500 3704 3704 3704.0 0.0

BA5000 10196 10200 10197.0 1.7

WS250 3192 4797 4047.1 433.2

WS500 2099 2234 2146.4 35.7

WS1000 128657 141987 135317 3495.4

WS1500 13773 14251 13981.7 318.6

FF250 194 195 194.1 0.3

FF500 257 261 258.1 1.3

FF1000 1260 1266 1261.8 1.9

FF2000 4545 4566 4553.3 6.0

TABLE X

COMPARISON OF THE BEST OBJECTIVE FUNCTION VALUE FOR SA, PBIL,

VNS-F, GRASP_EPR1, AND GRASP_EPR2.

Bench.

test

instances

SA PBIL VNS-F GRASP_ePR1 GRASP_ePR2

ER250 7700 6700 298 297 295
 a

ER500 48627 44255 1542 1566 1536

ER1000 234479 229576 5198 5500 5102

ER2500 2011122 2009132 1034333 1048464 1010487

BA500 997 892 195 195 195

BA1000 3770 3057 559 558 558

BA2500 31171 28044 3704 3704 3704

BA5000 170998 146753 10218 10196 10196

WS250 14251 13786 6610 4301 3192

WS500 54201 53779 2148 2102 2099

WS1000 311700 308596 139653 134006 128657

WS1500 717369 703241 14619 14047 13773

FF250 1841 1386 194 194 194

FF500 2397 1904 257 257 257

FF1000 92800 59594 1263 1260 1260

FF2000 387248 256905 4549 4549 4545

of best

value:
0 0 4 7 16

a The best results are displayed in bold font.

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_04

(Advance online publication: 24 May 2017)

__

D. New best known values

We compare our best values with the best known values

for the benchmark test instances considered in this work.

The best known values are collected from the study

presented in [9]. The following Table XII shows their

comparison.

TABLE XI

COMPARISON OF COMPUTATIONAL TIME (IN SECONDS) FOR VNS-F,

GRASP_EPR1 AND GRASP_EPR2

Benchmark

test instances
VNS-F GRASP_ePR1 GRASP_ePR2

ER250 7 4 13

ER500 57 41 169

ER1000 691 355 2480

ER2500 5002 3240 5009

BA500 11 18 19

BA1000 86 72 130

BA2500 563 487 2022

BA5000 5016 5012 5006

WS250 5 8 126

WS500 566 119 502

WS1000 415 342 4219

WS1500 5051 2792 5032

FF250 8 5 8

FF500 175 26 85

FF1000 1455 192 983

FF2000 5005 1657 5012

TABLE XII

COMPARISON OF BEST VALUES OBTAINED BY GRASP_EPR1 AND

GRASP_EPR2 WITH BEST KNOWN VALUES FROM THE LITERATURE.

Bench.

test

instances

Old best

known

values

GRASP

_ePR1

GRASP

_ePR2

New

best

known

values

Gap %

ER250 295 297 295 295 0.00%

ER500 1542 1566 1536 1536 -0.39%

ER1000 5198 5500 5102 5102 -1.85%

ER2500 1012849 1048464 1010487 1010487 -0.23%

BA500 195 195 195 195 0.00%

BA1000 559 558 558 558 -0.18%

BA2500 3704 3704 3704 3704 0.00%

BA5000 10196 10196 10196 10196 0.00%

WS250 3241 4301 3192 3192 -1.51%

WS500 2130 2102 2099 2099 -1.46%

WS1000 139653 134006 128657 128657 -7.87%

WS1500 14138 14047 13773 13773 -2.58%

FF250 194 194 194 194 0.00%

FF500 257 257 257 257 0.00%

FF1000 1260 1260 1260 1260 0.00%

FF2000 4549 4549 4545 4545 -0.09%
a The new best known values obtained by GRASP_ePR1 and

GRASP_ePR2 are presented in bold.

The proposed algorithms discover new best known

solutions for all instances of the densest graphs (WS and ER

graphs) except ER250 whose best known value is replicated

by the proposed algorithms. In addition, new best known

values (that is also optimal value) for BA1000, and FF2000

instances are discovered. As mentioned in previous section,

our proposed GRASP_ePR2 has ability to discover optimal

solutions for all instances of BA and FF graphs. It is worth

to note that WS graphs are hardest test instances because

they are the densest graphs in this benchmark set (average

degree of nodes is up to five times higher than other graphs).

In addition, WS graphs have no cut points (see Table I). If a

graph has many cut points, the graph can easily be divided

into connected components by removing cut points. We can

therefore conclude that the proposed algorithms can find

higher quality solutions for dense graphs than other methods.

It is also important to note that the best known values

defined in [9] are collected from 24 different variants of

VNS and 6 different variants of iterated local search-based

methods with 10000 seconds of running time limitation.

V. CONCLUSION

This paper proposed a new hybrid heuristic algorithm for

the critical node detection problem. The heuristic uses

exterior and interior path-relinking in the context of GRASP

in a new way. Experimental evaluation shows that the

proposed heuristic outperforms other existing methods in the

literature.

As our future work, this proposed hybridization scheme

would be used for other combinatorial optimization

problems, and therefore, its application for other problems is

an interesting future research. By improving the method for

defining transition probabilities in the construction phase,

more high quality outcomes may be created. In general

sense, methods for the community detection problem such as

methods in [18], [19] that is a network related problem, may

be successful in constructing solution for GRASP.

REFERENCES

[1] A. Arulselvan, C. W. Commander, L. Elefteriadou, and P. M.

Pardalos, “Detecting critical nodes in sparse graphs,” Computers &

Operations Research, vol. 36, no. 7, pp. 2193–2200, Jul. 2009.

[2] R. Cohen, S. Havlin, and D. ben-Avraham, “Efficient Immunization

Strategies for Computer Networks and Populations,” Physical Review

Letters, vol. 91, no. 24, p. 247901, Dec. 2003.

[3] Krebs, V. Uncloaking terrorist networks. First Monday 2002, 7.

[4] F. Glover, “Tabu Search and Adaptive Memory Programming —

Advances, Applications and Challenges,” in Interfaces in Computer

Science and Operations Research, R. S. Barr, R. V. Helgason, and J.

L. Kennington, Eds. Springer US, 1997, pp. 1–75.

[5] F. Glover, “Exterior Path Relinking for Zero-One Optimization,”

International Journal of Applied Metaheuristic Computing, vol. 5,

no. 3, pp. 1–8, Jul. 2014.

[6] M. Laguna and R. Marti, “GRASP and Path Relinking for 2-Layer

Straight Line Crossing Minimization,” INFORMS Journal on

Computing, vol. 11, no. 1, pp. 44–52, Feb. 1999.

[7] A. Duarte, J. Sánchez-Oro, M. G. C. Resende, F. Glover, and R.

Martí, “Greedy randomized adaptive search procedure with exterior

path relinking for differential dispersion minimization,” Information

Sciences, vol. 296, pp. 46–60, Mar. 2015.

[8] M. Ventresca, “Global search algorithms using a combinatorial

unranking-based problem representation for the critical node

detection problem,” Computers & Operations Research, vol. 39, no.

11, pp. 2763–2775, Nov. 2012.

[9] R. Aringhieri, A. Grosso, P. Hosteins, and R. Scatamacchia, “Local

search metaheuristics for the critical node problem,” NETWORKS,

vol. 67, no. 3, pp. 209–221, May 2016.

[10] B. Addis, M. Di Summa, and A. Grosso, “Identifying critical nodes

in undirected graphs: Complexity results and polynomial algorithms

for the case of bounded treewidth,” Discrete Applied Mathematics,

vol. 161, no. 16–17, pp. 2349–2360, Nov. 2013.

[11] M. Di Summa, A. Grosso, and M. Locatelli, “Complexity of the

critical node problem over trees,” Computers & Operations

Research, vol. 38, no. 12, pp. 1766–1774, Dec. 2011.

[12] T. A. Feo and M. G. C. Resende, “A probabilistic heuristic for a

computationally difficult set covering problem,” Operations

Research Letters, vol. 8, no. 2, pp. 67–71, Apr. 1989.

[13] T. A. Feo and M. G. C. Resende, “Greedy Randomized Adaptive

Search Procedures,” Journal of Global Optimization, vol. 6, no. 2,

pp. 109–133, Mar. 1995.

[14] M. G. C. Resende and C. C. Ribeiro, “GRASP: Greedy Randomized

Adaptive Search Procedures,” in Search Methodologies, E. K.

Burke and G. Kendall, Eds. Springer US, 2014, pp. 287–312.

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_04

(Advance online publication: 24 May 2017)

__

[15] C. C. Ribeiro and M. G. C. Resende, “Path-relinking intensification

methods for stochastic local search algorithms,” Journal of

Heuristics, vol. 18, no. 2, pp. 193–214, Apr. 2012.

[16] P. Sarkar and A. W. Moore, “Random Walks in Social Networks

and their Applications: A Survey,” in Social Network Data

Analytics, C. C. Aggarwal, Ed. Springer US, 2011, pp. 43–77.

[17] M. Laguna and R. Marti, Scatter Search - Methodology and

Implementations in C. Springer US, 2003.

[18] A. Song, M. Li, X. Ding, W. Cao, and K. Pu, “Community Detection

Using Discrete Bat Algorithm,” IAENG International Journal of

Computer Science, vol. 43, no. 1, pp. 37–43, 2016.

[19] X. Bai, P. Yang, and X. Shi, “An overlapping community detection

algorithm based on density peaks,” Neurocomputing, vol. 226, pp.

7–15, Feb. 2017.

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_04

(Advance online publication: 24 May 2017)

__

