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Abstract—This paper deals a problem with detecting the 

critical nodes in order to achieve minimum pair-wise 

connectivity in the residual graph after removing a limited 

number of nodes from the graph. It is called the critical node 

detection problem (CNDP). In this paper, we propose a new 

hybridization scheme of greedy randomized adaptive search 

procedure (GRASP) with exterior path-relinking. Exterior 

path-relinking, a recently proposed metaheuristic method, 

creates paths of successive solutions starting from two high-

quality solutions to other high quality solutions. A randomly 

selected solution from the elite solution pool collecting 

throughout GRASP iterations and the resulting solution from 

each GRASP iteration are relinked by exterior path-relinking 

for finding better solutions. The proposed algorithm is assisted 

on test instances from the literature. Computational 

experiments demonstrate that the proposed method 

outperforms other existing algorithms in the area of CNDP. 

 
Index Terms—critical node detection problem, exterior path-

relinking, greedy randomized adaptive search procedure, 

heuristic algorithms  

 

I. INTRODUCTION 

HE critical node detection problem (CNDP) finds a set 

of nodes (S) to be removed from a given undirected 

graph G=(V, E) in order to fragment the graph. The aim of 

the problem discussed in this paper is to minimize the 

number of pair-wise connectivity of the nodes in the 

remaining graph G[V \ S]. A set of k critical nodes S is 

searched to meet with the objective function as shown in (1) 

so that the total number of pair-wise connectivity of nodes in 

the remaining graph can be minimized. An integer linear 
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programming based definition and the proof of NP-hard for 

CNDP are presented in [1]. 

f(S):= |{u, v   V \ S: u and v are in a same component of G[V \ S]}|  (1)  

CNDP problem has been recently attracting some 

attentions in many applications. Indeed, identifying a small 

number of key nodes in a network plays an important role 

for many cases in the real world. For example, when it is 

expensive to vaccinate all members of a network, a possible 

solution is to vaccinate key members of the network so it is 

essential to find them in this research [2]. Detecting critical 

members in a network are widely used not only in academic 

area but also in political issues i.e., it may be useful to find 

pivotal members of a terrorist network for a government. It 

would be effective to maximize damage of the terrorist 

network if the key members are destroyed [3]. 

In this paper, we introduce a hybridization of GRASP 

with exterior path-relinking (GRASP with ePR) to identify 

the critical nodes in graphs. To the best of our knowledge, 

we are the first of introducing GRASP with ePR in CNDP, 

and this paper focuses to show how ePR could improve 

GRASP with our proposed GRASP with ePR algorithm. 

Regarding to path-relinking, there are two variants, namely 

interior path-relinking and exterior path-relinking introduced 

in [4] and [5], respectively. Interior path-relinking is firstly 

introduced in the context of GRASP by Laguna and Marti 

[6]. In the last decade, the hybridization of GRASP with 

interior path-relinking demonstrates its ability that provides 

high quality outcomes for some types of hard optimization 

problems. 

Although many researchers have paid great attention of 

GRASP improvement by combining with interior path-

relinking, there are only few researches that consider 

“exterior” path-relinking in the context of GRASP. In this 

study, we consider exterior path-relinking to intensify 

GRASP in a new way with our proposed GRASP with ePR 

algorithm. Exterior path-relinking is used as intensification 

method to explore the neighbors beyond the resulting 

solution of each GRASP iteration and a randomly selected 

member from the elite set as well. Elite set is a small-sized 

set of high quality solutions that is obtained throughout 

GRASP iterations. In addition, we modify the local search 

usage in exterior path-relinking defined in its original 

proposal [5]. The modification to local search usage is 

accomplished by applying a local search procedure to each 

member in a path instead of considering only the best 

member in a path. The modification is experimentally 

evaluated in section IV-B. 
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The proposed algorithm is tested on benchmark test 

instances from the literature. The performance of GRASP 

with ePR is compared with existing other methods for 

solving CNDP such as simulated annealing (SA) [8], 

population-based incremental learning (PBIL) [8], and 

Variable Neighborhood Search (VNS) [9]. The results of 

computational experiments show that GRASP with ePR 

outperforms the other methods. 

The remainder of the paper is structured as follows. In 

section two, the related works to CNDP and GRASP with 

path-relinking are critically reviewed and analyzed. Section 

three describes the proposed algorithms in detail. The results 

of the computational experiments are presented in section 

four. Finally, we conclude the paper and discuss some 

possible future work. 

II. RELATED WORKS  

A. CNDP  

CNDP finds a set of certain nodes for network 

fragmentation. A plenty of researches [8], [9], [10], [11] 

have focused on the issues of detecting critical nodes in 

graphs with significant methodologies and algorithms. The 

work described in [8] approached CNDP problem using 

population-based incremental learning and simulated 

annealing optimization algorithms with the help of a 

combinatorial unranking-based problem representation. The 

study defined in [9] presented two metaheuristics for CNDP 

using iterated local search and variable neighborhood search 

frameworks. 

B. GRASP 

To grasp the underlying methodology of GRASP, the 

related literatures are studied as follows. The GRASP is a 

multi-start metaheuristic introduced by Feo and Resende, 

1989, 1995, [12], [13]. A recent complete survey of this 

method is presented in the work [14]. As far as we studied 

the literature related with GRASP, we can see them into two 

kinds of researches such as those which consider interior 

path-relinking and those which exploit exterior path-

relinking in GRASP. 

1) GRASP with exterior path-relinking 

A new variant of path-relinking, exterior path-relinking, is 

proposed by Glover [5]. Instead of exploring trajectories 

“between” solutions, exterior path-relinking focuses on 

trajectories “beyond” two solutions. They regarded exterior 

path-relinking as beyond-form of path-relinking that focuses 

on its relevance for diversification in binary optimization. 

Abraham Duarte et al. 2015 [7] proposed several types of 

new hybrid heuristics which are composed of GRASP with 

sampled greedy construction and exterior path-relinking. 

They firstly introduced exterior path-relinking in the context 

of GRASP for solving the differential dispersion problem. 

The heuristic maintains an elite set of high-quality solutions 

throughout the GRASP iterations to integrate exterior path-

relinking. Exterior path-relinking is used after a fixed 

number of iterations for only intensifying the elite set. 

Extensive computational experiments are executed, and 

experimental results show the competitiveness of this 

algorithm. 

2) GRASP with interior path-relinking 

The idea of using interior path-relinking (also called path-

relinking) in GRASP procedure was proposed by Laguna 

and Marti [6]. Celso C. Ribeiro et al. [15] reviewed the 

fundamentals and implementation strategies about interior 

path-relinking for advanced hybridizations with 

metaheuristic schemes such as GRASP, genetic algorithms, 

tabu search, scatter search, etc. The readers may explore the 

studies [14], [15] for detailed survey of GRASP with interior 

path-relinking. 

III. A NEW HYBRIDIZATION SCHEME OF EXTERIOR PATH-

RELINKING WITH GRASP 

This paper introduces a new hybridization scheme of 

exterior path-relinking with GRASP. First of all, we describe 

the structure of proposed hybridization scheme and later the 

inside sub-procedures will be presented in the following sub-

sections in detail. GRASP developed by Feo and Resende 

[12], [13] is a multi-start meta-heuristics that iteratively 

executes two main phases, namely construction and local 

improvement procedures. At every iteration of GRASP, a 

solution is created by a construction method, and improved 

by a local improvement method. Both of construction and 

local improvement methods are needed to be defined for the 

concrete problem. These two phases are repeated until they 

reach to a pre-defined number of iterations. For a more 

complete description and recent surveys of GRASP, we refer 

the readers to the studies [14]. 

In our GRASP with ePR algorithm, we propose a 

construction and local improvement method for CNDP. A 

small-sized set of high quality solutions (elite set) is 

maintained throughout GRASP iterations to integrate 

exterior path-relinking. In this scheme, exterior path-

relinking is used as intensification method for GRASP. The 

resulting solution obtained from each GRASP iteration is 

relinked with a randomly selected member from the elite set 

by using exterior path-relinking. Exterior path-relinking 

creates a path by exploring neighbors beyond the two 

solutions. The best solution in the path will be a candidate 

for inclusion in the elite set. An updating rule for the elite set 

is defined in section III-D. Path-relinking can also be used as 

intensification tool for elite set [15]. To intensify the elite 

set, path-relinking is periodically applied to several members 

of the elite set. In this study, only interior path-relinking is 

used for this purpose. 

The pseudocode of GRASP with ePR is presented in 

Algorithm 1, where ES is the elite set, t is the counter of 

GRASP iterations, q is the number of consecutive iterations 

without an improvement, elite_set_size is the size of elite 

set, τ is the step of evolutionary path-relinking, symbol % 

indicates the module operation, and min finds the element 

whose objective function has minimum value. The detailed 

processes of each function used in GRASP with ePR are 

explained in the following sub-sections. 

A. Construction Phase 

We propose a construction method based on a random 

walk technique. A random walk on a graph creates a path 

that consists of succession of random steps over the graph. 

To make a random step from a node, the next node is 
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randomly selected from the current node's neighbors based 

on transition probabilities. For more detailed explanation of 

random walk, the readers are referred to [16]. 

 

Algorithm 1: GRASP_ePR 

1: ES    ;  

2: t    0; 

3: q    0; 

4:   repeat 

5:   s   Construction();  

6:   s1  Local_Improvement(s); 

7:   if (|ES| < elite_set_size) then 

8:     ES  ES s1; 

9:   else 

10:     s2    Select_Random_Solution(ES); 

11:     s3    Exterior_Path_Relinking(s2, s1); 

12:     ES Update_Elite_Set(ES, s3, q); 

13:   end 

14:   t   t + 1; 

15:   if (t % τ = 0) then 

16:     ES    Intensifying_Elite_Set(ES); 

17:   end 

18: until (reach to termination condition); 

19:  return min{ES};  

 

In this study, we consider that all nodes have the same 

roles, so transition probabilities for all nodes equal to 1/|V| 

where |V| represents the number of vertices of the input 

graph. Random walk starts a selected node, and then 

randomly selects the next node with a probability of 1/|V|. 

The length of the path created by the random walk is 2*k 

where k is the number of critical nodes. The set of nodes in 

the path can be considered as a solution for CNDP, but it is 

infeasible because the number of nodes in the path is larger 

than k. To make the solution feasible, we use an algorithm 

proposed in [1] that iteratively removes one node at a time in 

which contribution of objective function value is minimum. 

The pseudocode of the construction phase is presented in 

Algorithm 2, where Nu is the neighbors of node u, S is the 

constructing solution, and random(Q) is a function that 

randomly selects a node from a set of vertices Q. The output 

of Construction() is a feasible CNDP solution. 

 

Algorithm 2: Construction() 

1: S    ;  

2: u   random(V); 

3: S   Su;  

4: repeat 

5:   v      random(Nu); 

6:   S    S v; 

7: until  (|S| > 2*k); 

8: repeat 

9:     w  = argmin{f(S \ {w}) – f(S)}; 

10:      S  S \ {w}; 

11: until (|S| = k) 

12:  return S;  

B. Local Improvement Phase 

We use a simple neighborhood structure for local 

improvement function. Neighborhood of a solution is 

defined as a set of solutions that can be visited by swapping 

two nodes: which is one from S while another is from SV \ . 

With this structure, local improvement is accomplished by 

executing the swapping | V | times. The neighbor solution 

that has maximum improvement in objective function value 

and has better improvement than the current solution is 

selected as the next move. Local improvement stops if the 

number of consecutive attempts without an improvement 

reaches to the pre-defined limit (λ) that is an input 

parameter. The best solution is returned as the local optimal 

solution. This procedure is indicated in Algorithm 1 as 

“Local_Improvement(s)” which receives a solution as input, 

improves it, and finally the best improved solution is 

returned as output. 

C. Exterior Path-Relinking 

Exterior path-relinking generates the paths beyond 

(exterior) two high quality solutions in the neighborhood 

space. Let A and B are the high quality (local optimal) 

CNDP solutions to be linked by exterior path-relinking. To 

shed some light on the problem of exterior path-relinking, 

set representation diagrams are presented in Fig. 1 where   

is the CNDP solution space. Exterior path-relinking solely 

focuses on the elements that lie in BA  and )(\ BA , 

and there are no changes on elements that lie in A\B  and B\A 

(see Fig. 1 (b) and (c)). 

 

 
Fig. 1. A set representation diagram for solution A and B where 

white space indicates inactive region for exterior path-relinking. 
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The processes of exterior path-relinking are as follows. 

First of all, it starts with A and gradually transforms itself 

with a direction which becomes farther from A and B by 

successively removing elements from BA , and adding 

elements from )(\ BA . The pseudocode of exterior 

path-relinking is described in Algorithm 3 that receives two 

solutions as input, relinks them, and returns the best solution 

as output where ρ (0 < ρ ≤1) is an input parameter. A 

conceptual illustration of exterior path-relinking is presented 

in Fig. 2. 

In exterior path-relinking algorithm, every step selects two 

elements by examining contribution in objective function’s 

value. The first element is a node from BA whose 

deletion from A is a minimum increase (worst node in A) in 

objective function’s value (line 4). It is the node having 

minimum impact in objective function. The reason is 

because the objective function value increases or does not 

change by deleting an element from A i.e., f(A)  f(A\{i}) 

and therefore, the node that has minimum objective function 

value by deleting it from A has minimum impact in objective 

function value of A. The second element is a node from 

)(\ BA  whose insertion to B is maximum improvement 

(best node in B) in objective function’s value (line 5). That 

is because the objective function value decreases or does not 

change by adding a node into solution B i.e., 

}){()( iBfBf   and therefore, the node having minimum 

objective function value by adding it to B has maximum 

impact in objective function value. The first element is then 

removed from A and the second element is added into A 

(line 6 and 7 respectively). The modified solution A is 

improved by using the local search method defined in 

section III-B. If the improved solution is better than the 

current best solution, the best solution is replaced with the 

new solution. These steps are repeated until the termination 

condition meets. 

 

Algorithm 3: Exterior_Path_Relinking (A, B) 

1: C A; 

2: N  |AB|; 

3: repeat  

4:   a argmin{f(A \{i}) : i  A B};  

5:   b argmin{f(B {i}) : i )(\ BA };  

6:   A A \ {a}; 

7:   A A {b}; 

8:   Als Local_Improvement(A); 

9:   if (f (Als) < f (C)) then 

10:     C Als; 

11:   end 

12: until (|AB| < (1- ρ)*N); 

13:  return C;  

D. Updating Elite Set 

The candidate solution for inclusion in the elite set is 

replaced with its own parent solution in the elite set if it 

satisfies the following two conditions: 

1. It is better than its own parent in terms of the quality 

of solution 

2. It is different from all member of the elite set. 

This process refers to “Update_Elite_Set(ES, s3, q)” of 

Algorithm 1. It receives the elite set (ES), a candidate 

solution (s3), and a variable for counting the number of 

consecutive iterations without an improvement (q) as input. 

Then it carries out the abovementioned updating conditions. 

If the candidate satisfies the updating conditions, the 

updated elite set is returned as output, and q is set by zero. If 

the candidate cannot satisfy the conditions, it is simply 

discarded, q is increased by one, and the last elite set is 

returned as output. 

 

 
Fig. 2. A conceptual illustration of exterior path-relinking. 

E. Intensifying Elite Set (Also known as evolutionary 

path-relinking) 

The members in elite set do not mix with each other 

because the updating rule we propose does not allow it. 

However, mixing the members in elite set each other could 

give promising solutions. For this propose, we use interior 

path-relinking to intensify the elite set. Therefore, in our 

paper, interior path-relinking is called at every fixed number 

of iterations to intensify the elite set. Each pair of the elite 

set is relinked by executing interior path-relinking, and the 

best solution in the path will be a candidate for inclusion in 

the elite set. The initial solution (solution A in Algorithm 4) 

of interior path-relinking is considered as its parent. This 

procedure is denoted by “Intensifying_Elite_Set(ES)” in 

Algorithm 1. It receives the elite set as input, intensifies that 

elite set, and returns the intensified elite set as output. 

Interior path-relinking is described in the following section. 

F. Interior Path-Relinking 

We propose interior path-relinking (also known as path-

relinking) to relink two high quality CNDP solutions in the 

elite set. Interior path-relinking procedure starts with A, and 

it is gradually transformed into B by successively swapping 

elements from A \ B and B \ A. The pseudocode of interior 

path-relinking is presented in Algorithm 4. It receives two 

solutions as input, relinks them, and returns the best solution 

as output. At each step of interior path-relinking, two 

elements are selected by examining contribution in objective 

function’s value. The first element is a node from A \ B 

whose deletion from A is a minimum increase (worst node in 

A) in objective function’s value (line 3). The second element 

is a node from B \ A whose deletion from B is a maximum 
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increase (best node in B) in objective function’s value (line 

4). Then the first element is removed from A and the second 

element is added into A (line 5 and 6 respectively). The 

resulting solution A is improved by executing the local 

search method defined section III-B (line 7). If the improved 

solution is better than the current best solution in the path, 

the best solution is replaced with the new solution. These 

steps are repeated until solution A reaches to solution B. 

 

Algorithm 4: Interior_Path_Relinking (A, B) 

1: C A; 

2: repeat  

3:   a argmin{f(A \ {i}):i  A \ B};  

4:   b argmax{f(B \{i}):iB \ A};  

5:   A A \ {a}; 

6:   A A {b}; 

7:   Als Local_Improvement(A); 

8:   if (f (Als) < f (C)) then 

9:    C Als; 

10:   end 

11: until (|A \ B| = 0); 

12:   return C;  

G. Termination conditions 

We use two different termination conditions for 

GRASP_ePR defined in Algorithm 1. The first condition is 

based on the total number of GRASP iterations. The 

maximum number of iterations (T1) is defined by input 

parameter. The GRASP_ePR with iteration based a 

termination condition is denoted by “GRASP_ePR1” in 

section IV. The second condition is based on the number of 

consecutive iterations without an improvement. The 

maximum number of consecutive iterations without an 

improvement (T2) is defined as input parameter. The 

GRASP_ePR with a termination condition based on 

consecutive no improvement is denoted by “GRASP_ePR2”. 

These two termination conditions enable us to control trade-

off between running time and the solution quality. 

IV. COMPUTATIONAL EXPERIMENT 

In this section, we evaluate the performance of proposed 

GRASP_ePR1 and GRASP_ePR2 algorithms. For testing 

purposes, we use benchmark test instances defined in [8], 

publicly available at 

http://individual.utoronto.ca/mventresca/cnd.html. The main 

characteristics (number of vertices and edges of graphs, the 

number of critical nodes to be removed, and the number of 

cut points of graphs) and optimal solution’s objective 

function value (OFV) of the benchmark test instances are 

presented in Table I. 

The proposed algorithms are implemented in C++ and 

compiled with gcc 4.9.3 using optimization flags –O2. All 

experiments were performed on a Lenovo machine equipped 

with Windows 7 x64 operating system and an Intel Core i5-

3210M (CPU 2.50GHz) processor, RAM 6GB. Running 

time is limited to 5000 seconds for all algorithms assisted in 

this work. 

A. Parameter study  

As mentioned in section III, termination conditions enable 

us to control trade-off between running time and solution 

quality. We design GRASP_ePR1 with a goal that finds 

good quality solutions in reasonable time, whereas 

GRASP_ePR2 is designed to find high quality solutions 

without much concerning running time except the general 

requirement of 5000s for running time limit. To define 

promising region of parameters, a large number of 

preliminary experiments are executed. As a result, several 

possible choices for each parameter are considered as the 

following: λ = {5, 10, 15, 20}; τ = {4, 6, 8, 10}; ρ = {0.1, 

0.3, 0.5, 0.7}; T1 = {25, 50, 75, 100}; T2 = {2, 10, 20, 30}. 

Parameters’ value is selected from experimental evaluation 

results with a great care of the design goal of each algorithm. 

The parameter elite_set_size is a standard parameter in 

GRASP with path-relinking. As discussed in [17], parameter 

elite_set_size should be small (around ten). In our case, the 

number of total iterations is relatively small. In addition, 

updating conditions for the elite set are strict to mix elite set 

members each other. Thus, the parameter elite_set_size is 

selected by a smaller value “3”. We selected two 

representative test instances, WS500 and ER500, for 

experimental evaluation of parameter study and investigation 

on GRASP with ePR because they are instances of the 

hardest graphs for CNDP [9], and their sizes are moderate. 

The average value over 30 independent runs for each 

parameter combination is considered for parameter 

evaluation. 
TABLE I 

CHARACTERISTICS OF BENCHMARK TEST INSTANCES 

Benchmark 

test instances 
Vertices Edges 

Critical 

nodes 

# of cut 

points 

Optimal 

solution’s 

OFV a 

ER250 235 250 50 48 N/A  

ER500 466 700 80 84 N/A 

ER1000 941 1400 140 177 N/A 

ER2500 2344 3500 200 419 N/A 

BA500 500 499 50 164 195 

BA1000 1000 999 75 324 558 

BA2500 2500 2499 100 825 3704 

BA5000 5000 4999 150 1672 10196 

WS250 250 1246 70 0 N/A 

WS500 500 1496 125 0 N/A 

WS1000 1000 4996 200 0 N/A 

WS1500 1500 4498 265 0 N/A 

FF250 250 514 50 83 194 

FF500 500 828 110 195 257 

FF1000 1000 1817 150 362 1260 

FF2000 2000 3413 200 725 4545 
a Optimal solution’s OFVs are reported in [9]. The optimal solutions are 

calculated by using an exact method with running time limit of 5 days. 

GRASP_ePR’s result over different parameter values is 

reported in Table II - VI where Cost is the objective function 

value and Time is the running time. First parameter λ is 

evaluated with fixed values of T1 = 50, τ = 6, and ρ = 0.3 

(see Table II). Then, parameter τ is evaluated with fixed 

values of T1 = 50, λ = 5, and ρ = 0.3 (see Table III). After 

that, parameter ρ is evaluated with fixed values of T1 = 50, λ 

= 5, and τ = 6 (see Table IV). 

 
TABLE II 

GRASP_EPR’S RESULTS FOR EVALUATION ON PARAMETER λ 

 5 10 15 20 

 Cost Time Cost Time Cost Time Cost Time 

WS500 2175 246 2146 479 2137 719 2120 914 

ER500 1603 74 1584 149 1561 199 1549 269 
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TABLE III 

GRASP_EPR’S RESULTS FOR EVALUATION ON PARAMETER τ 

 4 6 8 10 

 Cost Time Cost Time Cost Time Cost Time 

WS500 2181 204 2178 193 2188 184 2197 170 

ER500 1612 89 1603 79 1606 77 1604 77 

  
TABLE IV 

GRASP_EPR’S RESULTS FOR EVALUATION ON PARAMETER ρ 

 0.1 0.3 0.5 0.7 

 Cost Time Cost Time Cost Time Cost Time 

WS500 2197 44 2172 170 2174 281 2179 369 

ER500 1628 23 1591 78 1589 136 1595 224 

 

 From Table III, when parameter τ equal to 6, the 

algorithm is more likely to be efficient and effective. 

According to the experimental results in Table IV, when 

parameter ρ is higher than 0.3, there is almost no benefit in 

the solution quality and large increase in time consumption. 

Thus, we select ρ = 0.1 for GRASP_ePR1, and ρ = 0.3 for 

GRASP_ePR2 with considering their design goals. When 

parameter ρ = 0.1, the algorithm saves time, but the solution 

quality is not high. To compensate the solution quality of 

GRASP_ePR1, another parameter is assigned by a value, 

parameter λ = 20, with high solution quality. We select 

parameter λ = 5 for GRASP_ePR2 because it already has a 

slow but a good for quality parameter value i.e., ρ = 0.3.  

Finally, termination conditions for both algorithms, 

parameter T1 and T2, are evaluated with fixed values of τ = 

6, λ = 20, and ρ = 0.1 for GRASP_ePR1, and τ = 6, λ = 5, 

and ρ = 0.3 for GRASP_ePR2. There is a sharp decrease in 

OFV with T1 = 50 according to the results in Table V. With 

increase in T1 value such as 75 and 100 there is a slight 

improvement in OFV and a huge increase in time 

consumption. Therefore, parameter T1’s value is set by “50” 

with concerning its design goal.  

GRASP_ePR obtains steady improvements in OFV until 

value of T2 reaches 20 (see Table VI). To promote the goal 

of GRASP_ePR2, parameter T2 is set by “20”. The selected 

parameters for algorithms are summarized in Table VII. 

 
TABLE V 

GRASP_EPR’S RESULTS FOR EVALUATION ON PARAMETER T1 

 25 50 75 100 

 Cost Time Cost Time Cost Time Cost Time 

WS500 2201 111 2155 193 2147 288 2139 386 

ER500 1613 49 1580 102 1570 140 1565 175 

 

TABLE VI 

GRASP_EPR’S RESULTS FOR EVALUATION ON PARAMETER T2 

 2 10 20 30 

 Cost Time Cost Time Cost Time Cost Time 

WS500 2200 134 2171 337 2146 502 2145 777 

ER500 1661 40 1598 127 1580 169 1574 269 

B. Some investigations on GRASP with ePR 

In this section, we investigated two components, not 

typical in this field, of the proposed GRASP with ePR, 

namely having evolutionary path-relinking (we called it 

“evoPR”), and calling local search (LS) method for each 

member of paths generated by path-relinking (we called it 

“path-inside LS”). As mentioned in previous section, WS500 

and ER500 are also used for this investigation. 

 
TABLE VII 

PAREMETERS USED IN GRASP_EPR1 AND GRASP_EPR2 

Parameters 
Values for 

GRASP_ePR1 

Values for 

GRASP_ePR2 

T1 50 -- 

T2 -- 20 

Elite_set_size 3 3 

Τ 6 6 

Λ 20 5 

Ρ 0.1 0.3 

 

To evaluate the impact of evoPR and path-inside LS on 

GRASP_ePR, we executed GRASP_ePR with a termination 

condition of running time limitation (50, 100, 150, 200, 

and/or 250 seconds). For a test instance and a fixed time 

limitation, GRASP_ePR are executed 30 independent runs. 

The average value over 30 runs is considered for evaluation. 

The comparison graphic is displayed in Fig. 3 for evaluation 

of evoPR, and Fig. 4 for evaluation of path-inside LS. 

According to the result in Fig. 3, having evoPR is an 

efficient and effective way to improve the performance of 

GRASP_ePR. With increase in the running time, path-inside 

LS improves the performance of GRASP_ePR according to 

Fig. 4. A conclusion rising from the abovementioned two 

facts is that GRASP_ePR with evoPR and path-inside LS 

may open a door of a promising hybridization scheme for 

hard optimization problems.  

 

 
(a) WS500 test instance  

 
(b) ER500 test instance 

Fig. 3. Comparison between GRASP_ePR with evoPR and without evoPR. 

C. Experimental Results and Comparison with Existing 

Other Methods 

Experimental results of GRASP_ePR1 and GRASP_ePR2 

are summarized in Table VIII, and Table IX respectively. 

We show the values of best, worst, average (avg.), and 
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standard deviation (sd.) over 30 independent runs. 

GRASP_ePR2 finds the optimal solution for all instances of 

BA, and FF (see Table I, and Table IX). GRASP_ePR1 

finds the optimal solution for most of BA and FF instances. 

 

 
(a) WS500 test instance 

 
(b) ER500 test instance 

Fig. 4. Comparison between GRASP_ePR with path-inside LS and without 

path-inside LS;  

 

To evaluate the performance of the proposed algorithms, 

we chose three recently proposed algorithms from the 

literature. The authors in [9] propose several heuristic 

algorithms for CNDP, and we chose the best one among 

those algorithms, namely Variable Neighborhood Search 

with first improvement strategy (called VNS-F). The two 

heuristic algorithms, Simulated Annealing (SA), and 

Population-based Incremental Learning (PBIL), proposed in 

[8] are used for performance evaluation because we use the 

benchmark instances defined in that work. To test these 

methods in a same experimental environment, we re-

implemented these methods in C++ according to the 

guidelines of the original publications. All algorithms have 

been executed 30 times at each of the instances, using 

different random seeds for each run. The results of SA, 

PHIL, VNS-F, GRASP_ePR1, and GRASP_ePR2 are 

summarized in Table X. 

According to comparison in Table X, GRASP_ePR2 

outperforms other methods. More specifically, 

GRASP_ePR2 has large difference (improvement) on the 

densest graphs (WS and ER) from others. 

Computational time consumed by GRASP_ePR1 and 

GRASP_ePR2 is compared with that consumed by VNS-F. 

Their computational times (average over 30 runs) are 

tabulated in Table XI.  From Table X and Table XI, we can 

conclude that the proposed GRASP_ePR2 clearly 

outperforms the other methods in terms of solution quality. 

In addition, the proposed GRASP_ePR1 finds competitive 

results with less time than other methods. 

 
TABLE VIII 

SUMMARY RESULTS (BEST, WORST, AVERAGE (AVG.), STANDARD DEVIATION 

(SD.)) FOR GRASP_EPR1 

Benchmark 

test instances 
best worst avg. sd. 

ER250 297 300 297.8 0.9 

ER500 1566 1668 1620.9 29.2 

ER1000 5500 6078 5807.5 214.8 

ER2500 1048464 1070207 1058018.1 6523.8 

BA500 195 195 195.0 0.0 

BA1000 558 558 558.0 0.0 

BA2500 3704 3704 3704.0 0.0 

BA5000 10196 10196 10196.0 0.0 

WS250 4301 5509 4791.7 279.5 

WS500 2102 2220 2173.6 42.7 

WS1000 134006 137748 135877.0 1871.0 

WS1500 14047 15051 14427.0 261.3 

FF250 194 194 194.0 0.0 

FF500 257 259 258.1 0.5 

FF1000 1260 1271 1262.9 2.9 

FF2000 4549 4590 4564.7 13.4 

 
TABLE IX 

SUMMARY RESULTS (BEST, WORST, AVERAGE (AVG.), STANDARD DEVIATION 

(SD.)) FOR GRASP_EPR2 

Benchmark 

test instances 
best worst avg. sd. 

ER250 295 301 297.3 1.8 

ER500 1536 1635 1580.1 25.4 

ER1000 5102 5696 5442.2 176.3 

ER2500 1010487 1087914 1049958.1 19515.3 

BA500 195 195 195.0 0.0 

BA1000 558 558 558.0 0.0 

BA2500 3704 3704 3704.0 0.0 

BA5000 10196 10200 10197.0 1.7 

WS250 3192 4797 4047.1 433.2 

WS500 2099 2234 2146.4 35.7 

WS1000 128657 141987 135317 3495.4 

WS1500 13773 14251 13981.7 318.6 

FF250 194 195 194.1 0.3 

FF500 257 261 258.1 1.3 

FF1000 1260 1266 1261.8 1.9 

FF2000 4545 4566 4553.3 6.0 

 

TABLE X 

COMPARISON OF THE BEST OBJECTIVE FUNCTION VALUE FOR SA, PBIL, 

VNS-F, GRASP_EPR1, AND GRASP_EPR2. 

Bench. 

test 

instances 

SA PBIL VNS-F GRASP_ePR1 GRASP_ePR2 

ER250 7700 6700 298 297 295
 a

 

ER500 48627 44255 1542 1566 1536 

ER1000 234479 229576 5198 5500 5102  

ER2500 2011122 2009132 1034333 1048464 1010487 

BA500 997 892 195 195 195 

BA1000 3770 3057 559 558 558 

BA2500 31171 28044 3704 3704 3704 

BA5000 170998 146753 10218 10196 10196 

WS250 14251 13786 6610 4301 3192 

WS500 54201 53779 2148 2102 2099 

WS1000 311700 308596 139653 134006 128657 

WS1500 717369 703241 14619 14047 13773 

FF250 1841 1386 194 194 194 

FF500 2397 1904 257 257 257 

FF1000 92800 59594 1263 1260 1260 

FF2000 387248 256905 4549 4549 4545 

# of best 

value: 
0 0 4 7 16 

a The best results are displayed in bold font. 
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D. New best known values   

We compare our best values with the best known values 

for the benchmark test instances considered in this work. 

The best known values are collected from the study 

presented in [9]. The following Table XII shows their 

comparison. 

 
TABLE XI 

COMPARISON OF COMPUTATIONAL TIME (IN SECONDS) FOR VNS-F, 

GRASP_EPR1 AND GRASP_EPR2 

Benchmark 

test instances 
VNS-F GRASP_ePR1 GRASP_ePR2 

ER250 7 4 13 

ER500 57 41 169 

ER1000 691 355 2480 

ER2500 5002 3240 5009 

BA500 11 18 19 

BA1000 86 72 130 

BA2500 563 487 2022 

BA5000 5016 5012 5006 

WS250 5 8 126 

WS500 566 119 502 

WS1000 415 342 4219 

WS1500 5051 2792 5032 

FF250 8 5 8 

FF500 175 26 85 

FF1000 1455 192 983 

FF2000 5005 1657 5012 

 

TABLE XII 

COMPARISON OF BEST VALUES OBTAINED BY GRASP_EPR1 AND 

GRASP_EPR2 WITH BEST KNOWN VALUES FROM THE LITERATURE. 

Bench. 

test 

instances 

Old best 

known 

values 

GRASP

_ePR1 

GRASP

_ePR2 

New 

best 

known 

values 

Gap % 

ER250 295 297 295 295 0.00% 

ER500 1542 1566 1536 1536 -0.39% 

ER1000 5198 5500 5102 5102 -1.85% 

ER2500 1012849 1048464 1010487 1010487 -0.23% 

BA500 195 195 195 195 0.00% 

BA1000 559 558 558 558 -0.18% 

BA2500 3704 3704 3704 3704 0.00% 

BA5000 10196 10196 10196 10196 0.00% 

WS250 3241 4301 3192 3192 -1.51% 

WS500 2130 2102  2099 2099 -1.46% 

WS1000 139653 134006 128657 128657 -7.87% 

WS1500 14138 14047 13773 13773 -2.58% 

FF250 194 194 194 194 0.00% 

FF500 257 257 257 257 0.00% 

FF1000 1260 1260 1260 1260 0.00% 

FF2000 4549 4549 4545 4545 -0.09% 
a The new best known values obtained by GRASP_ePR1 and 

GRASP_ePR2 are presented in bold.  

 

The proposed algorithms discover new best known 

solutions for all instances of the densest graphs (WS and ER 

graphs) except ER250 whose best known value is replicated 

by the proposed algorithms. In addition, new best known 

values (that is also optimal value) for BA1000, and FF2000 

instances are discovered. As mentioned in previous section, 

our proposed GRASP_ePR2 has ability to discover optimal 

solutions for all instances of BA and FF graphs. It is worth 

to note that WS graphs are hardest test instances because 

they are the densest graphs in this benchmark set (average 

degree of nodes is up to five times higher than other graphs). 

In addition, WS graphs have no cut points (see Table I). If a 

graph has many cut points, the graph can easily be divided 

into connected components by removing cut points. We can 

therefore conclude that the proposed algorithms can find 

higher quality solutions for dense graphs than other methods. 

It is also important to note that the best known values 

defined in [9] are collected from 24 different variants of 

VNS and 6 different variants of iterated local search-based 

methods with 10000 seconds of running time limitation. 

V. CONCLUSION 

This paper proposed a new hybrid heuristic algorithm for 

the critical node detection problem. The heuristic uses 

exterior and interior path-relinking in the context of GRASP 

in a new way. Experimental evaluation shows that the 

proposed heuristic outperforms other existing methods in the 

literature.  

As our future work, this proposed hybridization scheme 

would be used for other combinatorial optimization 

problems, and therefore, its application for other problems is 

an interesting future research. By improving the method for 

defining transition probabilities in the construction phase, 

more high quality outcomes may be created. In general 

sense, methods for the community detection problem such as 

methods in [18], [19] that is a network related problem, may 

be successful in constructing solution for GRASP. 
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