
An Improved O(R log log n + n) Time Algorithm
for Computing the Longest Common Subsequence

Daxin Zhu, Lei Wang, and Xiaodong Wang∗

Abstract—In this paper, we revisit the much studied LCS
problem for two given sequences. Based on the algorithm of
Iliopoulos and Rahman for solving the LCS problem, we have
suggested 3 new improved algorithms. We first reformulate
the problem in a very succinct form. The problem LCS is
abstracted to an abstract data type DS on an ordered positive
integer set with a special operation Update(S, x). For the two
input sequences X and Y of equal length n, the first improved
algorithm uses a van Emde Boas tree for DS and its time and
space complexities are O(R log logn+ n) and O(R), where R
is the number of matched pairs of the two input sequences.
The second algorithm uses a balanced binary search tree for
DS and its time and space complexities are O(R logL+n) and
O(R), where L is the length of the longest common subsequence
of X and Y . The third algorithm uses an ordered vector for
DS and its time and space complexities are O(nL) and O(R).

Index Terms—longest common subsequence, NP-hard prob-
lems, dynamic programming, time complexity.

I. INTRODUCTION

THE longest common subsequence (LCS) problem is
a classic problem in computer science. The problem

has several applications in many apparently unrelated fields
ranging from file comparison, pattern matching and compu-
tational biology [1], [2], [4], [5], [14]–[16].

Given two sequences X and Y , the longest common
subsequence (LCS) problem is to find a subsequence of
X and Y whose length is the longest among all common
subsequences of the two given sequences.

The classic algorithm to LCS problem is the dynamic pro-
gramming solution of Wagner and Fischer [13], with O(n2)
worst case running time. Masek and Paterson [7] improved
this algorithm by using the ”Four-Russians” technique to
reduce its running time to O(n2/ log n) in the worst case.
Since then, there has been not much improvement on the
time complexity in terms of n found in the literature. How-
ever, there were several algorithms with time complexities
depending on other parameters. For example, Myers in [8]
and Nakatsu et al. in [9] presented an O(nD) algorithm,
where the parameter D is the Levenshtein distance of the two
given sequences. The number of matched pairs of the two
input sequences R, is perhaps another interesting and more
relevant parameter for LCS problem. Hunt and Szymanski

Manuscript received December 9, 2016; revised February 22, 2017.
This work was supported in part by the Quanzhou Foundation of Science

and Technology under Grant No.2013Z38, Fujian Provincial Key Laboratory
of Data-Intensive Computing and Fujian University Laboratory of Intelligent
Computing and Information Processing.

Daxin Zhu is with Quanzhou Normal University, Quanzhou,
China.(email:dex@qztc.edu.cn)

Lei Wang is with Facebook, 1 Hacker Way, Menlo Park, CA 94052, USA.
Xiaodong Wang is with Fujian University of Technology, Fuzhou, China.
∗Corresponding author.

[5] presented an O((R + n) log n) time algorithm to solve
LCS problem. Their paper also cited applications, where
R ∼ n and thus the algorithm would run in O(n log n) time
for these applications. To the authors’ knowledge, the most
efficient algorithm sofar for solving the LCS problem is the
O(R log logn + n) time algorithm presented by Iliopoulos
and Rahman [6], [11]. The key point of their algorithm is
to solve a restricted dynamic version of the Range Maxima
Query problem by using some interesting techniques of
[10], and combining them with van Emde Boas structure
[12]. Readers are referred to [1] for a more comprehensive
comparison of the well-known algorithms for LCS problem
and their behavior in various application.

In this paper, we will revisit the classic LCS problem
for two given sequences and present new algorithms with
some interesting new observations and some novel ideas.
We first reformulate the problem in a very succinct form.
The problem LCS is abstracted to an abstract data type DS
on an ordered positive integer set with a special operation
Update(S, x). Three new improved algorithms have been
suggested. The first improved algorithm uses a van Emde
Boas tree for DS and its time and space complexities are
O(R log logn + n) and O(R), where R is the number of
matched pairs of the two input sequences. The second algo-
rithm uses a balanced binary search tree for DS and its time
and space complexities are O(R logL+n) and O(R), where
L is the length of the longest common subsequence of X and
Y . The third algorithm uses an ordered vector for DS and
its time and space complexities are O(nL) and O(R). The
three new algorithms improve the O(R log logn + n) time
algorithm of Iliopoulos and Rahman. Our novel algorithm
has a very simple structure. It is very easy to implement and
thus very practical.

The organization of the paper is as follows.
In the following 4 sections, we describe our improved

O(R log logn+n) time algorithm of Iliopoulos and Rahman
for solving LCS problem.

In Section 2, the preliminary knowledge for present-
ing our algorithm for LCS problem is discussed, and the
O(R log logn+n) time algorithm of Iliopoulos and Rahman
is reviewed briefly. In Section 3, we present our improve-
ments on the algorithm of Iliopoulos and Rahman with time
complexity O(R log logn + n), where n and R are the
lengths of the two given input strings, and the number of
matched pairs of the two input sequences, respectively. Some
concluding remarks are located in Section 4.

II. AN O(R log logn+ n) TIME ALGORITHM

In this section, we briefly review the O(R log logn + n)
time algorithm of Iliopoulos and Rahman [6] for the sake of
completeness.

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_05

(Advance online publication: 24 May 2017)

__

A sequence is a string of characters over an alphabet
∑

.
A subsequence of a sequence X is obtained by deleting zero
or more characters from X (not necessarily contiguous). A
substring of a sequence X is a subsequence of successive
characters within X .

For a given sequence X = x1x2 · · ·xn of length n, the ith
character of X is denoted as xi ∈

∑
for any i = 1, · · · , n.

A substring of X from position i to j can be denoted as
X[i : j] = xixi+1 · · ·xj . If i 6= 1 or j 6= n, then the substring
X[i : j] = xixi+1 · · ·xj is called a proper substring of X .
A substring X[i : j] = xixi+1 · · ·xj is called a prefix or a
suffix of X if i = 1 or j = n, respectively.

Definiton 1: An appearance of sequence X = x1x2 · · ·xn
in sequence Y = y1y2 · · · yn, for any X and Y , starting
at position j is a sequence of strictly increasing indexes
i1, i2, · · · , in such that i1 = j, and X = yi1 , yi2 , · · · , yin .

A match for sequences X and Y is a pair (i, j) such that
xi = yj . The set of all matches, M , is defined as follows:

M = {(i, j)|xi = yj , 1 ≤ i, j ≤ n}

The total number of matches for X and Y is denoted by
R = |M |.

It is obvious that R ≤ n2.
Definiton 2: A common subsequence of the two input

sequences X = x1x2 · · ·xn and Y = y1y2 · · · yn, denoted
cs(X,Y), is a subsequence common to both X and Y .
The longest common subsequence of X and Y , denoted
LCS(X,Y), is a common subsequence whose length is the
longest among all common subsequences of the two given
sequences. The length of LCS(X,Y) is denoted as r(X,Y).

In this paper, the two given sequences X and Y are
assumed to be of equal length. But all the results can be
easily extended to the case of two sequences of different
length.

Definiton 3: Let T (i, j) denote r(X[1 : i], Y [1 : j]), when
(i, j) ∈M . T (i, j) can be formulated as follows:

In the algorithm of Iliopoulos and Rahman [3], a vector H
of length n is used to denote the maximum value so far of
column l of T . For the current value of i ∈ [1..n], Hi(l) =
max1≤k<i,(k,l)∈M{T (k, l)}, 1 ≤ l ≤ n. The footnote i is
used to indicate that the current row number is i, and the
values of Hi(l), 1 ≤ l ≤ n are not changed for row i in the
algorithm. We can omit the footnote i if the current row is
clear.

The most important function RMQi(left, right) =
maxleft≤l≤right{Hi(l)} used in the algorithm is a range
maxima query on H for the range [left..right], 1 ≤ left ≤
right ≤ n. It is clear that

T (i, j) = 1 +RMQi(1, j − 1), if (i, j) ∈M (2)

For the efficient computation of T (i, j), the following facts
[10] are utilized in the algorithm of Iliopoulos and Rahman.

Fact 1: Suppose (i, j) ∈M . Then for all (i′, j) ∈M, i′ >
i, (resp.(i, j′) ∈M, j′ > j), we must have T (i′, j) ≥ T (i, j)
(resp.T (i, j′) ≥ T (i, j)).

Fact 2: The calculation of the entry T (i, j), (i, j) ∈
M, 1 ≤ i, j ≤ n, is independent of any T (l, q), (l, q) ∈
M, l = i, 1 ≤ q ≤ n.

The algorithm is proceed in a row by row manner as
follows.

Algorithm 1 Iliopoulos-Rahman-LCS
1: for i = 1 to n do
2: H ← S {Update H for the next row}
3: for all (i, j) ∈M do
4: T (i, j)← 1 +RMQ(1, j − 1)
5: S(j)← T (i, j)
6: end for
7: end for

In the algorithm, another vector S, of length n, is invoked
as a temporary vector. After calculating T (i, j), the vector S
is restored from T , S(j) = T (i, j), if (i, j) ∈M . Therefore,
at the end of processing of row i, S is actually Hi+1.
The algorithm continues in this way as long as it is in the
same row. As soon as it comes a new row, the vector H is
updated with new values from S. In the algorithm above,
RMQ(1, j − 1) is actually RMQi(1, j − 1). We can omit
the footnote i since the processing is in the same row i. The
correctness of the above procedure follows from Facts 1 and
2. The problem RMQ can be solved in O(n) preprocessing
time and O(1) time per query [2]. Therefore, for the constant
time range maxima query, an O(n) preprocessing time has
to be paid as soon as H is updated. Due to Fact 2, it is
sufficient to perform this preprocessing once per row. So, the
computational effort added for this preprocessing is O(n2)
in total.

The most complicated part of the algorithm of Iliopoulos
and Rahman is in the computation of RMQ(1, j − 1).
To eliminate the n2 term from the running time of the
algorithm, a van Emde Boas tree is used to store the infor-
mation in H . This data structure can support the operations
Search, Insert, Delete, Min, Max, Succ, and Pred
in O(log logn) time. By using these operations the query
RMQ(1, j − 1) can then be answered in O(log log n) time.
The O(n) preprocessing step of the algorithm can then be
avoided and hence the n2 term can be eliminated from the
running time. However, as a price to pay, the query time of
RMQ(1, j − 1) increases to O(log log n).

Finally, the time complexity is improved to
O(R log logn + n), using O(n2) space. The vEB structure
described in the algorithm of Iliopoulos and Rahman is
somewhat involved. For more details of the data structure,
the readers are referred to [10].

III. IMPROVEMENTS OF THE ALGORITHM

In this section, we will present several improvements on
the algorithm of Iliopoulos and Rahman.

A. A first improvement

In the algorithm of Iliopoulos and Rahman, the set M =
{(i, j)|xi = yj , 1 ≤ i, j ≤ n} is constructed explicitly in the
lexicographic order of the matches such that all the matches
can be processed in the correct order. To this purpose, two
separate lists, LX and LY are built in O(n) time. For each
symbol c ∈

∑
, LX(c) (resp. LY (c)) stores, in sorted order,

the positions of c in X (resp. Y), if any. Then, a van Emde
Boas structure is used to build the set M in O(R log logn)
time. This preprocessing step can be removed completely
from our improved algorithm, since we do not need to access

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_05

(Advance online publication: 24 May 2017)

__

T (i, j) =

Undefined if (i, j) 6∈M
1 if (i, j) ∈Mand (i′, j′) 6∈M, i′ < i, j′ < j
max1≤li<i

1≤lj<j
(li,lj)∈M

{T (li, lj)} Otherwise (1)

each match (i, j) directly. It will be clear in the description
of the algorithm in latter section.

Secondly, to avoid overlap, the information in H are stored
separately in row i and i+ 1. We have noticed that, the only
query on H used in the algorithm is of the form RMQ(1, j−
1) = max1≤l<j{H(l)}. It is obvious that if in each row i, we
process all j ∈ LY (xi) in a decreasing order, i.e. the order of
j from large to small, then every overlap for current j will
not change the values RMQ(1, j − 1) for the succeed j.
Therefore, the information in H can be updated in same row
immediately. In our improved algorithm, the list LY is built
in this way such that for each symbol c ∈

∑
, the positions

of c in Y are listed from large to small.

B. The key improvements

By the definition of Hi(l) =
max1≤k<i,(k,l)∈M{T (k, l)}, 1 ≤ l ≤ n for the current
value of i ∈ [1..n], it is not difficult to observe the following
fact.

Fact 3: For all 1 ≤ i′ < i ≤ n, and 1 ≤ j ≤ n, Hi′(j) ≤
Hi(j).

The information in H we maintained is used for computing
RMQ(1, j − 1) in the algorithm. If we use a vector Q of
length n to store the values of Q(j) = RMQ(1, j) for all
1 ≤ j ≤ n, then RMQ(1, j − 1) will be computed more
directly by Q(j − 1) in O(1) time. For example, if H =
(0, 1, 2, 1, 2, 0, 1), then Q = (0, 1, 2, 2, 2, 2, 2). An important
albeit easily observable fact about Q is that, its components
Q(j), 1 ≤ j ≤ n are nondecreasing.

Fact 4: Suppose Q(j) = RMQ(1, j) =
max1≤l≤j{H(l)}. Then the values of Q(j), 1 ≤ j ≤ n
form a nondecreasing sequence. This sequence is under a
very special form. If Q(j) < Q(j + 1), 1 ≤ j < n, then
Q(j+ 1) = Q(j) + 1. Therefore, the values of this sequence
are taken from a consecutive integer set {0, 1, · · · , L},
where L = r(X,Y) is the length of the longest common
subsequence of X and Y .
Proof.

For any 1 ≤ j′ < j ≤ n, Q(j′) = max1≤l≤j′{H(l)}
and Q(j) = max1≤l≤j{H(l)}. It follows from j′ < j that
{l|1 ≤ l ≤ j′} ⊂ {l|1 ≤ l ≤ j}. It follows then Q(j′) ≤
Q(j). This proves that the values of Q(j), 1 ≤ j ≤ n form
a nondecreasing sequence.

In the case of Q(j) < Q(j+1), 1 ≤ j < n, since Q(j+1)
and Q(j) are both nonnegative integers, we have:

Q(j + 1) ≥ Q(j) + 1 (3)

On the other hand, by the definition of Q, if current row
number is i, we have:

Q(j + 1) = max
1≤l≤j+1

{Hi(l)}

= max{max
1≤l≤j

{Hi(l)}, Hi(j + 1)}

= max{Q(j), Hi(j + 1)}
= Hi(j + 1)

(4)

It follows from the definition of Hi(j + 1) that

Hi(j + 1) = max
1≤k<i,(k,j+1)∈M

{T (k, j + 1)}

= T (k′, j + 1), 1 ≤ k′ < i, (k′, j + 1) ∈M
= Qk′(j) + 1

(5)

It follows from Fact 3 and k′ < i that Hk′(j) ≤ Hi(j),
and thus Qk′(j) ≤ Qi(j) = Q(j).

It follows from (4) and (5) that

Q(j + 1) = Hi(j + 1)

= Qk′(j) + 1

≤ Q(j) + 1

(6)

Combining (3) and (6) we then have, Q(j+1) = Q(j)+1.
The proof is completed. �
By the definition of Q we know, if current row number is

i, then for 1 ≤ j ≤ n,

Q(j) = max
1≤l≤j

{Hi(l)}

= max
1≤l≤j

max
1≤k<i,(k,j)∈M

{T (k, j)}

= max
1≤k<i
1≤l≤j

{T (k, l)}
(7)

At the end of the algorithm, all the n rows are treated. At
this time, we have, for 1 ≤ j ≤ n,

Q(j) = max
1≤k≤n
1≤l≤j

{T (k, l)} (8)

In other words, Q(j) = r(X,Y [1 : j]), 1 ≤ j ≤ n.
Especially, Q(n) = L = r(X,Y). If we want compute L =
r(X,Y), but not LCS(X,Y), then we do not need to store
the 2 dimensional array T . At the end of the algorithm, Q(n)
will return the answer.

Because of its unusual form, Q can be viewed as a piece-
wise linear function. As we know, it is sufficient to record
the break points of such functions to calculate their values.
Therefore, we can use another vector P of length at most L
to record the break points of Q. Let m = max1≤i≤n{Q(i)}.
For 1 ≤ j ≤ n, the value of P (j) can be defined as follows:

P (j) =

{
min1≤i≤n{i|Q(i) = j} if j ≤ m
n+ 1 Otherwise (9)

Let

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_05

(Advance online publication: 24 May 2017)

__

S(j) = P (j), if 1 ≤ j ≤ n, 1 ≤ P (j) ≤ n (10)

It is clear that S forms an increasing sequence of length
at most L.

For instance, if Q = (0, 1, 2, 2, 2, 2, 2), then P =
(2, 3, 8, 8, 8, 8, 8), and S = {2, 3}.

Let α = |S|, then S(α) is the maximal element of S.
By the definition of S, if k < α, then for any S(k) ≤ j <

S(k + 1), we have Q(j) = k. In the case of k = α, for any
S(α) ≤ j ≤ n, we have Q(j) = α. Therefore, Q(j) can be
easily computed by S as follows.

Q(j) =

{
k if S(k) ≤ j < S(k + 1)
α j ≥ S(α)

(11)

Furthermore, we can wind up the following fact.
Fact 5: Suppose P (j), 1 ≤ j ≤ n be defined by formula

(9). Then S = {P (j)|1 ≤ j ≤ n, 1 ≤ P (j) ≤ n} forms
an increasing sequence of length at most L. This sequence
has a very unique property. For each P (t) ∈ S, and any
P (t) ≤ j < P (t+1), t = max1≤k<i

1≤l≤j
{T (k, l)}, if current row

number is i. At the end of the algorithm, for each P (t) ∈ S,
t = r(X,Y [1 : j]) for any P (t) ≤ j < P (t+ 1). Especially,
the maximal element of S is P (L), and L = r(X,Y).
Proof.

By the definition of P , we have, for each P (t) ∈ S, if
P (t) ≤ j < P (t + 1), then Q(j) = t. Therefore, it follows
from formula (7) that if current row number is i, then t =
max1≤k<i

1≤l≤j
{T (k, l)}

At the end of the algorithm, all the n rows are treated.
At this time, for each P (t) ∈ S, t = max1≤k≤n

1≤l≤j
{T (k, l)} =

r(X,Y [1 : j]).
Especially, if P (t′) is the maximal element of S, then

P (t′) ≤ n < P (t′ + 1) = n+ 1, and thus,
t′ = r(X,Y [1 : n]) = r(X,Y) = L, i.e., the maximal

element of S is P (L), and L = r(X,Y).
The proof is completed. �
In the algorithm, if current match (i, j) is processed, then

the value of T (i, j) is changed to 1 + Q(j − 1). Let Q(j′)
be the successor of Q(j − 1) in Q, i.e.,

j′ = min
j≤l≤n

{l|Q(l) > Q(j − 1)} (12)

Then Q[j : j′ − 1] must be changed to 1 + Q(j − 1),
according to the definition of Q.

Similarly, Let S(k) be the successor of j − 1 in S, i.e.,

k = min
1≤l≤n

{l|S(l) > j − 1} (13)

Then S(k) must be changed to j, according to the defini-
tion of S.

In the case of j − 1 has no successor in S, i.e., j − 1 ≥
S(α), then j must be added into S.

For example, if Q = (0, 1, 2, 2, 2, 2, 2), S = (2, 3), and
current match (4, 6) is processed, then T (4, 6) is changed
to 1 + Q(j − 1) = 3. In this case, j = 6 and j′ = 8, and
thus Q[6 : 7] must be replaced by 3. The current values of
Q becomes Q = (0, 1, 2, 2, 2, 3, 3). At this point, j − 1 =
5 > S(α) = 3, and thus j must be added to S. The current
values of S becomes S = (2, 3, 6).

C. The improved algorithm

It is readily seen from the discussions above that if we can
use the ordered set S defined by formula (11) to calculate
the function RMQ(1, j − 1), then the algorithm will be
simplified substantially. The key point is the way to maintain
the ordered set S efficiently.

Let U = {j|1 ≤ j ≤ n}. Suppose DS be an abstract data
type on an ordered positive integer set S. The abstract data
type DS can support the following operations on S:

1) Size(S)
A query on an ordered positive integer set S that
returns the number of integers in S.

2) Succ(S, x)
A query that, given a positive integer x whose key is
from U , returns the next larger integer in S, or 0 if x
is the maximum integer in S.

3) Pred(S, x)
A query that, given a positive integer x whose key is
from U , returns the next smaller integer in S, or 0 if
x is the minimum integer in S.

4) Update(S, x)
A modifying operation that, given a positive integer x,
if Succ(S, x − 1) > 0, then replace Succ(S, x − 1)
with the integer x, otherwise augments the set S with
a new integer x.

With this abstract data type, we can maintain the ordered
positive integer set S ⊆ U defined by formula (10) in our
new algorithm LCS as follows.

Algorithm 2 LCS
1: S ← ∅
2: for i = 1 to n do
3: for all j ∈ LY (xi) do
4: Update(S, j)
5: end for
6: end for
7: return Size(S)

In above algorithm LCS, the list LY (c), c ∈ Σ stores, in
a decreasing order, the positions of c in Y . The |Σ| lists can
be constructed in O(n) time, by simply scanning Y in turn.
At the end of the algorithm, L = r(X,Y) = Size(S), the
length of LCS(X,Y), is returned.

The efficiency of the new algorithm is depended heavily
on the efficiency of the abstract data type DS, especially on
the efficiency of its operation Update(S, x).

We have found that the van Emde Boas tree is an elegant
data structure for our purpose. Specifically, van Emde Boas
trees support each of the following dynamic set operations,
Search, Insert, Delete, Min, Max, Succ, and Pred
in O(log logn) time. The operation Update(S, x) can be
easily implemented by combining at most two successive
operations delete and insert.

If we chose van Emde Boas tree as our data structure for
S, the new algorithm can be described as follows.

The structure of algorithm vEB − LCS is very simple.
Although the algorithm can correctly return the length of
LCS(X,Y), it does not directly give LCS(X,Y). If we
want to compute LCS(X,Y), but not just its length, we have
to record more information. A commonly used method is to

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_05

(Advance online publication: 24 May 2017)

__

Algorithm 3 vEB LCS

1: S ← ∅
2: for i = 1 to n do
3: for all j ∈ LY (xi) do
4: k ← Succ(S, j − 1)
5: if k < Max(S) then
6: Delete(S, k)
7: end if
8: Insert(S, j)
9: end for

10: end for
11: return Size(S)

record the predecessor of each match (i, j) ∈ M by a two
dimensional array like T (i, j). The two dimensional array
returned by the algorithm allows us to quickly construct an
LCS of X and Y . This method requires extra O(n2) space.
For this purpose, we can design a more efficient method
using only O(R) space. We use two vectors B and C, both of
length R, to record the predecessor’s match number and the
matched character for each match (i, j) ∈ M , respectively.
The match numbers for all matches (i, j) ∈M are generated
one after another in the algorithm.

Algorithm 4 vEB LCS

1: m← 0, S ← ∅
2: for i = 1 to n do
3: for all j ∈ LY (xi) do
4: k ← Succ(S, j − 1)
5: if k < Max(S) then
6: Delete(S, k)
7: end if
8: Insert(S, j)
9: p← Pred(S, j)

10: m← m+ 1
11: B(m)← D(p), C(m)← j,D(j)← m
12: end for
13: end for
14: return Size(S)

In the above algorithm, the vector D is a temporary vector
of length at most L used to store the match numbers for
current set S. With the two vectors B and C computed in
the above algorithm, the following recursive algorithm prints
out LCS(X,Y). The initial call is Print−LCS(Size(S)).

Algorithm 5 Print LCS(k)

1: if k ≤ 0 then
2: return
3: else
4: Print− LCS(B(k))
5: print Y (C(k))
6: end if

It is obvious that Print−LCS(Size(S)) takes time O(L),
since it prints one character of LCS(X,Y) in each recursive
call. Finally, we can find that the following theorem holds.

Theorem 1: The algorithm vEB LCS correctly com-
putes LCS(X,Y) in O(R log logn + n) time and O(R)

space in the worst case, where R is the total number of
matches for X and Y .
Proof. It follows from formulas (11) and (13) that the values
of RMQ(1, j−1) for each row i can be correctly computed
by the set S maintained in the algorithm. Therefore, the
algorithm can compute LCS(X,Y) correctly as the original
algorithm of Iliopoulos and Rahman. It is obvious that the
computation of list LY (c), c ∈ Σ, costs O(n) time and space.
For each match (i, j) ∈ M , the algorithm executes each of
the 4 operations Succ, Succ,Succ, and Succ at most once,
and each of the 4 operations costs O(log logn). Therefore,
the total time spent for these operations is O(R log logn).
The worst case time complexity of the algorithm is therefore
O(R log logn+ n).

To maintain the van Emde Boas tree, O(n) space is
sufficient. To reconstruct the LCS(X,Y), the algorithm uses
two vectors B and C, both of size R. The space required by
the algorithm is thus O(R). The worst case space complexity
of the algorithm is therefore O(R).

The proof is completed. �
If we chose a balanced binary search tree such as red-black

tree as our data structure for the ordered positive integer set
S, the following dynamic set operations, Search, Insert,
Delete, Min, Max, Succ, and Pred can be implemented
in O(log |S|) time. In this case, The time complexity of our
algorithm becomes O(R logL), since |S| ≤ L. We then can
find that the following theorem holds.

Theorem 2: The longest common subsequence problem
can be solved in O(R logL + n) time and O(R) space in
the worst case, where n,L and R are the length of input
sequences X and Y , the length of LCS(X,Y), and the total
number of matches for X and Y , respectively.

The ordered positive integer set S in our algorithm can also
be efficiently supported by an ordered vector s of length at
most L as follows.

Algorithm 6 V LCS

1: α← 0, k ← −1
2: for i = 1 to n do
3: for all j ∈ LY (xi) do
4: while k ≥ 0 and s(k) ≥ j do
5: k ← k − 1
6: end while
7: s(k + 1)← j
8: if k = α then
9: α← 1 + α

10: end if
11: k ← α
12: end for
13: end for
14: return α

In the above algorithm, for each row i, all columns
j ∈ LY (xi) are processed in a decreasing order. The
successors of all j−1 in s are searched and updated also in a
decreasing order from the largest element s(α). It is obvious
that the time spent for each row i is O(α). Therefore, we can
conclude that the time complexity of the above algorithm is
O(nL), since α ≤ L.

Theorem 3: The longest common subsequence problem
can be solved in O(nL) time and O(R) space in the worst

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_05

(Advance online publication: 24 May 2017)

__

case, where n and L are the length of input sequences X
and Y , and the length of LCS(X,Y), respectively.

REFERENCES

[1] Bergroth, L., Hakonen,H., Raita,T., A survey of longest common
subsequence algorithms, SPIRE, 2000, pp. 39-48.

[2] Crochemore M.,Hancart C., and Lecroq T., Algorithms on strings,
Cambridge University Press, Cambridge, UK, 2007.

[3] Gusfield, D., Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology, Cambridge University Press, Cam-
bridge, UK, 1997.

[4] Hirschberg, D.S., Algorithms for the longest common subsequence
problem, J. ACM 24(4), 1977, pp. 664-675.

[5] Hunt, J.W., Szymanski, T.G., A fast algorithm for computing longest
subsequences, Commun. ACM, 20(5), 1977, pp. 350-353.

[6] Iliopoulos, C.S., Rahman, M.S., A New Efficient Algorithm for Com-
puting the Longest Common Subsequence, Theor. Comput. Syst., 45,
2009, pp. 355-371.

[7] Masek, W.J., Paterson, M., A faster algorithm computing string edit
distances. J. Comput. Syst. Sci., 20(1), 1980, pp. 18-31.

[8] Myers, E.W., An O(nd) difference algorithm and its variations, Algo-
rithmica, 1(2), 1986, pp. 251-266.

[9] Nakatsu, N., Kambayashi, Y., Yajima, S., A longest common subse-
quence algorithm suitable for similar text strings, Acta Inf., 18, 1982,
pp. 171-179.

[10] Rahman, M.S., Iliopoulos, C.S., Algorithms for computing variants of
the longest common subsequence problem, Lecture Notes in Computer
Science, 4288, 2006, pp. 399-408.

[11] Rahman, M.S., Iliopoulos, C.S., A new efficient algorithm for com-
puting the longest common subsequence, Lecture Notes in Computer
Science, 4508, pp. 82-90.

[12] van Emde Boas, P., Preserving order in a forest in less than logarithmic
time and linear space, Inf. Process. Lett. 6, 1977, pp. 80-82.

[13] Wagner, R.A., Fischer, M.J., The string-to-string correction problem,
J. ACM, 21(1), 1974, pp. 168-173.

[14] Zhu D., Wang L., Tian J., and Wang X., Efficient Algorithms for
a Generalized Shuffling Problem, IAENG International Journal of
Computer Science, vol. 41, no.4, 2014, pp237-248.

[15] Zhu D., Wang L., Tian J., and Wang X., A Simple Polynomial Time
Algorithm for the Generalized LCS Problem with Multiple Substring
Exclusive Constraints, IAENG International Journal of Computer Sci-
ence, vol. 42, no.3, 2015, pp214-220.

[16] Zhu D., Wang L., Tian J., and Wang X., An Efficient Dynamic
Programming Algorithm for a New Generalized LCS Problem, IAENG
International Journal of Computer Science, vol. 43, no.2, 2016, pp204-
211.

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_05

(Advance online publication: 24 May 2017)

__

