
A Graph-based Blank Element Selection
Algorithm for Fill-in-Blank Problems in Java

Programming Learning Assistant System
Nobuo Funabiki, Tana, Khin Khin Zaw, Nobuya Ishihara, and Wen-Chung Kao

Abstract—As a reliable and portable object-oriented pro-
gramming language, Java has been extensively used in in-
dustries and taught in schools. To assist Java programming
educations, we have developed a Web-based Java Programming
Learning Assistant System (JPLAS). JPLAS provides a fill-in-
blank problem for novice students who have started learning
Java programming including grammar and basic programming
through code reading. In this problem, students are asked to fill
in the blank elements in a high-quality Java code. In this paper,
we propose a graph-based blank element selection algorithm
to select as many blanks as possible that have grammatically
correct and unique answers from a given code. First, the algo-
rithm generates a graph by selecting each candidate element
in the code as a vertex, and connecting any pair of vertices
by an edge if they can be blanked together. Then, it extracts a
maximal clique of the graph for a solution. For evaluations, the
correctness of the algorithm is verified manually by applying
it to 100 Java codes. Eventually, the educational effects in Java
programming learning are confirmed by assigning generated
fill-in-blank problems to students in our Java programming
course.

Index Terms—Java programming education, JPLAS, fill-in-
blank problem, blank element selection, graph, clique, algo-
rithm.

I. INTRODUCTION

JAVA has been extensively used in industries as a reli-
able and portable object-oriented programming language,

which involves mission critical systems for large enterprises
and small-sized embedded systems. Thus, the cultivation
of Java programming engineers has been in high demand
amongst industries. A great number of universities and
professional schools are offering Java programming courses
to meet these needs.

A Java programming course consists of grammar instruc-
tions with classroom lectures from a teacher and program
exercises through computer operations by students. A pro-
gramming exercise will proceed under the following cycle:

1) The teacher gives an assignment to the students in the
course.

2) A student writes a Java code for the assignment, and
submits it by a paper or an electronic file to the teacher.

3) The teacher evaluates each code manually, and re-
sponds with comments to the student, if necessary.

4) The student modifies the code by following the
teacher’s comments and resubmits it, if necessary.

Manuscript received Mar. 20, 2017.
N. Funabiki, K. K. Zaw, Tana, and N. Ishihara are with the Department of

Electrical and Communication Engineering, Okayama University, Okayama,
Japan, e-mail: funabiki@okayama-u.ac.jp.

W.-C. Kao is with the Department of Electrical Engineering, National
Taiwan Normal University, Taipei, Taiwan, e-mail: jungkao@ntnu.edu.tw.

Generally, a teacher will teach several dozen students in
a course. During the class, it could be a challenge for the
teacher to give sufficient instructions to every student due to
limited resources. Additionally, the evaluation of the codes
and the returning of the comments to the students on time
may become a burden to the teacher. If the response from the
teacher is delayed or missed, the student may lose the chance
to understand and fix the problems in the code. Eventually,
it is potential that a number of students may lose motiva-
tions to study the Java programming seriously. Furthermore,
nowadays, plenty of institutes have increased the number
of students in the course due to budget constraints. It may
be difficult even to manage plenty of codes, scores, and
instructions/comments of students in the course, which could
lead to human-induced mistakes.

To solve the mentioned problems in a Java programming
course, we have proposed and implemented a Web-based
Java Programming Learning Assistant System (JPLAS) [1]-
[3]. JPLAS mainly provides two types of problems, namely
the code writing problem and the fill-in-blank problem,
to support students’ self-studies at various learning levels.
JPLAS performs excellently in reducing the load of eval-
uating the codes and in improving a student’s motivation
with immediate responses to his/her answers. This system
is expected to promote Java programming educations in all
kinds of institutes around the world.

In JPLAS, the code writing problem is designed for a
student to learn writing a Java source code from scratch.
This function is implemented based on the test-driven devel-
opment (TDD) method [4], using an open source framework
JUnit [5]. With JUnit, the answer code is automatically tested
on the server to verify its correctness when submitted by
a student. Thus, a student is allowed to repeat the cycle
of writing, testing, modifying, and resubmitting a code by
him/herself. However, we have detected one problem for
this function that a student needs to write a code that can
be correctly tested with JUnit via test code prepared by the
teacher. Hence, this function may not be suitable for a novice
student who has just started Java programming study.

On the other hand, the fill-in-blank problem in JPLAS
intends for a student to learn the Java grammar and basic
programming skills through code reading. In a fill-in-blank
problem, a Java code with several blank elements is shown
to a student, where he/she needs to fill in the blanks. This
problem code should be of high-quality, most worth for code
reading. An element is defined as the least unit of a code,
such as a reserved word, an identifier, and a control symbol.
A reserved word signifies a fixed sequence of characters that
has been defined in Java grammar to represent a specific

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_14

(Advance online publication: 24 May 2017)

__

function, which should be mastered first by the students. An
identifier is a sequence of characters defined in the code
by the author to represent a variable, a class, or a method.
A control symbol in this paper indicates other grammar
elements such as ”.” (dot), ”:” (colon), ”;” (semicolon) , ”(,
)”(bracket), ”{, }” (curly bracket).

To solve the fill-in-blank problem, students are required to
carefully read the code to understand the structure, the algo-
rithm/logic, and the semantics. Subsequently, by exercising
knowledge of grammar and applying syntax rules to each
statement, they fill in the blanks correctly. Hence, the fill-
in-blank problem and code reading are intimately connected
with each other. The importance of code reading in learning
programming has been studied in a considerable amount of
literature as introduced in Section VII.

The function for this fill-in-blank problem in JPLAS in-
volves teacher functions and student functions. With teacher
functions, a teacher can generate a new problem by selecting
a Java code from the database and selecting the blank
elements from the code. This generated problem can be
stored in the database. Afterwards, the teacher can register
a new assignment by selecting a problem from the database.
With student functions, a student may repeat the cycle of
accessing an assignment, solving the problem, submitting
the answer, checking the test result, and correcting and
resubmitting the answer to improve their learning, without
a help from a teacher.

In our implementation of the fill-in-blank problem, the cor-
rectness of each answer is checked through string matching
with the corresponding correct answer in the server. Here,
the original element for each blank in the code is used as
the unique correct answer, because it is not only simple but
also encourages students to study code reading. Thus, when
an element is selected for a blank, the original element in the
code must be the unique and grammatically correct answer
to avoid confusions of novice students. Unfortunately, this
proper blank element selection is not that easy for a teacher,
particularly if he/she wants to blank a good deal of elements
for a harder problem. For example, if all the elements
representing the identifier for one variable are blanked, a
student cannot answer it at all. At least one element must
remain in this case.

In this paper, we propose a graph-based blank element
selection algorithm to automatically select proper blank ele-
ments from a given Java code. First, this algorithm generates
a compatibility graph by selecting every candidate element
in the code for a blank as a vertex, and connecting any pair
of vertices by an edge if they can be blanked together. To
fulfill this purpose, we define the conditions that a pair of
elements cannot be blanked simultaneously. Then, a maximal
clique [6] of the compatibility graph is extracted, to find
a maximal set of proper blank elements. As discussed in
Section V-C, a fill-in-blank problem becomes more difficult
when a larger number of elements are blanked. Therefore, by
blanking a subset of the elements selected by the algorithm,
a variety of fill-in-blank problems can be generated with
different levels of difficulties. In addition, we believe that
the proposed algorithm can be applied to other programming
languages, although detailed investigations will be required.

The proposed algorithm selects various types of blank
elements for practical programming educations to novice

students. To master programming, students must understand
the grammar and code syntax that consists of various types
of elements, where only the correct combination of elements
will result in a correct code. Even if a semicolon“ ;” or
a period“ .” is missing in a code, it will not be able to
operate correctly. Unfortunately, it seems that novice students
are inclined to make such mistakes. It is noticed that in
[33][35][36], typo is a major source of frustration for most
novice programmers. If the teacher focuses on specific types
of elements, he/she can select the corresponding ones using
the JPLAS interface. Besides, if the teacher needs to select
a specific topic for the problem code, he/she may select the
code related to the topic from the JPLAS database. If there
is not, the preferred code can be uploaded.

For evaluations, we first verify the correctness of this
algorithm through applications of up to 100 Java codes,
where the uniqueness of the correct answer for any blank
was manually confirmed. Besides, we find that the number
of blank elements reflects a proportional tendency to the
number of statements in the code. Afterwards, we generate
fill-in-blank problems using this algorithm, and assign them
to students in the Java programming course in our depart-
ment. These students have started learning Java programming
through this course and do not have abundant experiences
before. Based upon the results in two-year applications, we
confirm the correlation between the number of correctly
solved blanks and the final assignment score or the course
grade.

The rest of this paper is organized as follows: Section II
shows the functions for fill-in-blank problems in JPLAS.
Sections III and IV present the blank element selection
algorithm. Sections V examines the correctness of the al-
gorithm. Section VI analyzes educational effects in Java
programming course. Section VII introduces various related
works. Section VIII concludes this paper with future works.

II. FILL-IN-BLANK PROBLEM FUNCTIONS IN JPLAS

In this section, we show the currently implemented func-
tions for fill-in-blank problems in JPLAS.

A. Software Platform for JPLAS

In the JPLAS server, we adopt Linux for the operating
system, Tomcat for the Web application server, JSP/Servlet
for application programs, and MySQL for the database. The
user can access JPLAS through a Web browser.

In the implementation of fill-in-blank problem functions,
we adopt JFlex [7] and jay [8] that are both open source
software. JFlex is a lexical analyzer for a Java code, which
is also coded by Java. It transforms a code into a sequence
of lexical units that represent the least elements to compose
the code. It can classify each element in a code into either
a reserved word, an identifier, a symbol, or an immediate
data. For example, a statement int value = 123 + 456;

is divided into int, value, =, 123, +, 456, and ;. However,
since JFlex cannot identify an identifier among a class, a
method, or a variable, jay is used as well, as a syntactic
parsing program based on the LALR method, which can
identify an identifier.

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_14

(Advance online publication: 24 May 2017)

__

B. Definitions of Terms for Fill-in-blank Problem

Here, we define several terms for the fill-in-blank problem.
A problem code represents a Java code that has some blanks.
A blank means an element to be filled in by a student. An
assignment consists of a problem code with some blanks
and their correct answers, a title, and a comment on the
assignment. On the whole, several assignments are given to
students in each course, where JPLAS can support multiple
courses at the same time. Any registered teacher in JPLAS
can generate new problems and assignments using the shared
database.

C. System Utilization Procedure

The JPLAS functions for the fill-in-blank problem com-
prise teacher functions and student functions. The former
functions cover the code registration, the code and type
selection, the blank element selection, the problem preview,
the assignment generation, and the score reference. The
latter functions are in charge of the assignment solution and
the score reference. These functions are used through the
following steps:

1) A teacher uploads Java codes to the database.
2) A teacher selects one code from the database.
3) A teacher selects the blanks from the code to generate

a problem code using the proposed algorithm.
4) A teacher registers an assignment for a course by

selecting one problem code and describing its title and
comment.

5) A student selects one assignment.
6) A student submits the answers to the blanks in the

problem code.
7) The server verifies the answers and returns the results.
8) A student modifies the incorrect answers and resubmits

them to the server, if necessary.
9) A teacher and a student refer to the score of the

assignment.
The details of the functions will be briefly introduced in

the following subsections.

D. Teacher Functions

1) Code Registration: Firstly, a teacher collects suitable
Java source codes for fill-in-blank problems, and uploads
them to the database of JPLAS. These codes should contain
the elements, particularly reserved words, which are worth
studying in the corresponding classes for code reading.

2) Code and Element Type Selection: Secondly, the
teacher selects one code from the database, and the element
types of blanks among reserved words, identifiers, or control
symbols using the interface in Figure 1.

3) Blank Element Selection: Thirdly, the proposed blank
element selection algorithm is applied to the code on the
server to select the blank elements.

4) Problem Code Preview: Fourthly, the teacher previews
the generated problem code using the interface in Figure 2,
and adds a comment on it. Then, the problem code is stored
in the database.

5) Assignment Registration: Lastly, the teacher registers a
new assignment for the course by selecting one problem code
in the database, and describing the title and the comment.
Then, the assignment is stored in the database.

Fig. 1. Interface for code and element type selection.

Fig. 2. Interface for problem code preview.

6) Score Reference: A teacher can check the answers from
the students for the assignments in the course to evaluate their
learning performance. For instant evaluations of assignment
solutions, the teacher can overview the number of students
that have solved each assignment and the average score
among them. For detailed evaluations, the teacher can further
examine the correctness of the answers and the number of
answer submissions by every student using the interface in
Figure 3.

Fig. 3. Interface for assignment answer results by students.

7) Database Management: The JPLAS database will re-
tain the records of the user names and IDs of the teachers
and the students, the course titles, the problem codes with

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_14

(Advance online publication: 24 May 2017)

__

the correct answers, and the assignments with the titles and
comments. When a new teacher starts using JPLAS, the
system manager for JPLAS needs to register this teacher in
the database to authorize him/her to register new courses and
generate new problem codes and assignments.

When a teacher employs JPLAS in a course, he/she needs
to register the course information such as the title and the
student list in the database. Then, he/she can generate and
register assignments for this course, give them to the stu-
dents, and view their scores. Also, any student in the student
list can access to the assignments, submit the answers, and
check their own scores.

Any problem code generated by one teacher can be shared
among the teachers using the database in JPLAS. Thus, it is
expected that after this database is enriched with a variety of
problem codes and assignments, the assignment preparation
loads of a teacher can be drastically reduced by simply
selecting existing problem codes or assignments from the
database.

E. Student Functions

1) Assignment Selection: Firstly, a student can view the
list of the registered courses and select one course following
the access to the JPLAS server using a Web browser.
Subsequently, the student can browse through the list of
the assignments in the course that need to be solved from
the answer submission status in the interface in Figure 4.
Eventually, the student can select one assignment to answer
by clicking the answer button.

Fig. 4. Interface for assignment list and submission status.

2) Answering Assignment: Secondly, the student can view
the direction, the assignment index, the comment, the prob-
lem code with blanks, and the answer forms in the assign-
ment using the interface in Figure 5, where the student can
input the answers into the corresponding forms. In this case,
an open source editor called CodePress is adopted to improve
the readability of the problem code by using the highlighting
function of this editor [9].

3) Automatic Rating: Thirdly, the student can submit the
answers to the server for check by clicking either the“rating”
button or the“ finalizing”button. When the former button
is clicked, the JPLAS server compares the answer of each
blank with the correct one. It returns“ OK” if they are
matched, or otherwise“ NG”. When the latter button is
clicked, the answers by the student are finalized and stored
in the database with the number of submissions via clicking
the rating button as well as the date/time. To complete the

Fig. 5. Interface for assignment answering.

assignment, clicking the “ finalizing” button is a must.
This number of submissions in the database can be used to
evaluate the difficulty of the assignment and the performance
of the student.

4) Score Reference: A student can check the performance
for each assignment using the interface in Figure 6.

Fig. 6. Interface for score reference table.

F. Score Ranking Graph

A student can also realize his/her ranking among the
students in the same course, in terms of the total number of
correct answers for all the assignments using the score rank-
ing graph in Figure 7. This graph is expected to encourage
students to solve more problems aggressively by comparing
the progress in solving assignments among the students.

III. THREE CATEGORIES FOR BLANK ELEMENT
SELECTION ALGORITHM

In this section, we present the three categories to represent
the constraints in selecting blank elements with unique
answers for the blank element selection algorithm.

A. Group Selection Category

In the group selection category, all the elements related to
each other in the code are grouped together so that at least
one element from each group is not selected for blank-use.
Five conditions are presented for this category in this paper.
To elaborate, we use the following simple code.

1: class Sample1{
2: public static void main(String args[]){
3: int var1 = 10;

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_14

(Advance online publication: 24 May 2017)

__

Fig. 7. Interface for score ranking graph.

4: float var2 = sampleMethod(var1);
5: System.out.println("indata="+var1+"

outdata=" +var2);
6: }
7: static float sampleMethod(int p1){
8: float tax = 1.08f;
9: return p1*tax;
10: }
11: }

(1) Identifier appearing two or more times in code
The multiple elements representing the same identifier

with the same scope in the code are grouped together. A
scope indicates the range in the code where a variable,
a class, or a method is referred using the same name
or identifier [10]. If all of such elements are blanked, a
student cannot answer the original identifier. For example,
in Sample1, var1 appears three times with the same scope
at lines 3, 4, and 5, which belong to this condition.

(2) Pairing reserved words composed of three or more
elements

The three or more elements representing the reserved
words in pairs are grouped together. If all of them are
blanked, the unique correct answers may become too difficult
or impossible to answer. Besides, one of those elements could
be a desired hint to derive the other element for novice
students such as the following two cases:

• switch - case - default
• try - catch - finally

(3) Data type for variables in equation
The elements representing the data types for variables in

one equation are grouped together. For example, in sum =

a + b, the data types of the three variables, sum, a, and b,
must be the same. If a variable is casted like sum = (int)a

+ b, the casted data type int is also included in the group.
In addition, if a method is included in an equation, like line
4 in Sample1, the data type of this method is also grouped
together. Actually, float at lines 4 and 7 belong to this

condition.

(4) Data type for method and its returning variable
The elements representing the data type of a method and

its returning variable are grouped together. For example, in
Sample1, float at lines 7 and 8 are grouped.

(5) Data type for arguments in method
The elements representing the data type of an argument in

a method and its substituting variable are grouped together.
For example, in Sample1, int at lines 3 and 7 belong to
this condition through line 4.

The data type in (3)-(5) must be the same if at least one
element in these groups is overlapped. Thus, after every
group is found, the groups from (3)-(5) that contain an
overlapped element are merged into one group.

B. Pair Selection Category

In the pair selection category, the elements appearing in
the code in pairs are grouped together so that at least one
element from each pair is not selected for blank-use. Four
conditions of this category are illustrated as follows.

(1) Elements appearing continuously in statement
The two elements appearing continuously in the same

statement in the code are paired. If both of them are blanked,
their unique correct answers may not be guaranteed, or may
become a significant challenge for novice students. Due to
the same reason, the two elements connected with a dot
(“.”) are also paired. For example, in Sample1, static and
float at line 7 are paired. If it is removed, the following
problem can be generated from line 7 in Sample1, which
will provide the novice students with an exceedingly difficult
demanding job:

7: _1_ _2_ _3_ _4_ _5_ _6_) _7_

(2) Variables in equation
The elements representing any pair of the variables in an

equation are also paired. If both are blanked, the unique cor-
rect answers become impossible because the reversed order
is also grammatically correct. For example, for sum = a +

b, sum = b + a is also feasible. If three or more variables
are included in an equation, any pair of combinations can be
found here.

(3) Pairing reserved words
The two elements are paired to represent the paring re-

served words. If both are blanked, the unique correct answers
may not be guaranteed, or may put a heavy burden on novice
students. Besides, one of those elements can be a hint to
derive the other one, including the following five paring
reserved words:

• if - else

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_14

(Advance online publication: 24 May 2017)

__

• do - while
• class - extends
• interface - extends
• interface - implements

(4) Pairing control symbols
The two elements representing a pair of control symbols,

“ (,)” (bracket) and“ {, }” (curly bracket), are paired.
Even if both are blanked at the same time, the code can
be grammatically correct. Furthermore, novice students are
expected to carefully check them in their codes to avoid
making mistakes. For example, in Sample1, { at line 1 and
} at line 11 are paired.

C. Prohibition Category

In the prohibition category, an element is prohibited
from the blank selection because it does not satisfy the
uniqueness with the high probability. This category involves
four conditions. However, an element in a fixed sequence
of elements indicating a specific meaning in a Java code,
such as public static void main and public void

paint(Graphics g), is excluded from this category, for
they should be mastered by students in advance.

(1) Identifier appearing only once in code
The selected element representing the identifier in this

category appears only once in the code. If it is blanked, a
student cannot answer the original identifier. For example, in
Sample1, Sample1 at lines 1 is prohibited.

(2) Operator
The element representing an operator such as the arith-

metic operator: =, +, -, *, /, the comparative operator: <, >,
<=, >=, ==, !=, and the logical operator: &, |, ˆ, ! is selected
for this category. If an operator is blanked, a student cannot
answer the original one unless the proper explanation of the
specification related to the operator is given. For example, in
Sample1, * at line 9 is prohibited.

(3) Access modifier
The element representing an access modifier for an iden-

tifier is selected to this category. If it is blanked, either
public, protected, or private can often be grammat-
ically correct.

(4) Constant
The element representing a constant is selected for this

category. If it is blanked, a student cannot answer the
original constant. For example, in Sample1, 10 at lines 3
is prohibited.

IV. BLANK ELEMENT SELECTION ALGORITHM

In this section, we propose a blank element selection algo-
rithm using a graph generated from the category selections
of the elements in the previous section.

A. Algorithm Overview

In this algorithm, the constraint graph is first generated
from the given code. In this graph, a vertex represents a
candidate blank element, and an edge does the constraint
such that their incident elements cannot be blanked simulta-
neously for unique correct answers. Then, the compatibility
graph is derived by taking the complement of the constraint
graph. Finally, a maximal clique of the compatibility graph is
sought to obtain a maximal set of blank elements with unique
answers. This algorithm consists of the following four steps:

(1) Vertex generation for constraint graph
(2) Edge generation for constraint graph
(3) Compatibility graph generation
(4) Maximal clique extraction of compatibility graph

B. Vertex Generation for Constraint Graph

In the constraint graph, each vertex represents a candidate
element for being blank. The candidate elements or vertices
are extracted from the code through the lexical analysis
using JFlex and jay. Each vertex contains the associated
information in Table I, which is necessary for the category
selection.

TABLE I
VERTEX INFORMATION.

item content
symbol symbol of element
line row index of element
column column index of element
count number of element appearances
order appearing order of element in code
group statement group index partitioned by { and }
depth number of { from top

Then, the vertices corresponding to the elements classified
into the prohibition category in Section III-C are removed
from the constraint graph.

C. Edge Generation for Constraint Graph

For the constraint graph, an edge is generated between
any pair of the two vertices or elements that should not be
blanked at the same time. These pairs are selected from the
elements in the group selection category or the pair selection
category in the previous section.

For each pair of elements in the pair selection category,
an edge is simply generated between the two corresponding
vertices. For each group of elements in the group selec-
tion category, one vertex among the elements is randomly
selected first, and then, an edge is generated between this
selected vertex and other individual vertices in the same
group. Thus, at least this selected vertex is not selected for
blank.

D. Example of Constraint Graph

Figure 8 illustrates the constraint graph for
sampleMethod in Sample1. A broken line signifies
that the two incident elements are grouped together by
the group selection category, where the associated number
represents the selecting condition in the category. For
example, two p1 are connected by condition (1) and

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_14

(Advance online publication: 24 May 2017)

__

two float are by (4). A straight line signifies that they
are grouped together by the pair selection category. For
example, static and float are connected by (1), p1 and
tax are by (2), (and) are by (4). Moreover, a broken
circle represents an element in the prohibition category that
must not be selected as a blank element, where = and * are
prohibited by (2), and 1.08f is by (4).

Consequently, it is observed that static is included
in this graph. Because sampleMethod is called without
generating an object of the class for this method in main, it
must be there. Being equipped with this grammar conception
is critical and beneficial for the learning of students.

Fig. 8. Constraint graph for sampleMethod in Sample1.

E. Compatibility Graph Generation

By taking the complement of the constraint graph, the
compatibility graph is generated to represent the pairs of
elements that can be blanked simultaneously.

F. Maximal Clique Extraction of Compatibility Graph

Finally, a maximal clique of the compatibility graph is
extracted by a simple greedy algorithm to find the maximal
number of blank elements with unique answers. A clique of a
graph represents its subgraph where any pair of two vertices
is connected by an edge. The procedure of the algorithm is
described as follows:
(1) Calculate the degree (= number of incident edges) of

every vertex in the compatibility graph.
(2) Select one vertex among the vertices whose degree

is maximum. If two or more vertices have the same
maximum degree, select one randomly.

(3) If the selected vertex is a control symbol and the number
of selected control symbols exceeds 1/3 of the total
number of selected vertices, remove this vertex from
the compatibility graph and go to (5).

(4) Add the selected vertex as blank, and remove it as
well as its non-adjacent vertices from the compatibility
graph.

(5) If the compatibility graph becomes null, terminate the
procedure.

(6) Go to (2).

G. Ratio of Control Symbols among Blanks

In the maximal clique procedure, (3) is introduced to
sustain the total number of blank control symbols, because
a code generally consists of a great quantity of control sym-
bols. To investigate the proper threshold, we selected blank
elements with different ratios for the set of 100 Java codes
used in Section V, and examined average numbers of blank
control symbols and other elements using the algorithm. As
shown in Table II, the number of control symbols decreases
and the number of other elements increases as this ratio
becomes smaller, which is according to the condition (1)
in the pair selection category. Then, we empirically selected
1/3 as an appropriate ratio to generate fill-in-blank problems
for novice students that have on average about three blanks
for control symbols and eight blanks for other important
elements. In future studies, we will investigate the effect of
this ratio in Java programming learning performance.

TABLE II
NUMBER OF BLANK ELEMENTS BY DIFFERENT CONTROL SYMBOL

RATIOS.

ratio # of control symbols # of others total #
1/2 5.84 6.44 12.28
1/3 3.60 8.20 11.80
1/5 2.08 10.04 12.12

1/10 1.00 11.20 12.20

V. CORRECTNESS OF ALGORITHM

In this section, we verify the correctness of the blank
element selection algorithm manually by applying it to 100
Java codes.

A. Uniqueness of Correct Answer

Firstly, we verify the uniqueness of grammatically correct
answers for blank elements in the problem code that are
selected by the algorithm. For this verification, we collected
100 Java codes from books and Web sites [11]-[16], where
the number of statements in each code is distributed from 6
to 85, and 24 codes have multiple classes or methods. Then,
we generate fill-in-blank problems by applying the algorithm,
and asked four students in our group to solve them. These
students are currently using Java in their researches and
possess abundant experiences in Java programming.

The results show that for 97 codes, all the blanks selected
by the algorithm have unique answers. For the remaining
three codes, two variables can be exchanged between two
blanks. The following code Sample2 shows one such exam-
ple. Grammatically, outData2 and outData1 can be filled
at 4 and 5 respectively, although the reversed ones are in
the original code. To avoid it, we additionally demonstrate
the output result of this code as revealed in the last three
lines.

1: public _1_ Sample2{
2: public _2_ void main(String[] args){
3: String _3_ = "abcdefgh";
4: String _4_ = inData.substring(0, 5);
5: String _5_ = inData.substring(3, 5);
6: System._6_.println("out1= "+outData1);
7: _7_.out.println("out2= "+outData2);
8: }

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_14

(Advance online publication: 24 May 2017)

__

9: _8_
//output result
//out1= abcde
//out2= de

B. Number of Statements and Number of Blank Elements

Secondly, we examine the relationship between the num-
ber of statements in a code and the number of blank elements
selected by the algorithm. Figure 9 exhibits these numbers
in 100 codes. This graph reflects that they are nearly pro-
portional to one another, except for the first 10 codes. Based
upon Table III, these codes have more statements composed
of only curly brackets due to multiple classes/methods and/or
multiple branches for conditions. Since we limit the number
of control symbols, including curly brackets for blanks, the
number of selected blanks becomes smaller if compared with
the number of statements.

0

10

20

30

40

50

60

70

80

90

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Problem code ID

of selected blanks # of statements

Fig. 9. Number of statements and number of blanks in 100 codes.

TABLE III
FEATURES OF 10 CODES WITH HUGE DIFFERENCE BETWEEN TWO

NUMBERS.

code # of # of # of # of # of
ID blanks statements classes methods if, switch
1 33 47 1 3 8
2 19 33 1 3 3
3 42 54 3 9 0
4 42 53 1 4 3
5 19 30 1 1 2
6 44 54 3 8 0
7 23 30 3 3 0
8 18 28 1 1 2
9 22 31 2 5 0
10 19 25 1 1 7

C. Number of Blank Elements and Solution Difficulty

Thirdly, we evaluate the relationship between the number
of blank elements in a fill-in-blank problem and the solution
difficulty. For this purpose, we generated eight fill-in-blank
problems from the same Java code where the number of
blank elements changes from three to 10, and applied them to
41 sophomore students in our department. We asked them to
solve the problems in descending number of blank elements
within the limited time, so that they will not see the correct
answers beforehand. Figure 10 offers the number of students
who have correctly solved each number of blank elements

and where the correlation is −0.73, which indicates the
strong negative one.

Fig. 10. Relationship between blank elements and solving students.

VI. EDUCATIONAL EFFECTS IN JAVA PROGRAMMING
COURSE

In this section, we estimate educational effects in solv-
ing fill-in-blank problems by students who take the Java
programming course in our department to evaluate the ef-
fectiveness. After implementing JPLAS and the proposed
algorithm, we generated and assigned fill-in-blank problems
to sophomore students taking the course in 2014 and 2015
who have started learning Java programming. Following this,
the application result and the analysis in each year will be
discussed below.

A. Application in 2014

First, we describe the application of fill-in-blank problems
with 46 students in the 2014 course and the analysis results.

1) Overview of Fill-in-blank Problems and Solution Re-
sults: For this application, we collected 121 Java codes from
the textbooks in [11]-[13] and the Web-sides in [14]-[16].
Then, we applied the algorithm and generated the fill-in-
blank problems with the total of 1, 552 blanks.

Table IV displays the weekly summary of the assigned
fill-in-blank problems and solving results with students. For
example, for “ variable/operator” in the first week, we
used codes that consist of one class with the main method,
standard outputs, variables with data types, and/or operators,
in addition to control symbols. Then, our algorithm selects
elements related to them for blanks. If the algorithm does not
select any variable or operator, we will execute the algorithm
with different random numbers, or replace this code with
another one. For design pattern, data structure, and GUI, we
collected codes implementing them so that students can study
the structure of Java codes for important applications.

Table IV indicates that during the first three weeks, basic
grammar related problems were assigned, and most students
could solve them with a lesser submission. During the
fourth week, the solving results became worse because the
codes developed into harder and longer, and more blanks
were selected. After the sixth week, rather advanced topics
were explored where the codes have multiple classes and
methods. Especially, the ninth week had the largest number
of submissions, where data structure and algorithms were
discussed. Most students tended to spend a long time to
comprehend them.

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_14

(Advance online publication: 24 May 2017)

__

TABLE IV
PROBLEMS IN EACH WEEK AND SOLVING RESULTS BY STUDENTS IN 2014.

week # of code topic ave. # of # of ave. ave.
codes blanks solving # of correct

per code students trials rate
1 24 variable/operator 8.41 46 2.59 99.88
2 21 conditional statement 7.00 46 1.96 99.36
3 28 class 9.75 46 6.35 98.84
4 10 object 15.80 46 13.57 97.52
5 3 quiz 20.00 46 12.03 90.71
6 5 file input/output 12.75 46 10.59 99.26
7 12 design pattern 15.50 30 10.95 98.67
8 5 interface 11.60 30 6.7 99.58
9 5 data structure/algorithms 29.20 20 21.26 99.16
10 8 GUI 20.12 16 10.29 99.24

2) Final Programming Assignment: As the final program-
ming assignment for this course, each student is requested
to freely select one application by himself/herself and to
implement the Java code to realize it. For the implementation,
any student is allowed to use existing codes on Web sites
or others to complete it before the deadline. Then, many
students selected applications related to games, painting
tools, and face recognition tools and completed the codes.

To evaluate the final programming assignment, in the
last class of the course, each student first explained the
specification of his/her application to the teacher and the
students, and demonstrated the implemented Java code using
a PC to show its correct running. Then, the teacher and each
student gave a score to the presenter on the usability or the
uniqueness of the application with five points and on the
implementation difficulty with five points. After that, these
scores are tallied to calculate the final point with a 100-point
scale, where the score from the teacher is weighted to 20%
of the final point and the scores from the students are to
80%. Accordingly, the final point becomes the summary of
the evaluations by a teacher and 45 students in terms of the
usability or the uniqueness and the implementation difficulty
of the code by the student, and is suitable to evaluate the
programming ability in a short time.

3) Two Groups by Solved Blanks: After the course was
completed, we analyzed the relationship between the num-
bers of correctly solved blanks and the final points among
the students in Figure 11. A tendency is discovered that they
are more correlated for the students solving more blanks
(Group A) than for the students solving less blanks (Group
B). Thus, we divided the 46 students into two groups by the
equal number, and analyzed the solving performance in each
group.

20

30

40

50

60

70

80

90

100

7
0

3

8
0

4

8
8

8

9
0

9

9
3

3

9
4

4

9
4

6

9
5

8

1
0

0
7

1
0

3
2

1
0
5
3

1
0

6
7

1
0

7
4

1
0

9
9

1
1

0
6

1
1

9
0

1
2
6
6

1
2

9
5

1
3

3
6

1
3

4
2

1
3

5
0

1
3

5
4

1
3

5
7

1
3

9
2

1
3
9
5

1
4
1
2

1
4

1
6

1
4

1
9

1
4

2
4

1
4

2
5

1
4

3
3

1
4

3
8

1
4

3
9

1
4

4
0

1
4
4
2

1
4

4
4

1
4

4
4

1
4

4
4

1
4

4
4

1
4

4
4

1
4

4
4

1
4

4
4

1
4

4
7

1
4

5
1

1
4

6
0

1
4

6
0

F
in

al
 p

o
in

t

of solved blanks

Group B Group A

Fig. 11. Number of solved blanks and final points by students in 2014.

Table V shows the number of solved blanks, the average
final point, and the average number of answer submissions

for each code in the two groups. This table indicates that stu-
dents in Group A solved more blanks with slightly increasing
submissions, and achieved higher final points than students
in Group B on average.

TABLE V
SOLVING PERFORMANCE OF TWO STUDENT GROUPS IN 2014.

group A B
of students 23 23

of solved blanks 1392-1460 703-1357
ave. final point 81.48 73.74

ave. # of submissions for one code 7.80 7.68

4) Correlation between Solved Blanks and Final Point:
Then, we analyzed the correlation between the number of
solved blanks and the final point in Group A and in Groups
B individually. Figures 12 and 13 show the results for them
respectively. The positive correlation (r = 0.60) exists for
Group A, whereas no correlation (r = −0.15) does for
Groups B. These results suggest that students need to solve
a sufficient number of fill-in-blank problems in JPLAS to
improve programming skills. If they stop solving them in
the middle, their improvements may be extremely limited.

1390

1400

1410

1420

1430

1440

1450

1460

1470

30 50 70 90

#
 o

f
so

lv
ed

 b
la

n
k

s

Final point

r = 0.60

Fig. 12. Correlation between solved blanks and final points for Group A
in 2014.

5) Correlation between Submission Times and Final
Point: As mentioned above, JPLAS enables students to
submit their answers and verify the correctness on the server
without limitations, since it was designed to encourage
students to study Java programming by themselves. Nev-
ertheless, we believe that several students submit answers

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_14

(Advance online publication: 24 May 2017)

__

600

700

800

900

1000

1100

1200

1300

1400

30 50 70 90

#
 o

f
so

lv
ed

 b
la

n
k

s

Final point

r = -0.15

Fig. 13. Correlation between solved blanks and final points for Group B
in 2014.

without seriously reading problem codes or considering the
answers. Therefore, they cannot improve Java programming
skills, even after they have solved a substantial of problems.
Thus, we analyzed the correlation between the number of
answer submissions and the final point in Group A and in
Group B in Figures 14 and 15, respectively. The negative
correlation (r = −0.72) exists for Groups A, whereas no
correlation does for Groups B. They support our concern
on lazy behaviors of low performing students. In the next
Java programming course, we will inform students this fact
to encourage them to solve the problems in JPLAS more
carefully.

200

400

600

800

1000

1200

1400

1600

1800

30 40 50 60 70 80 90 100

#
 o

f
su

b
m

is
si

o
n
 t

ri
al

s

Final point

r = -0.72

Fig. 14. Correlation between answer submissions and final points for Group
A in 2014.

200

400

600

800

1000

1200

1400

1600

40 50 60 70 80 90 100

#
 o

f
su

b
m

is
si

o
n
 t

ri
al

s

Final point

r = -0.15

Fig. 15. Correlation between answer submissions and final points for Group
B in 2014.

B. Application in 2015

Next, we describe the application to the 33 students in the
2015 Java programming course and the analysis results.

1) Fill-in-blank Problems in Course: In this year, we
assigned a part of the problems generated in 2014 to the
students, because in the course evaluation questionnaire, we
found that the number of assigned problems was too much
for specific students who have lost motivations of solving
them completely. That is, we selected 16 problems that can
be suitable for learning Java grammar.

Table VI manifests the overview of the assigned problems
and solving results by the students. It is noticed that as
the number of blanks increases, the correct answer rate
decreases, where the correlation coefficient is r = −0.57.
It confirms the claim in Section 5.3. For any code topic, a
majority of the students correctly solved the assigned fill-
in-blank problems in JPLAS that were generated by the
proposed algorithm.

2) Course Grade: In the 2015 application, we adopted
the course grade with a 100-point scale for each student
to consider a different way of evaluating the programming
abilities of students. The course grade was adopted in [29].
It was given by combining the scores of a quiz with 30%, a
paper test with 30%, and a final programming assignment
with 40%. Since the final programming assignment can
evaluate the programming ability efficiently, it is designed
to account for a higher percentage in the course grade.

3) Two Groups by Solved Blanks: As the 2014 applica-
tion, we divided the 33 students into two groups and analyzed
the solving performance in each group individually. Fig-
ure 16 offers the distribution of course grades and numbers of
solving blanks among the students. Once more, it is observed
that they are more correlated for the students solving more
blanks (Group A) than for the remaining students (Group B).

30

40

50

60

70

80

90

100

14 35 38 40 41 43 45 57 58 59 60 61 63 66 66 66 68 75 76 77 77 81 82 83 83 86 86 87 88 89 91 92 92

C
o

u
rs

e
g

ra
d

e

of solved blanks

Group B Group A

Fig. 16. Number of solved blanks and course grades by students in 2015.

Table VII shows the number of solved blanks, the average
course grade, and the average number of answer submissions
for each problem code in the two groups. The results convey
that the students in Group A solved more blanks and achieved
higher course grades.

4) Correlation between Solved Blanks and Course
Grades: Then, we analyzed the correlation between the
number of solved blanks and the course grade in each group,
which is reflected by Figures 17 and 18 respectively. It is
detected that the positive correlation (r = 0.62) exists for
Group A, whereas no correlation (r = 0.32) does for Groups
B. In other words, the same tendency is discovered as the
previous year.

5) Correlation between Submission Times and Course
Grades: Ultimately, we analyzed the correlation between the
number of answer submissions and the course grade in each

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_14

(Advance online publication: 24 May 2017)

__

TABLE VI
PROBLEMS AND SOLVING RESULTS BY STUDENTS IN 2015.

ID code # of # of ave. ave.
topic blanks solving # of correct

students submissions rate
1 data type 8 30 9.17 83.75
2 data type 3 22 5.45 93.85
3 data type 5 19 2.42 95.79
4 data type 2 26 2.00 98.76
5 conditional statement 6 28 2.68 88.27
6 conditional statement 7 22 7.18 99.68
7 array 5 25 1.90 91.67
8 array 5 26 6.73 93.94
9 class 11 24 5.67 86.32
10 class 7 24 7.61 98.08
11 exception 3 19 4.63 96.49
12 file input/output 8 24 4.46 83.75
13 file input/output 6 31 6.03 98.39
14 quiz (data type) 4 24 6.50 100.00
15 quiz (conditional statement) 6 32 3.50 94.08
16 quiz (class) 6 27 4.15 100.00

TABLE VII
PERFORMANCE OF TWO STUDENT GROUPS BY PROBLEM SOLUTIONS IN

2015.

group A B
of students 17 16

of solved blanks 68-92 14-66
ave. course grade 74.51 68.97

ave. # of submissions for one code 6.25 3.87

50

60

70

80

90

100

65 70 75 80 85 90 95

#
 o

f
so

lv
ed

 b
la

n
k
s

Course grade

r = 0.62

Fig. 17. Correlation between solved blanks and course grades for Group
A in 2015.

group in Figures 19 and 20. Not surprisingly, the negative
correlation (r = −0.55) exists for Group A and no correlation
(r = −0.11) does for Group B, which is the same tendency
as the previous year.

VII. RELATED WORKS

In this section, various related works are introduced to the
fill-in-blank selection algorithm in JPLAS.

In [17], Kashihara et al. proposed a method of blanking
an important point of data or control flow in a C code
to make instructive fill-in-blank problems using Program
Dependence Graph (PDG) without considering semantic
aspects of the algorithm. PDG can represent the relationship
of data dependency and control flows between commands
using a graph. In future studies, it is considered to execute
the use of PDG to extract important elements in the code.

In [18], Chang et al. proposed a programming learning
system for novice students through three learning opera-

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70

#
 o

f
so

lv
ed

 b
la

n
k
s

Course grade

r = 0.32

Fig. 18. Correlation between solved blanks and course grades for Group
B in 2015.

30

80

130

180

230

280

50 60 70 80 90 100

#
 o

f
su

b
m

is
si

o
n
 t

ri
al

s

Course grade

r = -0.55

Fig. 19. Correlation between answer submissions and course grades for
Group A in 2015.

tors including cloze, modification, and extension of giving
templates. The answers from students are assessed through
matching with correct ones. In this system, applicable codes
for students are limited since it is evaluated by high school
students.

In [19], Kakugawa et al. presented a Web-based algorithm
education system that can display the outline and the details
of an algorithm, as well as to provide one blank statement
in the algorithm description filled by students.

In [20], Bieg et al. demonstrated a Web-based tutorial

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_14

(Advance online publication: 24 May 2017)

__

0

20

40

60

80

100

120

30 40 50 60 70 80 90 100

#
 o

f
su

b
m

is
si

o
n

 t
ri

al
s

Course grade

r = -0.11

Fig. 20. Correlation between answer submissions and course grades for
Group B in 2015.

system called JOSH-online to enable students to learn Java
programming step by step and by interactive trial and error. It
can relieve the programmer of initial difficulties in defining
complete classes by executing program fragments directly.
The design, the underlying interpreter, and its integration of
the system are introduced.

In [21], Ala-Mutka surveyed programs of automatic as-
sessment tools reported in literature that can be used to help
teachers in grading assignments and students in studying
programming. The dynamic versions include the functional
assessment by running the program against several test data
sets, the efficiency assessment by running time measurements
or execution behavior analysis, and the testing skill of de-
signing test cases. The static ones include the coding style in
terms of readability, programming errors such as functional
patterns and code redundancies, software metrics such as the
number of statements and the cyclomatic number, and the
structural requirement.

In [22], Taguchi et al. proposed a programming education
assistant system to provide assignments suitable for individ-
ual students. The comprehension level and the motivation
of a student is measured by using the collaboration filtering
technique, which estimates the tendency and preference of a
student from those of similar types using the same database.
Since our algorithm can generate fill-in-blank problems with
different levels for a variety of students, the exercise of this
technique is expected to become exceedingly recommend-
able.

In [23], Shinkai et al. provided a C programming education
assistant system on Moodle using fill-in-blank problems like
in this paper. It extracts important elements in a code for
questions using PDG.

In [24], Zacharis confirmed the effectiveness of virtual
pair programming (VPP) using integrated desktop sharing
and real-time communication on student performance and
satisfaction in an introductory Java course.

In [25], Djenic et al. presented the development of a
blended learning environment by the combination of class-
room and Internet lessons for basic C and C++ programming
courses. Contrary to JPLAS, this system provides online
textbook contents with animations to enhance the motivation
and efficiency of learning. Thus, it can reduce time for
classroom lessons. In future works, we aim to develop
the similar functions in JPLAS to promote self-studies of
students.

In [26], Hauswirth et al. described the use of software
clickers that allow for much richer problem types in a Java
programming course, and introduced a pedagogical approach
that allows students to learn from mistakes of their peers.

In [27], Zschaler et al. presented the details of Salespoint
including functionality, architecture overview, example appli-
cations, and lessons. Salespoint is a Java-based framework
for creating business applications to let students develop both
technical skills and social skills such as collaborations with
other developers.

In [28], Lopez et al. showed the correlation between
the performance of code tracing tasks and that of code
writing tasks in the introductory programming. In addition,
the correlation between“ explaining in plain English”tasks
and code writing tasks is revealed. Their targets are novice
programmers, as ours. A part of their code tracing task is
similar to our fill-in-blank problem where some part of a
code is removed to be filled in.

In [29], Hertz et al. presented program memory traces
for tracing code by tracking what occurs in memory during
a program execution, which is similar to the value trace
problem in [34]. It is found that the trace-based teaching
led to improvements in programming grades of students
in introductory programming courses. The purpose is to
encourage students to address code reading in a different way
from the fill-in-blank problem. In [30], Kumar also found the
effectiveness of this code tracing in improving code writing
skills of students.

In [31], Busjahn et al. concluded that code reading, which
can be a learning goal, is connected to comprehending
programs and algorithms or algorithmic ideas as well as
details such as semantics of constructs. That is, teaching
code reading is regarded as a potential means to foster
programming learning.

In [32], Allain, an engineer in Dropbox, introduced five
ways to learn programming more effectively, where the first
recommendation is“Look at the Example Code”. He claimed
“when you’re first learning to program, you should make sure
to look at, and try to understand, every example”.

In [33], Mueller asserted “ See the language used to
perform specific tasks”among the seven key milestones for
learning to code.

In [35], Brown et al reported a study to determine if
programming educators form a consensus about which Java
programming mistakes are the most common and found that
educators formed a weak consensus about which mistakes are
most frequent. Actually, students most often made mistakes
in“mismatched parentheses”,“calling method with wrong
types”, and“missing return statement”, which were also
reported in [36].

VIII. CONCLUSION

In this paper, a graph-based blank element selection al-
gorithm for fill-in-blank problems in Java Programming
Learning Assistant System (JPLAS) is presented. We verified
the correctness of the algorithm manually by applying it
to 100 Java codes, and confirmed the educational benefits
in learning Java programming by assigning generated fill-
in-blank problems to students in our Java programming
course in two years. In future works, we will implement

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_14

(Advance online publication: 24 May 2017)

__

hint functions to assist students who cannot solve fill-in-
blank problems, consider methods to encourage students to
aggressively solve more problems with the less number of
submissions, and properly use JPLAS including fill-in-blank
problems in Java programming courses.

REFERENCES

[1] N. Funabiki, Y. Matsushima, T. Nakanishi, K. Watanabe, and N.
Amano, ”A Java programming learning assistant system using test-
driven development method,” IAENG International Journal of Com-
puter Science, vol. 40, no.1, pp. 38-46, 2013.

[2] N. Funabiki, Y. Korenaga, Y. Matsushima, T. Nakanishi, and K.
Watanabe, ”An online fill-in-the-blank problem function for learning
reserved words in Java programming education,” Proceedings of The
Eighth International Symposium on Frontiers of Information Systems
and Network Applications, pp. 375-380, 2012.

[3] N. Funabiki, Tana, K. K. Zaw, N. Ishihara, and W.-C. Kao, ”Analysis
of fill-in-blank problem solutions and extensions of blank element
selection algorithm for Java programming learning assistant system,”
Lecture Notes in Engineering and Computer Science: Proceedings of
The World Congress on Engineering and Computer Science 2016,
WCECS 2016, 19-21 October, 2016, San Francisco, USA, pp. 237-
242.

[4] K. Beck, Test-driven development: by example, Addison-Wesley,
2002.

[5] JUnit (online), http://www.junit.org/.
[6] M. R. Garey and D. S. Johnson, Computers and intractability: A guide

to the theory of NP-completeness, Freeman, New York, 1979.
[7] JFlex (online), http://jflex.de/.
[8] jay (online), http://www.cs.rit.edu/∼ats/projects/lp/doc/jay/

package-summary.html.
[9] CodePress (online), http://sourceforge.net/projects/codepress/.

[10] Scope (online), http://java.about.com/od/s/g/Scope.htm.
[11] M. Takahashi, Easy Java, Softbank Creative, 2013.
[12] Y. Kondo, Algorithm and data structure for Java programmers, Soft-

bank Creative, 2011.
[13] H. Yuki, Introduction to design patterns using Java, Softbank Creative,

2006.
[14] ITSenka (online), http://www.itsenka.com/.
[15] tutorialspoint (online), http://www.tutorialspoint.com/java/index.htm.
[16] Java program samples (online), http://www7a.biglobe.ne.jp/

∼java-master/samples/.
[17] A. Kashihara, A. Terai, and J. Toyota,“Making fill-in-blank program

problems for learning algorithm,”Proceedings of International Con-
ference on Computers in Education, pp. 776-783, 1999.

[18] K.-E. Chang, B.-C. Chiao, S.-W. Chen, and R.-S. Hsiao,“A program-
ming learning system for beginners - a completion strategy approach,”
IEEE Transactions on Education, vol. 43, no. 2, pp. 211-220, 2000.

[19] H. Kakugawa and T. Mori,“Toward an algorithm education system on
the Web,” Proceedings of 13th International Conference on Systems
Research, Informatics and Cybernetics, 2001.

[20] C. Bieg and S. Diehl,“ Educational and technical design of a Web-
based interactive tutorial on programming in Java,” Science of
Computer Programming, pp. 25-36, vol. 53, 2004.

[21] K. M. Ala-Mutka,“ A survey of automated assessment approaches
for programming assignments,” Computer Science Education, vol. 15,
no. 2, pp. 83-102, 2005.

[22] H. Taguchi, H. Itoga, K. Mouri, T. Yamamoto, and H. Shimakawa,
“Programming training of students according to individual understand-
ing and attitude,” ISPJ Journal, vol. 48, no. 2, pp. 958-968, 2007.

[23] J. Shinkai, Y. Hayase, and I. Miyaji,“ A study of generation and
utilization of fill-in-the-blank questions for programming education
on Moodle,” IEICE Technical Report, ET, pp. 7-10, 2010.

[24] N. Z. Zacharis,“Measuring the effects of virtual pair programming
in an introductory programming Java course,”IEEE Transactions on
Education, vol. 54, no. 1, pp. 168-170, 2011.

[25] S. Djenic, R. Krneta, and J. Mitic,“Blended learning of programming
in the Internet age,”IEEE Transactions on Education, vol. 54, no. 2,
pp. 247-254, 2011.

[26] M. Hauswirth and A. Adamoli,“ Teaching Java programming with
the Informa clicker system,”Science of Computer Programming, pp.
499-520, vol. 78, 2013.

[27] S. Zschaler, B. Demuthb, and L. Schmitz,“Salespoint: a Java frame-
work for teaching object-oriented software development,”Science of
Computer Programming, pp. 189-203, vol. 79, 2014.

[28] M. Lopez, J. Whalley, P. Robbins, and R. Lister, “ Relationships
between reading, tracing and writing skills in introductory program-
ming,”Proceedings of The Fourth International Workshop on Com-
puting Education Research, pp. 101-112, 2008.

[29] M. Hertz and M. Jump,“Trace-based teaching in early programming
courses,” Proceedings of The 44th ACM Technical Symposium on
Computer Science Education, pp. 561-566, 2013.

[30] A. N. Kumar,“ A study of the influence of code-tracing problems
on code-writing skills,”Proceedings of The 18th ACM Conference
on Innovation and Technology in Computer Science Education, pp.
183-188, 2013.

[31] T. Busjahn and C. Schulte,“ The use of code reading in teaching
programming,” Proceedings of The 13th Koli Calling International
Conference on Computing Education Research, pp. 3-11, 2013.

[32] A. Allain (online),“ 5 ways you can learn programming faster,”http:
//www.cprogramming.com/how to learn to program.html.

[33] J. P. Mueller (online),“ Coding by the Book: 5 Tips for Learning
How to Program From a Book,”https://blog.newrelic.com/2015/03/
18/learn-code-programming-book/.

[34] K. K. Zaw, N. Funabiki, and W.-C. Kao, ”A proposal of value trace
problem for algorithm code reading in Java programming learning
assistant system,” Information Engineering Express, vol. 1, no. 3, pp.
9-18, 2015.

[35] N. C. C. Brown and A. Altadmri,“ Investigating novice programming
mistakes: educator beliefs vs student data,”Proceedings of The Tenth
Annual Conference on International Computing Education Research,
pp. 43-50, 2014.

[36] A. Altadmri and N. C. C. Brown,“ 37 million compilations: inves-
tigating novice programming mistakes in large-scale student data,”
Proceedings of The 46th ACM Technical Symposium on Computer
Science Education, pp. 522-527, 2015.

Nobuo Funabiki received the B.S. and Ph.D. de-
grees in mathematical engineering and information
physics from the University of Tokyo, Japan, in
1984 and 1993, respectively. He received the M.S.
degree in electrical engineering from Case Western
Reserve University, USA, in 1991. From 1984 to
1994, he was with Sumitomo Metal Industries,
Ltd., Japan. In 1994, he joined the Department
of Information and Computer Sciences at Osaka
University, Japan, as an assistant professor, and
became an associate professor in 1995. He stayed

at University of Illinois, Urbana-Champaign, in 1998, and at University
of California, Santa Barbara, in 2000-2001, as a visiting researcher. In
2001, he moved to the Department of Communication Network Engineering
(currently, Department of Electrical and Communication Engineering) at
Okayama University as a professor. His research interests include computer
networks, optimization algorithms, educational technology, and Web tech-
nology. He is a member of IEEE, IEICE, and IPSJ.

Tana received the B.S. degree in computer science
and technology from Inner Mongolia University,
China, in 2006, and the M.S. degree in communi-
cation network engineering from Okayama Univer-
sity, Japan, in 2013, respectively. She is currently
a Ph.D. candidate in Graduate School of Natural
Science and Technology at Okayama University,
Japan. Her research interests include educational
technology and Web application systems. She is a
member of IEICE.

Khin Khin Zaw received the B.E. degree in in-
formation technology from Technological Univer-
sity (HmawBi), Myanmar, in 2006, and the M.E.
degree in information technology from Mandalay
Technological University, Myanmar, in 2011, re-
spectively. She is currently a Ph.D. candidate in
Graduate School of Natural Science and Technol-
ogy at Okayama University, Japan. Her research
interests include educational technology and Web
application systems. She is a member of IEICE.

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_14

(Advance online publication: 24 May 2017)

__

Nobuya Ishihara received the B.S. degree in
Mathematics from Okayama University, Japan,
in 1989, and the M.S. degree in communication
network engineering from Okayama University,
Japan, in 2015, respectively. In 1990, he joined
Okayama Information College as a lecturer. He
stayed at Gyosei International School, UK, in
1991-1992, as an assistant research fellow. He is
currently a Ph.D. candidate in Graduate School
of Natural Science and Technology at Okayama
University, Japan. His research interests include

educational technology and Web application systems. He is a member of
IEICE.

Wen-Chung Kao received the M.S. and Ph.D.
degrees in electrical engineering from National
Taiwan University, Taiwan, in 1992 and 1996,
respectively. From 1996 to 2000, he was a Depart-
ment Manager at SoC Technology Center, ERSO,
ITRI, Taiwan. From 2000 to 2004, he was an
Assistant Vice President at NuCam Corporation
in Foxlink Group, Taiwan. Since 2004, he has
been with National Taiwan Normal University,
Taipei, Taiwan, where he is currently a Professor
at Department of Electrical Engineering and the

Dean of School of Continuing Education. His current research interests
include system-on-a-chip (SoC), flexible electrophoretic display, machine
vision system, digital camera system, and color imaging science. He is a
senior member of IEEE.

IAENG International Journal of Computer Science, 44:2, IJCS_44_2_14

(Advance online publication: 24 May 2017)

__

