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Abstract—The Multilayer Perceptron (MLP) is the most useful 

artificial neural network to estimate the functional structure in 

the non-linear systems, but the determination of its architecture 

and weights is a fundamental problem due to their direct impact 

on the network convergence and performance. This paper 

presents an extension of our latest work where we have treated 

the problem of optimizing the number of connections weights and 

hidden layers in MLP. We introduce an objective function 

regularized by the sum of connections used by the network and 

weight decay, to solve the resulting model, we use a genetic 

algorithm and we train the network with back-propagation 

method. To test our methodology we use a data classification: 

wine, iris, seeds and medical data (Cancer, thyroid). We compare 

the obtained results with those of similar works existing in the 

literature. The numerical results illustrate the advantages of our 

approach as a new method of architecture optimization and 

training.  

 

Index Terms—Multilayer Perceptron, Architecture 

optimization, Objective function, Genetic algorithm, Weight 

decay. 

I. INTRODUCTION 

RTIFICAL Neural Network (ANN) models are an 

important class of models that have attracted 

considerable attention and have been deployed in many 

applications: pattern recognition, classification, forecasting 

and optimization.  The most utilized model in ANN 

applications is the Multilayer Perceptron (MLP) which 

consists of an input layer, output layer and hidden layers [8].  

Training the MLP is equivalent to finding the values of all 

weights such that the desired output is generated to 

corresponding input, it can be viewed as the minimization of 
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error function computed by the difference between the output 

of the network and the desired output of a training 

observations set [1]. In the literature there are some algorithms 

for this task such as Ant Colony Optimization [28], Particle 

Swarm Optimization [25], Levenberg-Marquardt, but the most 

utilized technique is the Back-propagation algorithm (BP) and 

there is another way to train the MLP such as the Bayesian 

training framework proposed by Neal and Mackay [26- 27].  

A manual selection of the ANN parameters and 

architectures involves difficulties such as the following: the 

need for a priori knowledge on the problem domain and ANN 

functioning in order to define these parameters, the 

exponential number of parameters that need to be adjusted. 

The selection of architecture in MLP networks is a very 

relevant point, as a lack of connections can make the network 

incapable of solving the problem of insufficient adjustable 

parameters, while an excess of connections may cause an 

over-fitting of the training data [3] especially, when we use a 

high number of hidden layers and neurons. 

This paper presents a new model which automatically 

optimizes the ANN architecture and performance. This 

method is based on modeling the problem of architecture  by 

means of  non-linear constraints program such as in [24] but 

we want to penalize  the cost function by the term defining  

the sum of network  connections used, weighted by the 

parameter that we want to choose by tests. In this paper, the 

performance of our approach is investigated in the 

simultaneous optimization of multilayer perceptron (MLP) 

architecture and weights. 

The proposed model presents some interesting 

characteristics: 1) Optimal search for useful connections. 2) 

Optimization of network size and 3) Automatic approach for 

finding the best network architecture. 

The next section presents and discusses related works on 

neural network architecture optimization. Section 3 describes 

the training of Multilayer Perceptron. In Section 4, we present 

the problem of optimization neural architecture and a new 

modeling is proposed. And before concluding, experimental 

results are given in the section 5. 

II. RELATED WORKS 

There are a number of approaches in the literature that take 

into account the architecture optimization for MLP. This 

section describes works that are more or less similar to our 

article.  

New Modeling of Multilayer Perceptron Architecture 

Optimization with Regularization:  

An Application to Pattern Classification 
H. Ramchoun, M A. Janati Idrissi, Y. Ghanou, and M. Ettaouil 

A 



The performance of MLP depends, on the one hand, on 

various aspects of design such as the choice of an optimal 

network topology including the number of hidden layers and 

nodes for each hidden layer and on the other hand The 

appropriate learning algorithm and the initialization of the 

weights [23]. Global search may stop the convergence to a 

non-optimal solution and determine the optimum number of 

ANN hidden layers. Recently, some studies in the 

optimization architecture problems have been introduced [3], 

in order to determine neural networks parameters, but not 

optimally. 

Traditional algorithms fix the neural network architecture 

before learning [4], others studies propose constructive 

learning [5-6], it begins with a minimal structure of hidden 

layers, these researchers initialized the hidden layers, with a 

minimal neurons number of hidden layer. The most of 

researchers treat the construction of neural architecture 

without finding the optimal neural architecture [7]. 

T B. Ludermir and al [14] propose an approach for dealing 

with a few connections in one hidden layer and training with 

deferent hybrid optimization algorithms.  

In our previous work we treat optimization of hidden layers 

with introducing a decision variable for each layer [1], in 

another work we have taken account the hidden node 

optimization in layers[2], and recently a Multi objective 

approach [29], for training this three models we have used a 

back-propagation algorithms. 

III. MULTILAYER PERCEPTRON AND TRAINING 

A. Multilayer perceptron 

 A Multilayer Perceptron is a variant of the original 

Perceptron model proposed by Rosenblatt in the 1950 [10]. It 

has one or more hidden layers between its input and output 

layers, the neurons are organized in layers, the connections are 

always directed from lower layers to upper layers, the neurons 

in the same layer are not interconnected see figure 1. 

The choice of layers number and neurons in each layers and 

connections called architecture problem, the neurons number 

in the input layer equal to the number of measurement for the 

pattern problem and the neurons number in the output layer 

equal to the number of class.  

Our main objective is to optimize this architecture for 

suitable network with sufficient parameters for classification 

or regression task. 

B. Back-propagation and learning 

The Learning for the MLP is the process to adapt the 

connections weights in order to obtain a minimal difference 

between the network output and the desired output, for this 

raison in the literature some algorithms are used such as Ant 

colony [11], but the most used called Back-propagation witch 

based on descent gradient techniques [12]. 

Assuming that we used an input layer with 𝑛0 neurons  

𝑋 = (𝑥0 , 𝑥1 , … , 𝑥𝑛0
)  and a sigmoid activation function 𝑓 𝑥  

where: 

                                  𝑓 𝑥 =
1

1+𝑒−𝑥                                    (1) 

To obtain the network output we need to compute the 

output of each unit in each layer. 

Now consider a set of hidden layers (𝑕1, 𝑕2 , … , 𝑕𝑁), 

assuming that  𝑛𝑖  are the neurons number in each hidden 

layer 𝑕𝑖 . 

For the output of first hidden layer  

                         𝑕1
𝑗

= 𝑓  𝑤𝑘,𝑗
0  𝑥𝑘

𝑛0
𝑘=1         𝑗 = 1, … , 𝑛1    (2)                                   

The outputs  𝑕𝑖
𝑗
 of neurons in the hidden layers are 

calculated as follows: 

 𝑕𝑖
𝑗

= 𝑓  𝑤𝑘,𝑗
𝑖−1 𝑕𝑖−1

𝑘𝑛𝑖−1
𝑘=1     𝑖 = 2, … , 𝑁 𝑎𝑛𝑑 𝑗 = 1,… , 𝑛𝑖   (3)      

Where 𝑤𝑘,𝑗
𝑖  is the weight between the neuron 𝑘 in the 

hidden layer 𝑖 and the neuron 𝑗 in the hidden layer  𝑖 + 1, 𝑛𝑖  is 

the number of the neurons in the 𝑖𝑡𝑕  hidden layer, The   output   

 
Fig. 1 Feed forward neural network structure 

 

of the 𝑖𝑡𝑕   layers can be formulated by: 
                                         𝑕𝑖=

  t(𝑕𝑖
1 , 𝑕𝑖

2 , . . . , 𝑕𝑖
𝑛𝑖)                                (4) 

The network outputs are computed by 

                         𝑦𝑖 = 𝑓  𝑤𝑘,𝑗
𝑁  𝑕𝑁

𝑘𝑛𝑁
𝑘=1                                 (5) 

             𝑌 =  𝑦1 , … , 𝑦𝑗 , … , 𝑦𝑁+1 = 𝐹(𝑊, 𝑋)                   (6) 

Where  𝑤𝑘,𝑗
𝑁  is the weight between the neuron 𝑘 of the 𝑁𝑡𝑕  

hidden layer and the neuron  𝑗 of the output layer, 𝑛𝑁  is the 

number of the neurons in the 𝑁𝑡𝑕   hidden layer,  𝑌 is the 

vector of output layer, 𝐹 is the transfer function and 𝑊 is the 

weights matrix, it’s defined as follows:  

𝑊 = [𝑊0 , … ,𝑊𝑗 , … ,𝑊𝑁] 

               𝑊𝑖 =  wj,k
i  0≤i≤N

1≤j≤ni+1
1≤k≤ni

 where wj,k
i ∈ ℝ                 (7) 

To simplify we can take 𝑛 = 𝑛𝑖  ∀𝑖 = 1,… , 𝑁 for all hidden 

layers. Where 𝑋 is the input of neural network and  𝑓 is the 

activation function and 𝑊𝑖   is the matrix of weights between 

the 𝑖𝑡𝑕  hidden layer and the  (𝑖 + 1)𝑡𝑕   hidden layer for 

𝑖 = 1, … , 𝑁 − 1, 𝑊0 is the matrix of weights between the 

input layer and the first hidden layer, and 𝑊𝑁  is the matrix of 

weights between the 𝑁𝑡𝑕   hidden layer and the output layer. 



IV. PROPOSED MODEL TO OPTIMIZE THE MLP WEIGHT AND 

ARCHITECTURE 

The MLP architecture definition depends on the choice of 

the number of layers, the number of hidden nodes in each 

layers and the objective function, but another approach which 

is introduced in this paper describe a method to remove some 

unnecessary connection between the hidden layers. We 

remove the neuron of layer i when there are no connections 

between this neuron and neurons layer 𝑖 + 1, and when all 

neurons are deleted in layers 𝑖 we delete it. In this work, we 

assign to each connection a binary variable which takes the 

value 1 if the connection exists in the network and 0 

otherwise. Also we associate another binary variable for the 

hidden layers. 

A. Notations 

𝑁    : Number of hidden layers. 

𝑛0   : Number of neurons in input layer. 

𝑛𝑖     : Number of neurons in hidden layer i. 

𝑛𝑁+1 : Number of neurons in output layer. 

𝑋     : Input data of neural network. 

𝑌     : Calculated output of neural network. 

𝑕𝑖
𝑗
   : Output of neuron j in hidden layer i. 

𝑓     : Activation function. 

𝑑     : Desired output. 

𝑢𝑖     : Binary variable   𝑖 = 1,… , 𝑁 − 1. 𝑈 =  𝑢1, 𝑢2, … , 𝑢𝑁−1   

𝑣𝑘,𝑗
𝑖  : Binary variable   𝑖 = 2,… , 𝑁,  𝑗 = 1,… , 𝑛𝑖  and  

  𝑘 = 1,… , 𝑛𝑖−1 

We computed the output of neural network by the following 

formula: 

              𝐹 𝑈, 𝑉,𝑊, 𝑋 = 𝑌 =  𝑦1 , 𝑦2 , … , 𝑦𝑛𝑁+1
              (8) 

B. Output of first hidden layer 

The neurons of first hidden layer are directly connected to 

the input layer (data layer) of the neural network. 

The output for each neuron in the first hidden layer is 

calculated by: 

                  𝑕1 =

 

 
 
 
 
 𝑕1

1

:
:
𝑕1
𝑘

:
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𝑕1
𝑛1 
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 𝑓  𝑤𝑘,1

0𝑛0
𝑘=1 𝑥𝑘  

:
:

𝑓  𝑤𝑘,𝑗
0𝑛0

𝑘=1 𝑥𝑘 
:
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𝑓  𝑤𝑘,𝑛1

0𝑛0
𝑘=1 𝑥𝑘  

 
 
 
 
 
 

                    (9) 

C. Output of the hidden layers i=2,…,N 

To compute the output of each neuron for the hidden layer i, 

where i = 2,…, N, we propose this formula: 

𝑕𝑖 =

 

 
 
 
 
 
 𝑕𝑖

1

:
:
𝑕𝑖
𝑘

:
:

𝑕𝑖

𝑛𝑖
 

 
 
 
 
 
 

= (1 − 𝑢𝑖−1)𝑕𝑖−1 + 

     𝑢𝑖−1

 

 
 
 1−  1−𝑣𝑘,1

𝑖−1 
𝑛𝑖−1
𝑘=1

:

1−  1−𝑣𝑘,𝑗
𝑖−1 

𝑛𝑖−1
𝑘=1

:
:

1−  1−𝑣𝑘,𝑛 𝑖
𝑖−1  

𝑛𝑖−1
𝑘=1  

 
 
 

 

 
 
 
 𝑓  𝑣𝑘,1

𝑖−1  𝑤𝑘,1
𝑖−1𝑛𝑖−1

𝑘=1 𝑕𝑖−1
𝑘   

:
:

𝑓  𝑣𝑘,𝑗
𝑖−1  𝑤𝑘,𝑗

𝑖−1𝑛𝑖−1
𝑘=1 𝑕𝑖−1

𝑘  

:
:

𝑓  𝑣𝑘,𝑛 𝑖
𝑖−1  𝑤𝑘,𝑛 𝑖

𝑖−1𝑛𝑖−1
𝑘=1 𝑕𝑖−1

𝑘   

 
 
 
 

       (10) 

where 𝑘 = 1,… , 𝑛𝑖−1   𝑎𝑛𝑑 𝑗 = 1,… , 𝑛𝑖  

D. Output of the neural network (layer N+1) 

The output of the neural network is defined by the 

following expression: 

                𝑌 =

 

 
 

𝑦1
:
:
𝑦𝑘

:
:

𝑦𝑛𝑁+1 

 
 

=

 

 
 
 
 𝑓  𝑤𝑘,1

𝑁𝑛𝑁
𝑘=1 𝑕𝑁

𝑘   

:
:

𝑓  𝑤𝑘,𝑗
𝑁𝑛𝑁

𝑘=1 𝑕𝑁
𝑘  

:
:

𝑓  𝑤𝑘,𝑁+1
𝑁𝑛𝑁

𝑘=1 𝑕𝑁
𝑘   

 
 
 
 

                 (11) 

E. Objective function 

Considering  𝑁𝐶  classes in the data set, the true class of the 

pattern x from the training set A is defined as 

                           𝛾 𝑋  𝜖  1,2, … , 𝑁𝐶                               (12) 

The first term of objective function of the proposed model 

such as in the previous work [2] is the error calculated 

between the obtained output and desired output: 

     𝜀(𝑈, 𝑉, 𝑋,𝑊) =  𝐹 𝑈, 𝑉, 𝑋,𝑊 − 𝛾 𝑋  2               (13) 

The classification error for the training set can be define    

         𝐸 𝑈, 𝑉,𝑊, 𝑋 =
1

2 𝑐𝑎𝑟𝑑 (𝐴)
 𝜀(𝑈, 𝑉, 𝑋,𝑊)𝑋𝜖  𝐴           (14) 

We propose to add regularization term for error previously 

defined, in order to control variations of connections weights 

used in training and optimization phase. The maximal number 

of connections used by the network is 

                              𝑁𝑚𝑎𝑥 =  𝑛𝑖  𝑛𝑖+1
𝑁
𝑖=0                           (15) 

In our case we can estimate the percentage of connections 

used in the network by: 

                     𝜓 𝑣 =
1

 𝑁𝑚𝑎𝑥
   𝑣𝑗 ,𝑘

𝑖𝑛𝑖+1
𝑘=0

𝑛𝑖
𝑗=0

𝑁
𝑖=0               (16) 

 In machine learning Regularization is a mechanism of 

introducing additional information to prevent over-fitting, This 

information is usually a penalty for complexity to favor 

models with small coefficients, such as bounds on the vector 

space norm. To this, different formula can be found in 

literature, in our case we use the following term: 

                   K w =
β

2
     

w j ,k
i 2

1+w j ,k
i 2

ni+1
k=0

ni
j=0

N
i=0                  (17) 

 Finally we propose our cost function as follows 

          𝑐 𝑢, 𝑣, 𝑤, 𝑥 = 𝐸 𝑢, 𝑣, 𝑤, 𝑥  +
𝛼

2
 𝜓 𝑣  +  𝐾 𝑤      (18)  



Where 𝛼 and 𝛽 are parameters can be determined by 

repetition of experiments. 

The estimation of regularization parameter 𝛽 can also find 

its interpretation automatically as part of the Bayesian 

approach to neural networks described in [26]. 

F. Constraints 

 The first constraint guarantees the existence of at 

least one hidden layer. 

                                        𝑢𝑖  ≥ 1𝑁
𝑖=1                                (19) 

 These constraints insured communication between 

neurons, connections and layers 

         𝑢𝑖−1 ×   (1 − 𝑣𝑘,𝑗
𝑖−1)

𝑛𝑖−1
𝑘=1

𝑛𝑖
𝑗=1 = 0       ∀𝑖 = 2,… , 𝑁   (20)                       

          1 − 𝑢𝑖−1 ×   𝑣𝑘,𝑗
𝑖−1𝑛𝑖−1

𝑘=1
𝑛𝑖
𝑗=1 = 0        ∀𝑖 = 2,… , 𝑁  (21)           

 The weights values are the real number. 

The neural architecture optimization problem can be 

formulated as the following model:          

 P 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

𝑀𝑖𝑛  𝑐 𝑢, 𝑣, 𝑤, 𝑥    
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                       

 𝑢𝑖 ≥ 1

𝑁

𝑖=1   

𝑢𝑖−1 ×   (1 − 𝑣𝑘,𝑗
𝑖−1)

𝑛𝑖−1

𝑘=1

𝑛𝑖

𝑗=1

= 0 

 

 1 − 𝑢𝑖−1 ×   𝑣𝑘,𝑗
𝑖−1

𝑛𝑖−1

𝑘=1

𝑛𝑖

𝑗=1

= 0 

𝑊 =  𝑤𝑘,𝑗
𝑖  0≤𝑖≤𝑁

1≤𝑗≤𝑛𝑖+1
1≤𝑘≤𝑛𝑖

 𝑤𝑕𝑒𝑟𝑒 𝑤𝑘,𝑗
𝑖 ∈ ℝ

   
𝑢𝑖 ∈  0,1       𝑤𝑕𝑒𝑟𝑒  𝑖 = 1,… , 𝑁 

𝑉 =  𝑣𝑘,𝑗
𝑖  1≤𝑖≤𝑁−1

1≤𝑘≤𝑛𝑖−1
1≤𝑗≤𝑛𝑖

 𝑤𝑕𝑒𝑟𝑒 𝑣𝑘,𝑗
𝑖 ∈  0,1 

  

Many exact methods for solving mixed-integer non-linear 

programming (MINLPs) include innovative approaches and 

related techniques taken and extended from Mixed-integer 

programming (MIP). Outer Approximation (OA) methods [16-

17], Branch-and-Bound (B&B) [18-19], Extended Cutting 

Plane methods [22], and Generalized Bender’s Decomposition 

(GBD) [17] for solving MINLPs have been discussed in the 

literature since the early 1980’s. These approaches generally 

rely on the successive solutions of closely related NLP 

problems. For example, B&B starts out forming a pure 

continuous NLP problem by dropping the integrality 

requirements of the discrete variables (often called the relaxed 

MINLP or RMINLP). Moreover, each node of the emerging 

B&B tree represents a solution of the RMINLP with adjusted 

bounds on the discrete variables [15]. 

The disadvantage of the exact solution methods mentioned 

above is that they become computationally intensive as the 

number of variables is increased throughout the procedure. 

Therefore, efficient heuristic methods are required to solve 

large-size instances accurately. 

The heuristics methods for solving combinatorial 

optimization have now a long history, and there are virtually 

no well-known, hard optimization problems for which a meta-

heuristic has not been applied. Often, meta-heuristics obtain 

the best known solutions for hard, large-size real problems, for 

which exact methods are too time consuming to be applied in 

practice. 

In the following section, we propose to use the genetic 

algorithm because it is one of the most metaheuristics adapted 

to our optimization problem. 

G. Genetic Algorithm’s framework 

   The Genetic Algorithm (GA) was introduced by J. 

HOLLAND to solve a large number of complex optimization 

problems [21]. Each solution represents an individual who is 

coded in one or several chromosomes. These chromosomes 

represent the problem's variables. First, an initial population 

composed by a fix number of individuals is generated, then, 

operators of reproduction are applied to a number of 

individuals selected switch their fitness. This procedure is 

repeated until the maximums number of iterations is attained. 

GA has been applied in a large number of optimization 

problems in several domains, telecommunication, routing, 

scheduling, and it proves it's efficiently to obtain a good 

solution [20]. We have formulated the problem as a non-linear 

program with mixed variables. We summarize the steps of the 

genetic algorithm, see figure 2, as follows 

(i)    Choose the initial population of individuals 

(ii)    Evaluate the fitness of each individual in the population 

(iii) Repeat on this generation 

a. Select the best-fit individuals for reproduction. 

b. Crossover and Mutation operations. 

c. Evaluate the individual fitness of new individuals. 

d. Replace least-fit population with new individuals. 

Until termination (time limit, fitness achieved, etc.) 

 
Fig .2.  Genetic algorithm flowchart 



Coding and initial population: In our application, we have 

encoded an individual by three chromosomes, the first one 

represent the matrix of weights 𝑊, the second represents the 

vector 𝑈 and the third code the vector 𝑉 which is an array of 

decision variables who takes 0 or 1.  

The first step in the functioning of a GA is, then, the 

generation of an initial population. Each member of this 

population encodes a possible solution to the problem. 

The individuals of the initial population are randomly 

generated, 𝑢𝑖  , 𝑣𝑘,𝑗
𝑖   take the value 0 or 1, and the weights 

matrix takes random values in space [𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 ]𝑝  where 

𝑥𝑚𝑖𝑛 = 𝑚𝑖𝑛⁡{𝑥𝑘
𝑖 } and 𝑥𝑚𝑎𝑥 = 𝑚𝑎𝑥⁡{𝑥𝑘

𝑖 } for 𝑘 =
1,… , 𝑝 and 𝑖 = 1,… , 𝑛.  

Evaluating individuals and selection: After creating the 

initial population, each individual is evaluated and assigned a 

fitness value according to the fitness function. In this step, 

each individual is assigned a numerical value called fitness 

which corresponds to its performance; it depends essentially 

on the value of objective function. An individual who has a 

great fitness is the one who is the most adapted to the problem. 

The fitness suggested in our work is the following function: 

               𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 𝑀 − 𝑐 𝑢, 𝑣, 𝑤, 𝑥                  (22) 

Minimize the value of the objective function is equivalent to 

maximize the value of the fitness function, were M is a very 

great number. 

The selection method used in this paper is the Roulette 

Wheel Selection (RWS), which is a proportional method of 

selection, in this method; individuals are selected according to 

their fitness see [1] for details. 

Crossover: The crossover is very important phase in the GA, 

at this step, new individuals called children are created by 

individuals selected from the population called parents. 

Children are constructed as follows: 

We fix a point of crossover, the parents are cut switch this 

point, the first part of parent 1 and the second of parent 2 go to 

child 1 and the rest go to child 2, we choose 3 different 

crossover points, the first for the matrix of weights and the 

second is for vector U, but the third is for vector V. 

Mutation: The rule of mutation is to keep the diversity of 

solutions in order to avoid local optimums. It corresponds on 

changing the values of one (or several) value (s) of the 

individuals who are (or were) (s) chosen randomly. 

Stop criteria: The optimization process stops for the 

following reasons: 

(i) The maximum number of iteration is reached. 

(ii) The maximum threshold error is achieved. 

V. DATA SET EXPERIMENTS 

In this section a number of experiments were conducted 

with standard benchmark data sets of the University of 

California Irvine (UCI) machine learning repository [13] to 

test the performance of our methodology. Five classification 

problems are used: Fisher’s iris data set, Seed data set, Breast 

cancer Wisconsin, Wine data set and Thyroid data.  

The table I chow the summary of the used data sets along 

with the number of examples, number of attributes and class. 

TABLE I 

CHARACTERISTICS OF USED DATA SET 

Database Examples Attributes Class 

Iris 150 4 3 

Wine 178 13 3 

Cancer 699 9 2 

Seed 210 7 3 

Thyroid 7200 21 3 

 

Breast Cancer Wisconsin: The Wisconsin Breast Cancer 

Data set, consists of 699 cases, of which 458 are diagnosed as 

benign and the remaining 241 are known to be malignant. 

There are no missing attributes in the data set, and in this case, 

we are interested in classifying the breast tumor as benign and 

malignant. These two-class problems determine if a patient 

suffers breast cancer based on several characteristics of the 

nuclei’s cells.  We are used the first 349 of the patterns as 

training set (i.e, for optimizing the NN weights), and the 

remaining 350 as test set. 

Iris data set consists of three target classes: Iris Setosa, Iris 

Virginica and Iris Versicolor, each species contains 50 data 

samples. Each sample has four real-valued features: sepal 

length, sepal width, petal length and petal width.  

The wine data set consists of three target classes: the first 

class corresponds to 59, the second corresponds to 71 and the 

last one corresponds to 48 examples, each sample has 13 real-

valued features. These data are the results of a chemical 

analysis of wines growing in the same region in Italy but 

derived from three different cultivars. The analysis determined 

the quantities of 13 constituents found in each of the three 

types of wines. The database includes 178 instances. 

Thyroid: This data set contains information related to 

thyroid dysfunction. The problem is to determine whether a 

patient has a normally functioning thyroid, an under-

functioning thyroid (hypothyroid) or an over-active thyroid 

(hyperthyroid). There are 7200 cases in the data set, with 21 

attributes used to determine to which of the three classes the 

patient belongs. This dataset was obtained from [13]. 

VI. IMPLEMENTATIONS AND NUMERICAL RESULTS 

To illustrate the advantages of the proposed approach, we 

tested it on databases described above. For this task, after we 

have obtained a good architecture by GA, we train the 

obtained MLP by back-propagation algorithm. In this section 

we present parameters setting, implementations procedures 

and final results. 

A. Parameters setting 

We use the GA to solve the architecture optimization 

problem. To this end, we have coded individual by one 

chromosome. The individuals of the initial population are 

generated randomly, vectors 𝑢𝑖 , 𝑣𝑘,𝑗
𝑖  take the value 0 or 1, and 

the weights take random values in space [−0.5, 0.5]. After 



creating the initial population, each individual is evaluated and 

assigned a fitness value according to the fitness function. 

The fitness suggested in our work is the following function: 

               𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 𝑀 − 𝑐 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙               23  
We applied crossover and mutation operator, in this step, 

new individuals called children are created by individuals 

selected from the population called parents for more exploring 

the research space of solution.  
TABLE II 

INITIALS AND OPTIMIZED ARCHITECTURES 

Database 
Initials Number 

of hidden layers 

Optimized 

number of 

hidden 

layers 

Neurons number 

in each hidden 

layer 

Iris 4 3 4 

Wine 4 2 13 

Cancer 4 2 9 

Seed 4 2 7 

Thyroid 4 2 4 

 

TABLE III 

PARAMETERS USED IN OUR EXPERIMENTS 
 

0.200 0.200 0.300 
 

0.700 0.800 0.700 
 

0.520 0.500 0.550 
 

0.010 0.300 0.450 

 0.395 0.397 0.340 
 

0.253 0.342 0.651 

𝑃𝑚 : Probability of mutation 

𝑃𝑐 :  Probability of crossover 

α:   Parameter for connection error 

𝛽:    Regularization parameter 

𝜇:    Learning rate 

s:    Threshold 

 

We begin with the architecture of four hidden layers with an 

appropriate hidden unit number according to data set wanted 

to classify. To simplify, for each data, we chose the same 

neurons number for all hidden layers. After the first 

experiments we choose the architectures and parameters 

summarized in the tables above. 

B. Results for the MLP network  

In experiments, for each topology, ten runs were performed 

with 10 distinct random weights initializations, to compute the 

classification rate, we measure the classification error 

percentage  for training and testing set by following these 

formulas:  

𝐶𝑙𝑎𝑠𝑠 % =
𝑀𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 × 100

𝐶𝑎𝑟𝑑(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡)
 

 

𝐶𝑙𝑎𝑠𝑠 % =
𝑀𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 × 100

𝐶𝑎𝑟𝑑(𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑒𝑡) 
 

 

We use the same topology obtained by the GA above. Table 

IV presents the classification error of the test set obtained in 

the training of a fully connected MLP by using a gradient 

descent with only learning rate. The last table column show 

the resulting number of NN weights computed by (15). 

TABLE IV 
RESULTS FOR MLP NEURAL NETWORKS 

Data Class(%) 

Nb of  Neurons Nb  of 

weights 

(𝑁𝑚𝑎𝑥 ) Hidden layers 
Nb in each 

hidden layer 

Iris 4 3 4 60 

Wine 3,37 2 13 377 

Seed 5,71 2 7 119 

Cancer 2,28 2 9 180 

Thyroid 3,53 2 4 112 

 

Therefore, it becomes important to optimize the network  

topologies, particularly the useful connections and the hidden 

layers number in order to verify if the MLP networks can 

obtains better performances when the architecture is defined 

by our optimization methodology. 

C. Optimization methodology results 

After determining the total of  optimal number of actives 

connections and the optimal number of hidden layers, Table II, 

according to data set used in the experiments we can initialize 

the neural networks by value of weights obtained with GA and 

we divided all data sets into two equal training and testing set, 

We use the back-propagation algorithm for training the 

network with a learning rate and a maximum number of 10000 

iterations and we run our algorithm ten times for each data set, 

we obtained the results presented in the Table V. 

TABLE V 

 DATA SETS CLASSIFICATION (PROPOSED METHOD) 

Data set Class/Connec(%) Tr.D Tes.D 

Iris 
Class(%) 1,33 2,66 

Connec(%) 50 50 

Wine 
Class(%) 1,12 2,25 

Connec(%) 77.45 77,45 

Seed 
Class(%) 0 5,71 

Connec(%) 77,31 77,31 

Cancer 
Class(%) 3,71 2 

Connec(%) 78,34 78,34 

Thyroid 
Class(%) 1.92 3 

Connec(%) 92,85 92,85 

Connect (%): percentage of connections weights used in the network between 

layers 

Tr.D: Training Data 

Tes.D: Testing Data 

𝑃𝑐 

𝑃𝑚  

 
s 

α 

𝜇 

𝛽 



We note that, the obtained clustering results for the test 

bases show that our method provides us the existence of the 

unnecessary connections. 

From Tables above we can see that the proposed method 

gets a higher average classification accuracy rate where we 

have used a few connections rather than the MLP alone. Just 

for seed database we have obtained the same percentage of 

misclassified data where we use the percentage of 77.31 %.  In 

the next section we will compare our obtained results with 

other existing methods in the literature. 

The performance analysis of the testing set by MLP, and 

proposed method are also represented graphically in Fig. 3.  

As noted from Tables IV and V, the proposed method gives 

the best accuracy in testing phase with a percentage of used 

connections lower than 100 %. 

The Figure 4 illustrates the evolution of the mean square 

error (MSE) as a function of iterations during the training 

phase, we note that for each database the error decreases, then 

stabilizes from a certain number of iterations which shows the 

performance of our method.  

 

 
Fig. 3 Performance comparison of MLP Network and Proposed method during testing phase. 

 
Fig.  4   MSE evolution during training phase for 1000 iterations 



 

D. Results comparison 

The problem of architecture optimization and training exists 

in the literature, but with different proposed models and 

different training methodology. We describe some of them and 

we compare it with our proposed method 

 ACO+BP: This work demonstrates the hybrid 

training method: Optimization of MLP architecture 

and Training using Ant Colony Algorithm [11]. 

 The GATSA method was used by T.B. Ludermir and 

al for one hidden layer MLP neural network [3-14]. 

 Our previous work where we deal with optimizing 

neurons number and hidden layers in the network [1-

2] 

 BP: This method allows training a fully connected 

MLP with Back-propagation algorithm 

The Table VI displays the average performance of each 

investigated optimization technique. These results were 

obtained for each technique by the optimization of the number 

of connections and weights connections values of an MLP. 

The parameters evaluated were the following:  the 

classification error (class) of the test sets and the percentage of 

network connections. For all data sets, the optimized ANN 

obtains a lower classification error than those obtained by 

MLP without architecture optimization (Table V), and the 

mean number of connections is lower than the maximum 

number allowed. 
 

TABLE VI 

 RESULTS COMPARISON 

  GATSA 

+BP 

ACO 

+BP 
BP Prev.M Prop.M 

Iris 
Class 5,25 2,66 4 2,66 2,66 

Connec 68,15 100 100 100 50 

Wine 
Class - - 3,37 - 2,25 

Connec - - 100 - 77,45 

Cancer 
Class 7,19 6 2,28 - 2 

Connec 72,67 100 100 - 78,34 

Seed 
Class - 7,27 5,71 - 5,71 

Connec - 100 100 - 77,31 

Thyroid 
Class 7,15 - 3,53 - 3 

Connec 87.36 - 100 - 92,85 

 

In most of the simulations, the best performance to optimize 

the ANN architecture was obtained by the proposed method. 

We notice that the  Iris data set as the classification error 

was around 2.66 is better than the previous method which 

carries into consideration the optimization of neurons and 

layers,  effectively with a number of connections lower, we 

were able to exceed the method proposed by T.B. Ludermir in 

term of  classification rate. 

For the Cancer data set, the best classification error was of 2 

(2.28 in a full connected MLP with back-propagation training) 

and 7.19 with GATSA+BP method with a lower number of 

connections, on the other hand the ACO+BP method was of 

2.14 but in a full connected MLP, however we can conclude 

that our proposed method for this data set is the good one. In 

the Seed and Wine data set we can compare our proposed 

method to the full connected MLP with back-propagation and 

we conclude the effectiveness of our approach. 
 

TABLE VII 

RESULTS  COMPARISON FOR IRIS DATA CLASSIFICATION  

Method 
Connec 

(%) 
It. M.T. M.TS 

A.T 

(%) 

A.TS 

(%) 

EBP 100 500 3 2 96 97.3 

EBP 100 800 2 1 97.3 98.6 

RBF 100 85 4 4 94.6 94.6 

RBF 100 111 4 2 96 97.3 

SVM - 5000 3 5 94.6 93.3 

Previous 
100 100 3 2 96 97.3 

Method 

Proposed 
50 647 1 2 98.7 97.3 

Method 

It: Number of iterations; M.T.: Misclassified for training set; M.TS.: 

Misclassified for testing set; A.T.: Accuracy for training set; A.TS.: Accuracy 

for testing set. 

 

The results of the Table VII chow that, For Iris database,  

the comparison of the average classification accuracy rate, 

convergence iterations, and number of connections used of the 

proposed method with other existing neural networks training 

algorithms: Error Back-Propagation (EBP), Radial Basis 

Function (RBF) neural networks and Support Vector Machine 

(SVM) show that our approach present three qualities: few 

connections, higher average classification accuracy rate and a 

mean number of iterations. 

VII. CONCLUSION 

We presented an automatically model to optimize the 

architecture of Multilayer Perceptron. This paper has chown 

that the deletion of some unnecessary connections and layers 

can be successfully used for the optimization of the MLP 

network topology and weights. The Genetic Algorithm is 

especially appropriate to obtain the optimal solution of the 

non-linear model. This method has been tested to determine 

the optimal number of hidden layers, actives connections 

weights and the most favorable weights matrix after training. 

Depending on the data sets: Iris, Cancer, Thyroid, Wine and 

Seed, The obtained results demonstrate the good 

generalization of Multilayer Perceptron architectures. To 

conclude, the optimal architecture of artificial neural network, 

especially when we optimize the connections number with 

regularization, can play an important role for the classification 



rate and the problem complexity. For our future work we can 

use other meta-heuristics such as ACO, PSO to solve our 

model and methodology of experiences plans to determine 

efficiently some parameters. 
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