
1

Abstract—The Multilayer Perceptron (MLP) is the most useful

artificial neural network to estimate the functional structure in

the non-linear systems, but the determination of its architecture

and weights is a fundamental problem due to their direct impact

on the network convergence and performance. This paper

presents an extension of our latest work where we have treated

the problem of optimizing the number of connections weights and

hidden layers in MLP. We introduce an objective function

regularized by the sum of connections used by the network and

weight decay, to solve the resulting model, we use a genetic

algorithm and we train the network with back-propagation

method. To test our methodology we use a data classification:

wine, iris, seeds and medical data (Cancer, thyroid). We compare

the obtained results with those of similar works existing in the

literature. The numerical results illustrate the advantages of our

approach as a new method of architecture optimization and

training.

Index Terms—Multilayer Perceptron, Architecture

optimization, Objective function, Genetic algorithm, Weight

decay.

I. INTRODUCTION

RTIFICAL Neural Network (ANN) models are an

important class of models that have attracted

considerable attention and have been deployed in many

applications: pattern recognition, classification, forecasting

and optimization. The most utilized model in ANN

applications is the Multilayer Perceptron (MLP) which

consists of an input layer, output layer and hidden layers [8].

Training the MLP is equivalent to finding the values of all

weights such that the desired output is generated to

corresponding input, it can be viewed as the minimization of

1
 Manuscript received July 12, 2016; revised December 20, 2016.

H. Ramchoun is PhD student in Laboratory of modeling and scientific

computing at the Faculty of Sciences and Technology of Fez, Morocco
(corresponding author phone: +212642800501; e-mail:

ramchounhassan@gmail.com)

M A. Janati Idrissi is PhD student in Laboratory of modeling and scientific
computing at the Faculty of Sciences and Technology of Fez, Morocco (e-

mail: medamine.janatidrissi@gmail.com).

Y. Ghanou is with the Department of Computer Engineering, High School

of Technology, Moulay Ismaïl University, B. P. 3103, 50000, Toulal, Meknes,

Morocco (e-mail: youssefghanou@yahoo.fr).

 M. Ettaouil is a Doctorate Status in Operational Research and

Optimization, Faculty of Sciences and Technology, Sidi Mohamed Ben

Abdellah University, B.P. 2202 Imouzzer route, Fez, Morocco. (e-mail:
mohamedettaouil@yahoo.fr).

error function computed by the difference between the output

of the network and the desired output of a training

observations set [1]. In the literature there are some algorithms

for this task such as Ant Colony Optimization [28], Particle

Swarm Optimization [25], Levenberg-Marquardt, but the most

utilized technique is the Back-propagation algorithm (BP) and

there is another way to train the MLP such as the Bayesian

training framework proposed by Neal and Mackay [26- 27].

A manual selection of the ANN parameters and

architectures involves difficulties such as the following: the

need for a priori knowledge on the problem domain and ANN

functioning in order to define these parameters, the

exponential number of parameters that need to be adjusted.

The selection of architecture in MLP networks is a very

relevant point, as a lack of connections can make the network

incapable of solving the problem of insufficient adjustable

parameters, while an excess of connections may cause an

over-fitting of the training data [3] especially, when we use a

high number of hidden layers and neurons.

This paper presents a new model which automatically

optimizes the ANN architecture and performance. This

method is based on modeling the problem of architecture by

means of non-linear constraints program such as in [24] but

we want to penalize the cost function by the term defining

the sum of network connections used, weighted by the

parameter that we want to choose by tests. In this paper, the

performance of our approach is investigated in the

simultaneous optimization of multilayer perceptron (MLP)

architecture and weights.

The proposed model presents some interesting

characteristics: 1) Optimal search for useful connections. 2)

Optimization of network size and 3) Automatic approach for

finding the best network architecture.

The next section presents and discusses related works on

neural network architecture optimization. Section 3 describes

the training of Multilayer Perceptron. In Section 4, we present

the problem of optimization neural architecture and a new

modeling is proposed. And before concluding, experimental

results are given in the section 5.

II. RELATED WORKS

There are a number of approaches in the literature that take

into account the architecture optimization for MLP. This

section describes works that are more or less similar to our

article.

New Modeling of Multilayer Perceptron Architecture

Optimization with Regularization:

An Application to Pattern Classification
H. Ramchoun, M A. Janati Idrissi, Y. Ghanou, and M. Ettaouil

A

The performance of MLP depends, on the one hand, on

various aspects of design such as the choice of an optimal

network topology including the number of hidden layers and

nodes for each hidden layer and on the other hand The

appropriate learning algorithm and the initialization of the

weights [23]. Global search may stop the convergence to a

non-optimal solution and determine the optimum number of

ANN hidden layers. Recently, some studies in the

optimization architecture problems have been introduced [3],

in order to determine neural networks parameters, but not

optimally.

Traditional algorithms fix the neural network architecture

before learning [4], others studies propose constructive

learning [5-6], it begins with a minimal structure of hidden

layers, these researchers initialized the hidden layers, with a

minimal neurons number of hidden layer. The most of

researchers treat the construction of neural architecture

without finding the optimal neural architecture [7].

T B. Ludermir and al [14] propose an approach for dealing

with a few connections in one hidden layer and training with

deferent hybrid optimization algorithms.

In our previous work we treat optimization of hidden layers

with introducing a decision variable for each layer [1], in

another work we have taken account the hidden node

optimization in layers[2], and recently a Multi objective

approach [29], for training this three models we have used a

back-propagation algorithms.

III. MULTILAYER PERCEPTRON AND TRAINING

A. Multilayer perceptron

 A Multilayer Perceptron is a variant of the original

Perceptron model proposed by Rosenblatt in the 1950 [10]. It

has one or more hidden layers between its input and output

layers, the neurons are organized in layers, the connections are

always directed from lower layers to upper layers, the neurons

in the same layer are not interconnected see figure 1.

The choice of layers number and neurons in each layers and

connections called architecture problem, the neurons number

in the input layer equal to the number of measurement for the

pattern problem and the neurons number in the output layer

equal to the number of class.

Our main objective is to optimize this architecture for

suitable network with sufficient parameters for classification

or regression task.

B. Back-propagation and learning

The Learning for the MLP is the process to adapt the

connections weights in order to obtain a minimal difference

between the network output and the desired output, for this

raison in the literature some algorithms are used such as Ant

colony [11], but the most used called Back-propagation witch

based on descent gradient techniques [12].

Assuming that we used an input layer with 𝑛0 neurons

𝑋 = (𝑥0 , 𝑥1 , … , 𝑥𝑛0
) and a sigmoid activation function 𝑓 𝑥

where:

 𝑓 𝑥 =
1

1+𝑒−𝑥 (1)

To obtain the network output we need to compute the

output of each unit in each layer.

Now consider a set of hidden layers (𝑕1, 𝑕2 , … , 𝑕𝑁),

assuming that 𝑛𝑖 are the neurons number in each hidden

layer 𝑕𝑖 .

For the output of first hidden layer

 𝑕1
𝑗

= 𝑓 𝑤𝑘,𝑗
0 𝑥𝑘

𝑛0
𝑘=1 𝑗 = 1, … , 𝑛1 (2)

The outputs 𝑕𝑖
𝑗
 of neurons in the hidden layers are

calculated as follows:

 𝑕𝑖
𝑗

= 𝑓 𝑤𝑘,𝑗
𝑖−1 𝑕𝑖−1

𝑘𝑛𝑖−1
𝑘=1 𝑖 = 2, … , 𝑁 𝑎𝑛𝑑 𝑗 = 1,… , 𝑛𝑖 (3)

Where 𝑤𝑘,𝑗
𝑖 is the weight between the neuron 𝑘 in the

hidden layer 𝑖 and the neuron 𝑗 in the hidden layer 𝑖 + 1, 𝑛𝑖 is

the number of the neurons in the 𝑖𝑡𝑕 hidden layer, The output

Fig. 1 Feed forward neural network structure

of the 𝑖𝑡𝑕 layers can be formulated by:
 𝑕𝑖=

 t(𝑕𝑖
1 , 𝑕𝑖

2 , . . . , 𝑕𝑖
𝑛𝑖) (4)

The network outputs are computed by

 𝑦𝑖 = 𝑓 𝑤𝑘,𝑗
𝑁 𝑕𝑁

𝑘𝑛𝑁
𝑘=1 (5)

 𝑌 = 𝑦1 , … , 𝑦𝑗 , … , 𝑦𝑁+1 = 𝐹(𝑊, 𝑋) (6)

Where 𝑤𝑘,𝑗
𝑁 is the weight between the neuron 𝑘 of the 𝑁𝑡𝑕

hidden layer and the neuron 𝑗 of the output layer, 𝑛𝑁 is the

number of the neurons in the 𝑁𝑡𝑕 hidden layer, 𝑌 is the

vector of output layer, 𝐹 is the transfer function and 𝑊 is the

weights matrix, it’s defined as follows:

𝑊 = [𝑊0 , … ,𝑊𝑗 , … ,𝑊𝑁]

 𝑊𝑖 = wj,k
i 0≤i≤N

1≤j≤ni+1
1≤k≤ni

 where wj,k
i ∈ ℝ (7)

To simplify we can take 𝑛 = 𝑛𝑖 ∀𝑖 = 1,… , 𝑁 for all hidden

layers. Where 𝑋 is the input of neural network and 𝑓 is the

activation function and 𝑊𝑖 is the matrix of weights between

the 𝑖𝑡𝑕 hidden layer and the (𝑖 + 1)𝑡𝑕 hidden layer for

𝑖 = 1, … , 𝑁 − 1, 𝑊0 is the matrix of weights between the

input layer and the first hidden layer, and 𝑊𝑁 is the matrix of

weights between the 𝑁𝑡𝑕 hidden layer and the output layer.

IV. PROPOSED MODEL TO OPTIMIZE THE MLP WEIGHT AND

ARCHITECTURE

The MLP architecture definition depends on the choice of

the number of layers, the number of hidden nodes in each

layers and the objective function, but another approach which

is introduced in this paper describe a method to remove some

unnecessary connection between the hidden layers. We

remove the neuron of layer i when there are no connections

between this neuron and neurons layer 𝑖 + 1, and when all

neurons are deleted in layers 𝑖 we delete it. In this work, we

assign to each connection a binary variable which takes the

value 1 if the connection exists in the network and 0

otherwise. Also we associate another binary variable for the

hidden layers.

A. Notations

𝑁 : Number of hidden layers.

𝑛0 : Number of neurons in input layer.

𝑛𝑖 : Number of neurons in hidden layer i.

𝑛𝑁+1 : Number of neurons in output layer.

𝑋 : Input data of neural network.

𝑌 : Calculated output of neural network.

𝑕𝑖
𝑗
 : Output of neuron j in hidden layer i.

𝑓 : Activation function.

𝑑 : Desired output.

𝑢𝑖 : Binary variable 𝑖 = 1,… , 𝑁 − 1. 𝑈 = 𝑢1, 𝑢2, … , 𝑢𝑁−1

𝑣𝑘,𝑗
𝑖 : Binary variable 𝑖 = 2,… , 𝑁, 𝑗 = 1,… , 𝑛𝑖 and

 𝑘 = 1,… , 𝑛𝑖−1

We computed the output of neural network by the following

formula:

 𝐹 𝑈, 𝑉,𝑊, 𝑋 = 𝑌 = 𝑦1 , 𝑦2 , … , 𝑦𝑛𝑁+1
 (8)

B. Output of first hidden layer

The neurons of first hidden layer are directly connected to

the input layer (data layer) of the neural network.

The output for each neuron in the first hidden layer is

calculated by:

 𝑕1 =

 𝑕1

1

:
:
𝑕1
𝑘

:
:

𝑕1
𝑛1

=

 𝑓 𝑤𝑘,1

0𝑛0
𝑘=1 𝑥𝑘

:
:

𝑓 𝑤𝑘,𝑗
0𝑛0

𝑘=1 𝑥𝑘
:
:

𝑓 𝑤𝑘,𝑛1

0𝑛0
𝑘=1 𝑥𝑘

 (9)

C. Output of the hidden layers i=2,…,N

To compute the output of each neuron for the hidden layer i,

where i = 2,…, N, we propose this formula:

𝑕𝑖 =

 𝑕𝑖

1

:
:
𝑕𝑖
𝑘

:
:

𝑕𝑖

𝑛𝑖

= (1 − 𝑢𝑖−1)𝑕𝑖−1 +

 𝑢𝑖−1

 1− 1−𝑣𝑘,1

𝑖−1
𝑛𝑖−1
𝑘=1

:

1− 1−𝑣𝑘,𝑗
𝑖−1

𝑛𝑖−1
𝑘=1

:
:

1− 1−𝑣𝑘,𝑛 𝑖
𝑖−1

𝑛𝑖−1
𝑘=1

 𝑓 𝑣𝑘,1

𝑖−1 𝑤𝑘,1
𝑖−1𝑛𝑖−1

𝑘=1 𝑕𝑖−1
𝑘

:
:

𝑓 𝑣𝑘,𝑗
𝑖−1 𝑤𝑘,𝑗

𝑖−1𝑛𝑖−1
𝑘=1 𝑕𝑖−1

𝑘

:
:

𝑓 𝑣𝑘,𝑛 𝑖
𝑖−1 𝑤𝑘,𝑛 𝑖

𝑖−1𝑛𝑖−1
𝑘=1 𝑕𝑖−1

𝑘

 (10)

where 𝑘 = 1,… , 𝑛𝑖−1 𝑎𝑛𝑑 𝑗 = 1,… , 𝑛𝑖

D. Output of the neural network (layer N+1)

The output of the neural network is defined by the

following expression:

 𝑌 =

𝑦1
:
:
𝑦𝑘

:
:

𝑦𝑛𝑁+1

=

 𝑓 𝑤𝑘,1

𝑁𝑛𝑁
𝑘=1 𝑕𝑁

𝑘

:
:

𝑓 𝑤𝑘,𝑗
𝑁𝑛𝑁

𝑘=1 𝑕𝑁
𝑘

:
:

𝑓 𝑤𝑘,𝑁+1
𝑁𝑛𝑁

𝑘=1 𝑕𝑁
𝑘

 (11)

E. Objective function

Considering 𝑁𝐶 classes in the data set, the true class of the

pattern x from the training set A is defined as

 𝛾 𝑋 𝜖 1,2, … , 𝑁𝐶 (12)

The first term of objective function of the proposed model

such as in the previous work [2] is the error calculated

between the obtained output and desired output:

 𝜀(𝑈, 𝑉, 𝑋,𝑊) = 𝐹 𝑈, 𝑉, 𝑋,𝑊 − 𝛾 𝑋 2 (13)

The classification error for the training set can be define

 𝐸 𝑈, 𝑉,𝑊, 𝑋 =
1

2 𝑐𝑎𝑟𝑑 (𝐴)
 𝜀(𝑈, 𝑉, 𝑋,𝑊)𝑋𝜖 𝐴 (14)

We propose to add regularization term for error previously

defined, in order to control variations of connections weights

used in training and optimization phase. The maximal number

of connections used by the network is

 𝑁𝑚𝑎𝑥 = 𝑛𝑖 𝑛𝑖+1
𝑁
𝑖=0 (15)

In our case we can estimate the percentage of connections

used in the network by:

 𝜓 𝑣 =
1

 𝑁𝑚𝑎𝑥
 𝑣𝑗 ,𝑘

𝑖𝑛𝑖+1
𝑘=0

𝑛𝑖
𝑗=0

𝑁
𝑖=0 (16)

 In machine learning Regularization is a mechanism of

introducing additional information to prevent over-fitting, This

information is usually a penalty for complexity to favor

models with small coefficients, such as bounds on the vector

space norm. To this, different formula can be found in

literature, in our case we use the following term:

 K w =
β

2

w j ,k
i 2

1+w j ,k
i 2

ni+1
k=0

ni
j=0

N
i=0 (17)

 Finally we propose our cost function as follows

 𝑐 𝑢, 𝑣, 𝑤, 𝑥 = 𝐸 𝑢, 𝑣, 𝑤, 𝑥 +
𝛼

2
 𝜓 𝑣 + 𝐾 𝑤 (18)

Where 𝛼 and 𝛽 are parameters can be determined by

repetition of experiments.

The estimation of regularization parameter 𝛽 can also find

its interpretation automatically as part of the Bayesian

approach to neural networks described in [26].

F. Constraints

 The first constraint guarantees the existence of at

least one hidden layer.

 𝑢𝑖 ≥ 1𝑁
𝑖=1 (19)

 These constraints insured communication between

neurons, connections and layers

 𝑢𝑖−1 × (1 − 𝑣𝑘,𝑗
𝑖−1)

𝑛𝑖−1
𝑘=1

𝑛𝑖
𝑗=1 = 0 ∀𝑖 = 2,… , 𝑁 (20)

 1 − 𝑢𝑖−1 × 𝑣𝑘,𝑗
𝑖−1𝑛𝑖−1

𝑘=1
𝑛𝑖
𝑗=1 = 0 ∀𝑖 = 2,… , 𝑁 (21)

 The weights values are the real number.

The neural architecture optimization problem can be

formulated as the following model:

 P

𝑀𝑖𝑛 𝑐 𝑢, 𝑣, 𝑤, 𝑥
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

 𝑢𝑖 ≥ 1

𝑁

𝑖=1

𝑢𝑖−1 × (1 − 𝑣𝑘,𝑗
𝑖−1)

𝑛𝑖−1

𝑘=1

𝑛𝑖

𝑗=1

= 0

 1 − 𝑢𝑖−1 × 𝑣𝑘,𝑗
𝑖−1

𝑛𝑖−1

𝑘=1

𝑛𝑖

𝑗=1

= 0

𝑊 = 𝑤𝑘,𝑗
𝑖 0≤𝑖≤𝑁

1≤𝑗≤𝑛𝑖+1
1≤𝑘≤𝑛𝑖

 𝑤𝑕𝑒𝑟𝑒 𝑤𝑘,𝑗
𝑖 ∈ ℝ

𝑢𝑖 ∈ 0,1 𝑤𝑕𝑒𝑟𝑒 𝑖 = 1,… , 𝑁

𝑉 = 𝑣𝑘,𝑗
𝑖 1≤𝑖≤𝑁−1

1≤𝑘≤𝑛𝑖−1
1≤𝑗≤𝑛𝑖

 𝑤𝑕𝑒𝑟𝑒 𝑣𝑘,𝑗
𝑖 ∈ 0,1

Many exact methods for solving mixed-integer non-linear

programming (MINLPs) include innovative approaches and

related techniques taken and extended from Mixed-integer

programming (MIP). Outer Approximation (OA) methods [16-

17], Branch-and-Bound (B&B) [18-19], Extended Cutting

Plane methods [22], and Generalized Bender’s Decomposition

(GBD) [17] for solving MINLPs have been discussed in the

literature since the early 1980’s. These approaches generally

rely on the successive solutions of closely related NLP

problems. For example, B&B starts out forming a pure

continuous NLP problem by dropping the integrality

requirements of the discrete variables (often called the relaxed

MINLP or RMINLP). Moreover, each node of the emerging

B&B tree represents a solution of the RMINLP with adjusted

bounds on the discrete variables [15].

The disadvantage of the exact solution methods mentioned

above is that they become computationally intensive as the

number of variables is increased throughout the procedure.

Therefore, efficient heuristic methods are required to solve

large-size instances accurately.

The heuristics methods for solving combinatorial

optimization have now a long history, and there are virtually

no well-known, hard optimization problems for which a meta-

heuristic has not been applied. Often, meta-heuristics obtain

the best known solutions for hard, large-size real problems, for

which exact methods are too time consuming to be applied in

practice.

In the following section, we propose to use the genetic

algorithm because it is one of the most metaheuristics adapted

to our optimization problem.

G. Genetic Algorithm’s framework

 The Genetic Algorithm (GA) was introduced by J.

HOLLAND to solve a large number of complex optimization

problems [21]. Each solution represents an individual who is

coded in one or several chromosomes. These chromosomes

represent the problem's variables. First, an initial population

composed by a fix number of individuals is generated, then,

operators of reproduction are applied to a number of

individuals selected switch their fitness. This procedure is

repeated until the maximums number of iterations is attained.

GA has been applied in a large number of optimization

problems in several domains, telecommunication, routing,

scheduling, and it proves it's efficiently to obtain a good

solution [20]. We have formulated the problem as a non-linear

program with mixed variables. We summarize the steps of the

genetic algorithm, see figure 2, as follows

(i) Choose the initial population of individuals

(ii) Evaluate the fitness of each individual in the population

(iii) Repeat on this generation

a. Select the best-fit individuals for reproduction.

b. Crossover and Mutation operations.

c. Evaluate the individual fitness of new individuals.

d. Replace least-fit population with new individuals.

Until termination (time limit, fitness achieved, etc.)

Fig .2. Genetic algorithm flowchart

Coding and initial population: In our application, we have

encoded an individual by three chromosomes, the first one

represent the matrix of weights 𝑊, the second represents the

vector 𝑈 and the third code the vector 𝑉 which is an array of

decision variables who takes 0 or 1.

The first step in the functioning of a GA is, then, the

generation of an initial population. Each member of this

population encodes a possible solution to the problem.

The individuals of the initial population are randomly

generated, 𝑢𝑖 , 𝑣𝑘,𝑗
𝑖 take the value 0 or 1, and the weights

matrix takes random values in space [𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥]𝑝 where

𝑥𝑚𝑖𝑛 = 𝑚𝑖𝑛⁡{𝑥𝑘
𝑖 } and 𝑥𝑚𝑎𝑥 = 𝑚𝑎𝑥⁡{𝑥𝑘

𝑖 } for 𝑘 =
1,… , 𝑝 and 𝑖 = 1,… , 𝑛.

Evaluating individuals and selection: After creating the

initial population, each individual is evaluated and assigned a

fitness value according to the fitness function. In this step,

each individual is assigned a numerical value called fitness

which corresponds to its performance; it depends essentially

on the value of objective function. An individual who has a

great fitness is the one who is the most adapted to the problem.

The fitness suggested in our work is the following function:

 𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 𝑀 − 𝑐 𝑢, 𝑣, 𝑤, 𝑥 (22)

Minimize the value of the objective function is equivalent to

maximize the value of the fitness function, were M is a very

great number.

The selection method used in this paper is the Roulette

Wheel Selection (RWS), which is a proportional method of

selection, in this method; individuals are selected according to

their fitness see [1] for details.

Crossover: The crossover is very important phase in the GA,

at this step, new individuals called children are created by

individuals selected from the population called parents.

Children are constructed as follows:

We fix a point of crossover, the parents are cut switch this

point, the first part of parent 1 and the second of parent 2 go to

child 1 and the rest go to child 2, we choose 3 different

crossover points, the first for the matrix of weights and the

second is for vector U, but the third is for vector V.

Mutation: The rule of mutation is to keep the diversity of

solutions in order to avoid local optimums. It corresponds on

changing the values of one (or several) value (s) of the

individuals who are (or were) (s) chosen randomly.

Stop criteria: The optimization process stops for the

following reasons:

(i) The maximum number of iteration is reached.

(ii) The maximum threshold error is achieved.

V. DATA SET EXPERIMENTS

In this section a number of experiments were conducted

with standard benchmark data sets of the University of

California Irvine (UCI) machine learning repository [13] to

test the performance of our methodology. Five classification

problems are used: Fisher’s iris data set, Seed data set, Breast

cancer Wisconsin, Wine data set and Thyroid data.

The table I chow the summary of the used data sets along

with the number of examples, number of attributes and class.

TABLE I

CHARACTERISTICS OF USED DATA SET

Database Examples Attributes Class

Iris 150 4 3

Wine 178 13 3

Cancer 699 9 2

Seed 210 7 3

Thyroid 7200 21 3

Breast Cancer Wisconsin: The Wisconsin Breast Cancer

Data set, consists of 699 cases, of which 458 are diagnosed as

benign and the remaining 241 are known to be malignant.

There are no missing attributes in the data set, and in this case,

we are interested in classifying the breast tumor as benign and

malignant. These two-class problems determine if a patient

suffers breast cancer based on several characteristics of the

nuclei’s cells. We are used the first 349 of the patterns as

training set (i.e, for optimizing the NN weights), and the

remaining 350 as test set.

Iris data set consists of three target classes: Iris Setosa, Iris

Virginica and Iris Versicolor, each species contains 50 data

samples. Each sample has four real-valued features: sepal

length, sepal width, petal length and petal width.

The wine data set consists of three target classes: the first

class corresponds to 59, the second corresponds to 71 and the

last one corresponds to 48 examples, each sample has 13 real-

valued features. These data are the results of a chemical

analysis of wines growing in the same region in Italy but

derived from three different cultivars. The analysis determined

the quantities of 13 constituents found in each of the three

types of wines. The database includes 178 instances.

Thyroid: This data set contains information related to

thyroid dysfunction. The problem is to determine whether a

patient has a normally functioning thyroid, an under-

functioning thyroid (hypothyroid) or an over-active thyroid

(hyperthyroid). There are 7200 cases in the data set, with 21

attributes used to determine to which of the three classes the

patient belongs. This dataset was obtained from [13].

VI. IMPLEMENTATIONS AND NUMERICAL RESULTS

To illustrate the advantages of the proposed approach, we

tested it on databases described above. For this task, after we

have obtained a good architecture by GA, we train the

obtained MLP by back-propagation algorithm. In this section

we present parameters setting, implementations procedures

and final results.

A. Parameters setting

We use the GA to solve the architecture optimization

problem. To this end, we have coded individual by one

chromosome. The individuals of the initial population are

generated randomly, vectors 𝑢𝑖 , 𝑣𝑘,𝑗
𝑖 take the value 0 or 1, and

the weights take random values in space [−0.5, 0.5]. After

creating the initial population, each individual is evaluated and

assigned a fitness value according to the fitness function.

The fitness suggested in our work is the following function:

 𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 = 𝑀 − 𝑐 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 23
We applied crossover and mutation operator, in this step,

new individuals called children are created by individuals

selected from the population called parents for more exploring

the research space of solution.
TABLE II

INITIALS AND OPTIMIZED ARCHITECTURES

Database
Initials Number

of hidden layers

Optimized

number of

hidden

layers

Neurons number

in each hidden

layer

Iris 4 3 4

Wine 4 2 13

Cancer 4 2 9

Seed 4 2 7

Thyroid 4 2 4

TABLE III

PARAMETERS USED IN OUR EXPERIMENTS

0.200 0.200 0.300

0.700 0.800 0.700

0.520 0.500 0.550

0.010 0.300 0.450

 0.395 0.397 0.340

0.253 0.342 0.651

𝑃𝑚 : Probability of mutation

𝑃𝑐 : Probability of crossover

α: Parameter for connection error

𝛽: Regularization parameter

𝜇: Learning rate

s: Threshold

We begin with the architecture of four hidden layers with an

appropriate hidden unit number according to data set wanted

to classify. To simplify, for each data, we chose the same

neurons number for all hidden layers. After the first

experiments we choose the architectures and parameters

summarized in the tables above.

B. Results for the MLP network

In experiments, for each topology, ten runs were performed

with 10 distinct random weights initializations, to compute the

classification rate, we measure the classification error

percentage for training and testing set by following these

formulas:

𝐶𝑙𝑎𝑠𝑠 % =
𝑀𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 × 100

𝐶𝑎𝑟𝑑(𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑒𝑡)

𝐶𝑙𝑎𝑠𝑠 % =
𝑀𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 × 100

𝐶𝑎𝑟𝑑(𝑇𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑒𝑡)

We use the same topology obtained by the GA above. Table

IV presents the classification error of the test set obtained in

the training of a fully connected MLP by using a gradient

descent with only learning rate. The last table column show

the resulting number of NN weights computed by (15).

TABLE IV
RESULTS FOR MLP NEURAL NETWORKS

Data Class(%)

Nb of Neurons Nb of

weights

(𝑁𝑚𝑎𝑥) Hidden layers
Nb in each

hidden layer

Iris 4 3 4 60

Wine 3,37 2 13 377

Seed 5,71 2 7 119

Cancer 2,28 2 9 180

Thyroid 3,53 2 4 112

Therefore, it becomes important to optimize the network

topologies, particularly the useful connections and the hidden

layers number in order to verify if the MLP networks can

obtains better performances when the architecture is defined

by our optimization methodology.

C. Optimization methodology results

After determining the total of optimal number of actives

connections and the optimal number of hidden layers, Table II,

according to data set used in the experiments we can initialize

the neural networks by value of weights obtained with GA and

we divided all data sets into two equal training and testing set,

We use the back-propagation algorithm for training the

network with a learning rate and a maximum number of 10000

iterations and we run our algorithm ten times for each data set,

we obtained the results presented in the Table V.

TABLE V

 DATA SETS CLASSIFICATION (PROPOSED METHOD)

Data set Class/Connec(%) Tr.D Tes.D

Iris
Class(%) 1,33 2,66

Connec(%) 50 50

Wine
Class(%) 1,12 2,25

Connec(%) 77.45 77,45

Seed
Class(%) 0 5,71

Connec(%) 77,31 77,31

Cancer
Class(%) 3,71 2

Connec(%) 78,34 78,34

Thyroid
Class(%) 1.92 3

Connec(%) 92,85 92,85

Connect (%): percentage of connections weights used in the network between

layers

Tr.D: Training Data

Tes.D: Testing Data

𝑃𝑐

𝑃𝑚

s

α

𝜇

𝛽

We note that, the obtained clustering results for the test

bases show that our method provides us the existence of the

unnecessary connections.

From Tables above we can see that the proposed method

gets a higher average classification accuracy rate where we

have used a few connections rather than the MLP alone. Just

for seed database we have obtained the same percentage of

misclassified data where we use the percentage of 77.31 %. In

the next section we will compare our obtained results with

other existing methods in the literature.

The performance analysis of the testing set by MLP, and

proposed method are also represented graphically in Fig. 3.

As noted from Tables IV and V, the proposed method gives

the best accuracy in testing phase with a percentage of used

connections lower than 100 %.

The Figure 4 illustrates the evolution of the mean square

error (MSE) as a function of iterations during the training

phase, we note that for each database the error decreases, then

stabilizes from a certain number of iterations which shows the

performance of our method.

Fig. 3 Performance comparison of MLP Network and Proposed method during testing phase.

Fig. 4 MSE evolution during training phase for 1000 iterations

D. Results comparison

The problem of architecture optimization and training exists

in the literature, but with different proposed models and

different training methodology. We describe some of them and

we compare it with our proposed method

 ACO+BP: This work demonstrates the hybrid

training method: Optimization of MLP architecture

and Training using Ant Colony Algorithm [11].

 The GATSA method was used by T.B. Ludermir and

al for one hidden layer MLP neural network [3-14].

 Our previous work where we deal with optimizing

neurons number and hidden layers in the network [1-

2]

 BP: This method allows training a fully connected

MLP with Back-propagation algorithm

The Table VI displays the average performance of each

investigated optimization technique. These results were

obtained for each technique by the optimization of the number

of connections and weights connections values of an MLP.

The parameters evaluated were the following: the

classification error (class) of the test sets and the percentage of

network connections. For all data sets, the optimized ANN

obtains a lower classification error than those obtained by

MLP without architecture optimization (Table V), and the

mean number of connections is lower than the maximum

number allowed.

TABLE VI

 RESULTS COMPARISON

 GATSA

+BP

ACO

+BP
BP Prev.M Prop.M

Iris
Class 5,25 2,66 4 2,66 2,66

Connec 68,15 100 100 100 50

Wine
Class - - 3,37 - 2,25

Connec - - 100 - 77,45

Cancer
Class 7,19 6 2,28 - 2

Connec 72,67 100 100 - 78,34

Seed
Class - 7,27 5,71 - 5,71

Connec - 100 100 - 77,31

Thyroid
Class 7,15 - 3,53 - 3

Connec 87.36 - 100 - 92,85

In most of the simulations, the best performance to optimize

the ANN architecture was obtained by the proposed method.

We notice that the Iris data set as the classification error

was around 2.66 is better than the previous method which

carries into consideration the optimization of neurons and

layers, effectively with a number of connections lower, we

were able to exceed the method proposed by T.B. Ludermir in

term of classification rate.

For the Cancer data set, the best classification error was of 2

(2.28 in a full connected MLP with back-propagation training)

and 7.19 with GATSA+BP method with a lower number of

connections, on the other hand the ACO+BP method was of

2.14 but in a full connected MLP, however we can conclude

that our proposed method for this data set is the good one. In

the Seed and Wine data set we can compare our proposed

method to the full connected MLP with back-propagation and

we conclude the effectiveness of our approach.

TABLE VII

RESULTS COMPARISON FOR IRIS DATA CLASSIFICATION

Method
Connec

(%)
It. M.T. M.TS

A.T

(%)

A.TS

(%)

EBP 100 500 3 2 96 97.3

EBP 100 800 2 1 97.3 98.6

RBF 100 85 4 4 94.6 94.6

RBF 100 111 4 2 96 97.3

SVM - 5000 3 5 94.6 93.3

Previous
100 100 3 2 96 97.3

Method

Proposed
50 647 1 2 98.7 97.3

Method

It: Number of iterations; M.T.: Misclassified for training set; M.TS.:

Misclassified for testing set; A.T.: Accuracy for training set; A.TS.: Accuracy

for testing set.

The results of the Table VII chow that, For Iris database,

the comparison of the average classification accuracy rate,

convergence iterations, and number of connections used of the

proposed method with other existing neural networks training

algorithms: Error Back-Propagation (EBP), Radial Basis

Function (RBF) neural networks and Support Vector Machine

(SVM) show that our approach present three qualities: few

connections, higher average classification accuracy rate and a

mean number of iterations.

VII. CONCLUSION

We presented an automatically model to optimize the

architecture of Multilayer Perceptron. This paper has chown

that the deletion of some unnecessary connections and layers

can be successfully used for the optimization of the MLP

network topology and weights. The Genetic Algorithm is

especially appropriate to obtain the optimal solution of the

non-linear model. This method has been tested to determine

the optimal number of hidden layers, actives connections

weights and the most favorable weights matrix after training.

Depending on the data sets: Iris, Cancer, Thyroid, Wine and

Seed, The obtained results demonstrate the good

generalization of Multilayer Perceptron architectures. To

conclude, the optimal architecture of artificial neural network,

especially when we optimize the connections number with

regularization, can play an important role for the classification

rate and the problem complexity. For our future work we can

use other meta-heuristics such as ACO, PSO to solve our

model and methodology of experiences plans to determine

efficiently some parameters.

REFERENCES

[1] M. Ettaouil and Y.Ghanou, Neural architectures optimization and

Genetic algorithms. Wseas Transactions On Computer, Issue 3, Volume

8, 2009, pp. 526-537.

[2] M. Ettaouil M.Lazaar and Y.Ghanou Architecture optimization model

for the multilayer perceptron and clustering. Journal of Theoretical and

Applied Information Technology 10 January 2013. Vol. 47 No.1.

[3] T.B Ludermir and al, Hybrid Optimization Algorithm for the Definition

of MLP Neural Network Architectures and Weights. Proceedings of the

Fifth International Conference on Hybrid Intelligent Systems (HIS’05)

0-7695-2457-5/05 20.00 2005 IEEE.

[4] JOSEPH RAJ V. Better Learning of Supervised Neural Networks Based

on Functional Graph – An Experimental Approach. WSEAS

TRANSACTIONS on COMPUTERS, Issue 8, Volume 7, August 2008.

[5] D. Wang, Fast Constructive-Coverting Algorithm for neural networks

and its implement in classification. Applied Soft Computing 8 (2008)

166-173.

[6] D. Wang, N.S. Chaudhari, A constructive unsupervised learning

algorithm for Boolean neural networks based on multi- level geometrical

expansion. Neurocomputing 57C (2004) 455-461.

[7] T. Kohonen, Self Organizing Maps. Springer, 3eme edition, 2001,

Neural Netw, vol. 17, no. 6, pp. 1452–1459, Nov. 2006.

[8] E. Egriogglu, C, Hakam Aladag, S. Gunay, A new model selection

straegy in artificiel neural networks. Applied Mathematics and

Computation (195) 591-597, 2008.

[9] Bishop CM (2005) Neural networks for pattern recognition. MIT Press,

Cambridge.

[10] Rosenblatt, The Perceptron: A Theory of Statistical Separability in

Cognitive Systems. Cornell Aeronautical Laboratory, Report No. VG-

1196-G-1, January, 1958.

[11] Y. Ghanou, G. Bencheikh, "Architecture Optimization and Training for

the Multilayer Perceptron using Ant System," IAENG International

Journal of Computer Science, vol. 43, no.1, pp 20-26, 2016

[12] D. Salamon, Data compression. Springer, 2004.

[13] UC Irvine Machine Learning Repository, 333 data sets for machine

learning are available at www.ics.uci.edu/mlearn/MLRepository.html

[14] T. B. Ludermir, A. Yamazaki, and C. Zanchettin, An optimization

methodology for neural network weights and architectures. IEEE

Tranas.

[15] J. F. Benders. (1962) Partitioning procedures for solving mixed-

variables programming problems. Numer. Math., 4:238.

[16] E. Egriogglu, C, Hakam Aladag, S. Gunay,(2008) A new model

selection straegy in artificiel neural networks. Applied Mathematics and

Computation (195), pp. 591-597.

[17] R.Fletcher and S. Leyffer. (1994) Solving Mixed Integer Programs by

Outer Approximation. Math. Program. 66, 327–349.

[18] O.K. Gupta and A. Ravindran. (1985) Branch and Bound Experiments in

Convex Nonlinear Integer Programming. Manage Sci., 31 (12), pp.

1533–1546.

[19] Quesada and I.E. Grossmann. (1992) An LP/NLP Based Branch and

Bound Algorithm for Convex MINLP Optimization Problems.

Computers Chem. Eng., 16 (10/11), pp. 937–947.

[20] K. Deep, K. Pratap Singh, M.L. Kansal, C. Mohan, (2009) A real coded

genetic algorithm for solving integer and mixed integer optimization

problems. Applied Mathematics and Computation, pp. 505–518.

[21] J. Holland, (1992) Genetic Algorithms, pour la science, n°179, Edition

of Scientific American, pp. 44-50.

[22] T.Westerlund and F. Petersson. (1995) A Cutting Plane Method for

Solving Convex MINLP Problems. Computers Chem. Eng., 19, pp.

131–136.

[23] F. Ahmad, N. A. Mat Isa, Z. Hussain, M. K. Osman, S. N. Sulaiman

(2014) A GA-based feature selection and parameter optimization of an

ANN in diagnosing breast cancer. Pattern Anal Applic DOI

10.1007/s10044-014-0375-9.

[24] H. Ramchoun, M A. Janati Idrissi, Y. Ghanou, M. Ettaouil ‘‘Multilayer

perceptron: Architecture optimization and training’’ International

Journal of Artificial Intelligence and Interactive Multimidia Vol.4 no 1

pp. 26-30, 2016.

[25] M. Carvalho and T.B. Ludermir Hybrid Training of Feed-Forward

Neural Networks with Particle Swarm Optimization in International

Conference on Neural Information Processing (ICONIP2006), Part II,

LNCS 4233, pp. 1061-1070, 2006.

[26] Mackay, D. J. C. (1992). A practical Bayesian framework for back-

propagation networks. Neural Computation, 4 (3), 448-472

[27] Neal, R. M. (1996). Bayesian learning for neural networks, volume 118

of lecture notes in statistics. Springer-Verlag.

[28] Krzysztof Socha, Christian Blum. An ant colony optimization

algorithm for continuous optimization: application to feed-forward

neural network training neural computation and application 16 235-247

2007

[29] M A. Janati Idrissi, H. Ramchoun, Y. Ghanou, M. Ettaouil. ‘‘Genetic

algorithm for neural network architecture optimization’’ IEEE

Proceeding of The 3rd International Conference of Logistics Operations

Management 2016, GOL 2016, 23-25 May 2016, Morocco.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7601068
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7601068

