
 

  
Abstract—Current advancements in Information 

Technologies (IT) lead organizations to pursue high business 
value and competitive advantages through the collection, 
storage, processing and analysis of huge amounts of 
heterogonous data, generated at ever increasing rates. Data-
driven organizations are often seen as environments wherein 
the analysis and understanding of products, people and 
transactions are of major relevance. Big Data, mainly defined 
as data with high volume, variety and velocity, creating severe 
limitations in traditional technologies, promises to leverage 
smarter insights based on challenging and more granular data 
sources, increasingly demanding emergent skills from data 
scientists to revolutionize business products, processes and 
services. The concept gained significant notoriety during the 
last years, since many business areas can benefit from this 
phenomenon, such as healthcare, public sector, retail, 
manufacturing and modern cities. Big Data as a research topic 
faces innumerous challenges, from the ambiguity and lack of 
common approaches to the need of significant organizational 
changes. Therefore, research on Big Data is relevant to assure 
that organizations have rigorously justified proofs that 
emergent techniques and technologies can help them making 
progress in data-driven business contexts. This work presents a 
state-of-the-art literature review in Big Data, including its 
current relevance, definition, techniques and technologies, 
while highlighting several research challenges in this field. 
Furthermore, this work also provides relevant rules for 
modelling databases in Big Data environments, which can be 
used to convert relational data models into column-oriented 
data models. 
 

Index Terms—Big Data, Challenges, Hadoop, Modelling, 
NoSQL, Review, State-of-the-art, Techniques, Technologies 

I. INTRODUCTION 
OWADAYS, we generate data at unprecedented rates, 
mainly due to the technological advancements we face, 

namely in cloud computing, internet, mobile devices and 
embedded sensors [1], [2]. Collecting, storing, processing 
and analyzing all this data becomes increasingly 
challenging. Organizations that are able to surpass these 
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challenges and extract business value from Big Data, will 
gain significant competitive advantages. They will be able to 
better analyze and understand their products, people and 
transactions. Big Data is frequently seen as a buzzword for 
smarter and more insightful data analyses, but one can argue 
that it is more than that, it is about new challenging and 
more granular data sources, the use of advanced analytics to 
create or improve products, processes and services, as well 
as responding rapidly to business changes [3]. During the 
last years, there was an increased interest in Big Data [4], 
and it is sometimes highlighted as fundamental for 
productivity growth, innovation and customer relationship, 
benefiting business areas like healthcare, public sector, 
retail, manufacturing and modern cities, for example [5], 
[6].  

The definition of Big Data is ambiguous, and it is difficult 
to quantify the level at which data becomes big [7]. 
Therefore, Big Data is frequently defined by its 
characteristics (e.g., volume, variety, velocity) and the 
consequent technological limitations it imposes in 
organizations, i.e., data is “too big, too fast, or too hard for 
existing tools to process” [8]. One may argue that if Big 
Data is data that creates technological limitations, then it 
always existed and it always will. Currently, a paradigm 
shift is happening in the way we collect, store, process and 
analyze data. Organizations need to be aware of these 
technological trends and strategies that may improve 
business value. Consequently, Big Data, as a research topic, 
is of major relevance to assure that organizations have 
rigorously justified proofs that emergent techniques and 
technologies can help them making progress in data-driven 
business environments. 

Big Data brings innumerous challenges mainly divided 
into four categories: general dilemmas, such as the lack of 
consensus and rigor in the definition, models, architectures 
or benchmarks, for example; challenges related to the Big 
Data life cycle, from collection to analysis; security, privacy 
and monitoring issues; and, finally, organizational change, 
such as new required skills (e.g., data scientists) or changes 
in workflows to accommodate the data-driven mindset.  

Working with Big Data implies knowledge from multiple 
disciplines and the term data science is frequently 
highlighted to designate the area responsible for dealing 
with Big Data throughout the stages of its life cycle, relying 
on the scientific method (defining hypothesis and validating 
conclusions) and on knowledge related to areas like machine 
learning, programming and databases, for example. 
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Therefore, in this document, one will refer to data science as 
the act of extracting patterns and trends from data, through 
certain data-related techniques, regardless of its 
characteristics or challenges. These insights can then be 
communicated or used to create data artifacts or to optimize 
existing ones, improving business management and 
performance through data-driven decision-making [9]. 

This paper presents a state-of-the-art literature review in 
Big Data, summarizing concepts, techniques, technologies 
and, more relevant, highlighting current research challenges. 
Among current literature, there are already some reviews on 
this topic [6], [10]–[13]. However, the one presented in this 
paper dedicates significant attention to the definition of Big 
Data and discusses relevant and innovative Big Data 
techniques, technologies and research challenges not 
synthesized in previous literature review papers. This work 
helps researchers and practitioners in gathering more 
relevant information for future initiatives. Besides, this work 
presents a set of rules to model databases in Big Data 
contexts, converting a relational data model into a column-
oriented data model. 

This paper is structured as follows: section II aims to 
define Big Data; section III highlights the main techniques 
and technologies to design and implement Big Data 
solutions; section IV describes the automatic procedure to 
convert relational databases into column-oriented databases 
for operational Big Data contexts; section V presents Big 
Data research challenges; section VI concludes with some 
remarks about the undertaken work and some prospects for 
future work. 

II. WHAT ACTUALLY MEANS BIG DATA? 
First of all, there is no widely accepted threshold for 

which data becomes big. In [7], the authors attempt to 
clearly define Big Data by presenting several definitions 
among the community, highlighting that Big Data is 
predominantly and “anecdotally” associated with data 
storage and data analysis, terms dating back to distant times. 
The authors also argue that the adjective “big” implies 
significance, complexity and challenge, but also makes 
difficult to quantitatively define Big Data. The work of [7] 
presents several definitions, some defining Big Data by its 
characteristics, others based on the augmentation of 
traditional data with more unstructured data sources, and 
others trying to quantify it. They also present definitions that 
rely on the inadequacy of traditional technologies to deal 
with this new type of data, presenting several perspectives 
from the industry, including Gartner, Oracle, Intel, 
Microsoft and IBM, for example. In order to conclude about 
the similarity among definitions, the authors state that all 
definitions include at least one of the following aspects: 
size; complexity; and techniques/technologies to process 
large and complex datasets. 

The work of [1] attempts to provide a definition: “Big 
Data is data that exceeds the processing capacity of 
conventional database systems. The data is too big, moves 
too fast, or does not fit the strictures of your database 
architectures. To gain value from this data, you must choose 
an alternative way to process it”. In [6], the authors 
corroborate this definition by focusing on the fact that 
traditional software and hardware cannot recognize, collect, 

manage or process this new type of data in reasonable time. 
The work of [14] also agrees with these perspectives, 
defining Big Data by its complexity, speed and several 
degrees of ambiguity, whose processing is inadequate for 
traditional methods, algorithms and technologies. Although 
in [7] the authors are slightly critical both regarding the lack 
of quantification in the definition of Big Data and the use of 
data storage and analysis in several attempts to define it, in 
reality, they conclude by stating that the concept of Big Data 
includes storage and analysis of large and complex datasets, 
using a set of novel techniques. The origin of the concept is 
relatively unknown and its definition evolved rapidly, thus 
raising uncertainty. In [15], the authors state that size is the 
characteristic that first stands out, but other characteristics 
have become usual to define Big Data. In 2001, Doug Laney 
from Gartner presented the 3Vs model to characterize Big 
Data by its volume, variety and velocity [16]. IBM and 
Microsoft based their definitions of Big Data on this model 
for at least more 10 years [6]. 

According to [15], volume is a characteristic that 
indicates the magnitude of data, mentioning that it is 
frequently reported between Terabytes and Petabytes, citing 
the survey of [17], in which just over half of the respondents 
consider datasets bigger than 1TB to be Big Data. However, 
the authors discuss that data size is relative and varies 
according to the periodicity and the type of data. It is 
impractical to define a specific threshold for Big Data 
volume, since different types of data require different 
technologies to deal with it (e.g., tabular data and video 
data), as [15] exemplify. The volume in the 3Vs model 
characterizes the amount of data that is continuously 
generated [14], and the main cause for the ever increasing 
volume is the fact that we currently store all our interactions 
with the majority of services available in our world [18]. 

Regarding variety, Big Data can be classified as 
structured (e.g., transactional data, spreadsheets, relational 
databases), semi-structured (e.g., web server logs and 
Extensible Markup Language - XML) and unstructured 
(e.g., social media posts, audio, video, images) [15], [19]. 
Traditional technologies can present significant difficulties 
to store and process Big Data, such as content from web 
pages, click-stream data, search indexes, social media posts, 
emails, documents and sensor data. Most of this data does 
not fit well in traditional databases and there must be a 
paradigm shift in the way organizations perform analyses to 
accommodate raw structured, semi-structured and 
unstructured data, in order to take advantage of the value in 
Big Data [18]. 

The final characteristic in the 3Vs model is velocity, 
referring either to the rate at which data is generated or to 
the speed of analysis and decision support [15]. Data can be 
generated at different rates, ranging from batch to real-time 
(streaming) [18], [19]. It is relevant to apply the definition 
of velocity to data in motion, instead of applying it to the 
rate at which data is collected, stored and retrieved from the 
storage system. Continuous data streams can create 
competitive advantages in contexts where the identification 
of trends must occur in short periods of time, as in financial 
markets, for example [18]. 

Over time, two additional characteristics emerged: value 
and veracity. Value represents the expected results of 



 

processing and analyzing Big Data [19], which usually has 
low value in its raw state, as this is mainly extracted with an 
adequate analysis [15]. According to [19], value can be 
obtained through the integration of different data types to 
improve business and gain competitive advantages. On the 
other hand, veracity draws attention to possible imprecise 
data, since sometimes the analysis is based on datasets with 
several degrees of precision, authenticity and 
trustworthiness [19]. In [15], the authors corroborate this 
definition, highlighting the unreliability of certain data 
sources (e.g., customer sentiments extracted from social 
media), although recognizing that they can be valuable when 
adequate techniques and technologies are used.  

Other characteristics, not so recognized according to the 
literature, are the variability and complexity, introduced by 
SAS [15]. Variability is related to the different rates at 
which data flows, according to different peaks and 
inconsistent data velocity. Complexity highlights the 
challenge of dealing with multiple data sources, namely to 
connect, match, clean and transform them. Besides these, 
the work of [14] also proposes three other characteristics: 
ambiguity, related to the lack of appropriate metadata, 
resulting from the combination of volume and variety; 
viscosity, when the volume and velocity of data causes drag 
in data flows; virality, which measures the time of data 
propagation among peers in a network. Fig. 1 presents a 
summary of all these characteristics identified in the 
literature. 

 
Fig. 1. Main Big Data characteristics identified in the literature. 

 
At this point, it seems that trying to quantify any of these 

characteristics becomes an impossible task. Big Data 
remains as an abstract concept [6]. One must accept that it 
can be a combination of several characteristics, or a strong 
presence of only one, but it must be recognized as data that 
make changes in the way we think about techniques and 
technologies, if they are inadequate to deal with it. It may be 
a database or a Data Warehouse that cannot scale 
accordingly on a shared-everything architecture [14], or data 
mining tasks that cannot be finished without parallel 
computing. Again, data is “too big, too fast, or too hard for 
existing tools to process” [8]. Defining Big Data by the 
inadequacy of traditional technologies is relatively 
dangerous, since advancements are constantly being made 

(e.g. quantum computers), and such definition implies that 
Big Data always existed and will continue to exist [7]. 

The current definitions of Big Data are relatively 
dependent on the techniques and technologies to collect, 
store, process and analyze it. These will evolve over time 
and we need to learn to live with it. It will always be a 
matter of analyzing new technological trends that may 
benefit business and reconsider new strategies related to 
data. Currently, a new paradigm shift is happening. It does 
not need to be a change in all organizations, but scientific 
progress related to Big Data will continue to exist, in order 
to assure that organizations have rigorously justified proofs 
that emerging techniques and technologies can help them 
making progress in data-driven business. 

III. TECHNIQUES AND TECHNOLOGIES FOR BIG DATA 
This section presents techniques and technologies 

identified in the literature, which are adequate to support the 
design and implementation of Big Data solutions. 

A. Designing Big Data Solutions 
According to [10], citing [20] and [21], a Big Data 

solution generally contemplates the following principles: 
present high level architectures, addressing the distinct role 
of specific technologies; include a variety of data science 
tasks, such as data mining, statistical analysis, machine 
learning, real-time visualization, and in-memory analysis; 
combine the benefits of different tools for different tasks; do 
not move data, bring analysis closer to data; distribute 
processing and storage across different nodes in a cluster; 
and assure coordination between data and processing nodes 
to improve scalability, efficiency and fault-tolerance. There 
are several considerations throughout the life cycle of Big 
Data, significantly different from traditional environments. 
Dealing with Big Data requires new approaches, which are 
discussed in this subsection. 

1) The Big Data Life Cycle 
According to a survey including several analysts at 

Microsoft [22], Big Data analytics tasks can be grouped into 
five steps: acquire data; choose the architecture based on 
cost and performance; shape the data according to the 
architecture; write and edit code; reflect and iterate on the 
results. Processing Big Data for analysis typically differs 
from processing traditional transactional data. As [14] 
claims, in traditional environments, data is explored, a 
model is designed and a database structure is created. 
However, in Big Data environments, data is first collected 
and loaded to a certain storage system, a metadata layer is 
applied and then a structure is created. There is no need to 
start by transforming data to properly fit a relational model, 
as transformations only occur after having everything stored 
in efficient storage systems. This represents a departure 
from a traditional Extraction, Transformation and Loading 
(ETL) approach to an Extraction, Loading and 
Transformation (ELT) approach. Fig. 2 presents the Big 
Data processing flow according to [14].  

The Big Data processing flow starts by gathering data 
from multiple sources, such as Online Transaction 
Processing (OLTP) systems, multiple files, sensors and the 
Web. This data is then stored in a landing zone capable of 
handling the volume, variety and velocity of data, which is 



 

typically a distributed file system. Data transformations 
must occur on data stored in the landing zone, fulfilling the 
requirements of efficiency and scalability, and the 
subsequent results can then be integrated into analytical 
tasks, operational reporting, databases, or raw data extracts. 
In this context, [23] also mention relevant best practices 
regarding the Big Data life cycle: 

• Plan a “data highway” with multiple caches - raw 
source (immediate), real-time cache (seconds), 
business activity cache (minutes), top line cache 
(24 hours) and data warehouse or long time series 
cache (daily, periodic and annual). Data will flow 
through these different caches, according to the 
business needs; 

• Use Big Data analytics to enrich data before 
moving it to the next cache. For example, produce 
numeric sentiments from mining unstructured 
tweets. The opposite is also true, so that earlier 
caches can benefit from the less granular ones. In 
[23], the authors claim that the performance 
implications of this enrichment should be further 
evaluated, since data should be moved from the 
raw source to the real-time cache according to the 
established time thresholds. Also, we can store 
multiple data sources, make them available for 
querying, manipulate them, use them to serve 
business and then archive them; 

• Adjust the data quality needs according to the 
latency requirements, i.e., complex data quality 
jobs take more time to complete than simpler ones 
focusing individual values. However, [23] also 
suggest that one should add value to data as soon as 
possible, using data integration tasks and including 
results from data mining, for example. There must 
be a balance between latency and business value; 

• Big Data streaming analytics can be relevant to 
certain data flows, analyzing data and taking 
actions as it flows through continuous data streams 
[24]. In-database analytics can also be a relevant 
capability to exploit, as [23] highlight. 

 

 
Fig. 2. Big Data processing flow. Redrawn based on [14]. 

 
In [25], these perspectives are complemented, since the 

authors state that several analytical mechanisms should be 
included in Big Data solutions, ranging from statistical 
analysis to data mining and visualization. Moreover, 
processed data and new insights can be made available using 
open and recognized standards, interfaces and web services. 
Regarding Big Data analytics, there is a vast set of available 

techniques that can be used to extract value from data. Data 
mining techniques, such as clustering, association rules, 
classification and regression are still present in Big Data 
environments [5], now with the challenge of distributing 
them to perform at scale [10], [13]. Achieving scalability in 
these techniques is what makes Big Data analytics different 
from traditional data analytics. The range of analytical 
mechanisms and the ambiguous terms to define them may 
lead to a completely new buzzword: Data Science. 
Techniques such as sentiment analysis, time series 
analysis/forecasting, spatial analysis, optimization, 
visualization or unstructured analytics (e.g., text, audio, 
video) [15], can all be present in the knowledge base of a 
Data Scientist [9]. These techniques are relevant in the Big 
Data life cycle to extract value from it. 

2) Architectural and Infrastructural Requirements 
The different steps to process Big Data, presented above, 

must be performed in Big Data environments, according to 
several requirements identified by [14]: 

• Absence of fixed data models, to adequately 
accommodate the complexity and size of data, 
regardless of its characteristics; 

• Scalable and performant systems to collect and 
process data either in real-time or in batches; 

• The architecture should support data partitioning 
due to the volume of data; 

• Data transformations use scalable, efficient and 
fault-tolerant mechanisms. The results should be 
stored in adequate systems, such as distributed file 
systems or non-relational database systems. Data 
reads should be efficient; 

• Data should be replicated and shared across 
multiple nodes, to support fault-tolerance, multistep 
processing and multipartitioning.  

The work of [23] corroborates most of the requirements 
from [14], and add the following capabilities expected from 
Big Data environments: possibility to implement User-
Defined Functions (UDFs) in several programming 
languages and to execute them over huge datasets within 
minutes; load and integrate data at high rates; execute 
queries on streaming data; schedule tasks on large clusters; 
and support mixed workloads, including several ad hoc 
queries or strategic analysis from multiple users, while 
loading data in batches or in a streaming fashion. 

Big Data solutions should be supported by an adequate 
infrastructure. Regarding this requirement, organizations can 
currently rely on cloud computing, either by using private, 
public or hybrid clouds [26], in order to provide the 
underlying resources for massive computations [27]. Cloud 
models, such as Infrastructure as a Service (IaaS), become 
relevant to accomplish several requirements in Big Data 
infrastructures, including scalability, commodity hardware, 
elasticity, fault-tolerance, self-manageability, high 
throughput, fast I/O and a high degree of parallelism [14], 
[28]. Commodity hardware plays a relevant role in Big Data 
infrastructures, namely due to the lower costs in building 
shared-nothing architectures. Google’s own papers about the 
Google File System (GFS) [29], MapReduce [30] and 
Bigtable [31], served as inspiration for most of these 
requirements and for several Big Data technologies that will 
be presented later. 



 

In [23], the authors argue that a traditional Relational 
Database Management System (RDBMS) is not suitable for 
a wide range of Big Data use cases, due to the requirements 
identified above (e.g., search ranking, sensors, social 
customer relationship management, document similarity 
testing, loan risk analysis). The work of [14] also claims that 
DWs based on traditional RDBMSs have several design 
limitations that imply architectural and infrastructural 
changes to process Big Data, since they cannot be 
distributed as efficiently as non-relational systems due to 
Atomicity, Consistency, Isolation, Durability (ACID) 
compliance rules and due to the fact that data partitioning in 
these systems often does not necessarily mean more 
scalability or workload reduction. Furthermore, the author 
mentions the fact that in many of these systems the 
processor and memory are often underused, and the way 
queries are designed typically increases the workload, such 
as executing star schema queries on a third normal form 
database model, generating significant volume of I/O and 
inadequate network throughput.  

The work of [23] presents the capabilities that existing 
RDBMSs vendors are including to extend their solutions for 
Big Data environments. The authors compare these 
extended versions with the most commonly recognized open 
source implementation of MapReduce, namely Apache 
Hadoop. The authors highlight that Hadoop is open source, 
less expensive, has a more flexible storage (unstructured 
data), is adequate for massive scans and has deep support for 
complex structures. However, the authors claim that Hadoop 
only has indirect support for relational semantics and little 
or no support for transaction processing, when compared to 
these extended RDBMSs. 

3) Common Architectures for Big Data Solutions 
There are two Big Data architectures highlighted in the 

literature, namely the Lambda Architecture (Fig. 3) and the 
National Institute of Standards and Technology (NIST) Big 
Data Reference Architecture (Fig. 4). 

The main idea behind the Lambda Architecture [20] is to 
think of a Big Data system as a series of layers that satisfy 
particular needs. The architecture is divided into three main 
components: batch, serving and speed layers. In the batch 
layer, a master dataset stores all the data. Since it is 
unthinkable to read a dataset with possible petabytes of data 
every time a query is executed, the architecture contains 
batch views in the serving layer, which are precomputations 
of the master dataset. Instead of executing the query every 
time and scan the entire master dataset, the results are 
returned from batch views with indexing support, thus 
random reads are possible. Therefore, the batch layer is not 
only responsible for storing an immutable, constantly 
growing master dataset, but also for computing functions on 
the same. However, with only these two layers, batch views 
would be quickly outdated, since new data takes time to 
propagate from the batch layer into the serving layer. This 
does not meet the requirements of low latency (real-time) 
environments. Consequently, the authors propose the speed 
layer, which aims to compute functions on data in real-time. 

The NIST Big Data Public Working Group, namely the 
Reference Architecture Subgroup, has been working on an 
open reference architecture for Big Data [32], in order to 
create a tool to facilitate the discussion of requirements, 

design structures and operations inherent in Big Data 
environments. According to the authors, the NIST Big Data 
Reference Architecture is not a system architecture, but 
rather a common reference, which is not coupled with 
specific vendors, services, implementations or any specific 
solutions. The architecture includes several components, as 
can be seen in Fig. 4, each with specific tasks in a Big Data 
solution, being extensively described in [32]. 

 

 
Fig. 3. The Lambda Architecture. Redrawn based on [20]. 

 

 
Fig. 4. The NIST Big Data Reference Architecture. Redrawn based on [32]. 
 

B. Hadoop and Related Projects 
As already mentioned, Hadoop is an open source Apache 

project based on GFS and MapReduce [33]. Hadoop 
contains two main components: the Hadoop Distributed File 
System (HDFS) and a distributed processing framework 
named Hadoop MapReduce. Hadoop can store and process 
vast amounts of data by distributing storage and processing 
across a scalable cluster of multiple nodes built with 
commodity hardware. In HDFS, files are divided into blocks 
distributed and replicated across nodes. HDFS assures many 
requirements identified above, such as fault-tolerance and 
availability, for example. Hadoop MapReduce is a 
programming model and an execution engine for processing 
large datasets stored in HDFS, based on the divide and 
conquer method, thus dividing a complex problem into 
many simpler problems and then combining each simpler 
solution into an overall solution to the main problem. These 
are called the Map and Reduce steps [10]. Regarding HDFS, 
there are two types of nodes in the cluster: a NameNode, 
which is responsible for storing metadata about blocks and 
nodes; and a DataNode, which stores data blocks [33]. 
Regarding Hadoop MapReduce, there are also two types of 
nodes, a JobTracker that schedules jobs and distributes tasks 
across slaves called TaskTrackers [10].  

Over the years Hadoop has evolved considerably, 
including the transition from MapReduce to YARN (or 



 

MapReduce 2.0) [27]. YARN rethinks the JobTracker and 
TaskTracker components, replacing them with a 
ResourceManager, a NodeManager and an 
ApplicationMaster, to solve some problems in Hadoop 
MapReduce, such as scalability on large clusters or support 
for alternative programming paradigms [14]. Apart from 
that, Hadoop has several related projects, as Fig. 5 
demonstrates, highlighting their main features [34]. 

 

 
Fig. 5. The rich ecosystem of Apache Hadoop. 

 
Other related projects not present in Fig. 5 may include: 

Flume, a service to collect, aggregate and move large 
amounts of data; Oozie, a workflow and coordination 
system for jobs in Hadoop; HCatalog, a metadata layer for 
data stored in Hadoop, built on top of the Hive metastore; 
Sqoop, a connector to integrate data from other existing 
platforms, such as the Data Warehouse, metadata engines, 
enterprise systems and transactional systems [14]. There are 
also more projects that can interact with Hadoop’s interfaces 
or be co-located with it, such as projects for real-time stream 
processing or interactive ad hoc analysis. Since real-time 
data processing is becoming increasingly relevant to 
organizations [19], Storm is a real-time computation system 
to process streams with high throughput and low latency. 
Kafka, on the other hand, is a messaging/queuing system to 
send and consume messages between processes, in an 
asynchronous manner and with fault-tolerance [20]. 
Interactive and low latency ad hoc analysis over large 
datasets is also a relevant scenario in organizations. 
Occasionally, users do not know queries in advance and 
need to execute ad hoc queries within seconds, even at scale. 
Apache Drill is a distributed system for interactive ad hoc 
analysis of large datasets. It is a query mechanism that can 
interact with several data sources, including HDFS and 
distributed databases [19]. 

Still related to Hadoop, there are several security projects. 
In [35], five pillars for security in Hadoop are established: 
administration, authentication, authorization, audit and data 
protection. Kerberos, Apache Knox and Apache Ranger are 
highlighted as projects related to these five pillars, in order 
to assure a secure Hadoop environment. Kerberos can be 
used to authenticate users and resources within Hadoop 

clusters. Apache Knox complements Kerberos, by blocking 
services at the perimeter of the cluster and hiding the 
cluster’s access points from end users, thus adding another 
layer of protection for perimeter security. Finally, Ranger 
provides a centralized platform for policy administration, 
authorization, audit and data protection (e.g., encrypted files 
in HDFS). 

C. Distributed Databases 
Database technology has evolved significantly towards 

handling datasets at different scales and supporting several 
applications that may have high needs for random access to 
data [6], [27]. Not only SQL (NoSQL) databases have 
become popular mainly due to the lack of scalability in 
RDBMSs, since this new type of databases provides 
mechanisms to store and retrieve large volumes of 
distributed data [27]. The relevant factors that motivated the 
appearance of NoSQL databases were the strictness of the 
relational model and the consequent inadequacy to store Big 
Data. NoSQL databases are seen as distributed, scalable, 
elastic and fault-tolerant storage systems. They satisfy an 
application’s need for high availability even when nodes 
fail, appropriately replicating data across multiple machines 
[24]. Relational databases will certainly evolve and some 
organizations (e.g., Facebook) are using mixed database 
architectures [6]. Combining the benefits of both storage 
systems is a current research trend [28]. A recent term is 
emerging, NewSQL, which combines the relational data 
model with the benefits of NoSQL systems, such as 
scalability [36]. According to [37], NoSQL and NewSQL 
databases are mainly designed to scale OLTP-style 
workloads over several nodes, fulfilling the requirements of 
environments with millions of simple operations (e.g., key 
lookups, reads/writes of one record or a small number of 
records). 

This phenomenon changed the way databases are 
currently designed. While a RDBMS complies to ACID 
properties [14], a NoSQL database, as a distributed system, 
typically follows the considerations of the Consistency, 
Availability, Partition tolerance (CAP) theorem: “any 
networked shared-data system can have at most two of three 
desirable properties” [38]. These properties include: 
consistency, equivalent to a single up-to-date copy of the 
data; high availability of that data; and tolerance to network 
partitions. As [38] claims, CAP served its purpose to 
leverage the design of a wider range of systems and 
tradeoffs, in which the NoSQL movement is a clear 
example. The fact that one has to choose 2 of the 3 
properties was always misleading, sates the author, since it 
tends to simplify the “tensions among properties”. These 
properties are more continuous than binary and therefore 
they can have many levels. CAP only prohibits perfect 
availability and perfect consistency in the presence of 
network partitions.  

There are several NoSQL databases, so enumerating and 
evaluating all of them becomes a nearly impossible task. In 
[39], it is stated that over 120 NoSQL databases were known 
in 2011. Taking this into consideration, NoSQL databases 
are typically divided into four data models, which are 
described as follows along with several examples: 



 

• Key-value model - values are typically stored in 
key-value pairs. The key uniquely identifies a value 
of an arbitrary type. These data models are known 
for being schema-free, but may lack the capability 
to adequately represent relations or structures, since 
queries and indexing are assured through the key 
[36]. Every key is unique and queries are tightly 
coupled with keys [6]. Examples: Redis; 
Memcached; BerkeleyDB; Voldemort; Riak; 
Dynamo;  

• Column-oriented model - a columnar data model 
can be seen as an extension of the key-value model, 
adding columns and column families, and 
providing more powerful indexing and querying 
due to this addition [14]. This design was largely 
inspired by Bigtable [6], [36], which does not mean 
that all column-oriented databases are fully 
inspired by it (e.g., Cassandra adopts design 
aspects from both Dynamo and Bigtable). 
Examples: Bigtable; HBase; Cassandra; 
Hypertable. 

• Document model - suitable for representing data in 
document format. JavaScript Object Notation 
(JSON) is here frequently used. It can contain 
complex structures, such as nested objects, and also 
typically includes secondary indexes, thus 
providing more query flexibility than the key-value 
data model [36]. Examples: MongoDB; CouchDB; 
Couchbase. 

• Graph model - based on the graph theory, in which 
objects can be represented as nodes, and 
relationships between them represented as edges 
[14]. Graphs are specialized in handling 
interconnected data with several relationships [36]. 
Examples: Neo4j; InfiniteGraph; GraphDB; 
AllegroGraph; HyperGraphDB. 

Regarding NewSQL, as the name implies, these databases 
are based on the relational model [36], offering either a pure 
relational view of the data (e.g., VoltDB, Clustrix, NuoDB, 
MySQL Cluster, ScaleBase, ScaleDB) or similar (e.g., 
Google Spanner). According to [36], sometimes, 
interactions with these databases occur in terms of tables 
and relations, but they might use different internal 
representations, which is the case for NuoDB. Different 
NewSQL databases support different SQL compatibility, 
such as unsupported clauses or other incompatibilities with 
the standard. Similar to NoSQL, NewSQL databases can 
scale accordingly by adding nodes to the cluster. 

D. Other Technologies for Big Data Analytics 
By describing Hadoop and its related projects, several 

technologies for Big Data analytics were already inherently 
identified: streaming analytics (e.g., Spark Streaming and 
Storm); data mining and machine learning (e.g., Spark 
MLlib and Mahout); Data Warehousing (e.g., Hive); 
interactive ad hoc analysis (e.g., Drill); data flow (e.g., Pig). 
However, no data visualization tools were presented yet. 

Regarding Big Data visualization, several mashup tools 
can be highlighted, such as Datameer, FICO Big Data 
Analyzer (former Karmasphere), Tableau and TIBCO 
Spotfire [14]. These mashup tools can integrate data from 

multiple sources into a single picture. As [14] highlights, 
there is also the possibility to visualize Big Data with 
statistical tools, like R or SAS, for example, taking 
advantage of their other capabilities. Other tools are also 
briefly mentioned in the literature, such as Jaspersoft 
Business Intelligence (BI) Suite and Pentaho Business 
Analytics [10]. Certainly, many other visualization tools 
exist and may be adequate for Big Data visualization, such 
as Excel and its Power View extension [40], JavaScript 
libraries or Python’s plot capabilities [41].  

Besides data visualization, there are other tools to extract, 
load, transform and integrate data before analytical tasks. 
An example of such tool is Talend Open Studio for Big Data 
[10]. Apart from the afore mentioned tools related to 
Hadoop for data mining and machine learning, other 
alternatives identified in the literature may include: 
MADLib and EMC Greenplum [25]; R, MOA, WEKA and 
Vowpal Wabbit [13]; data mining tools from SAS or IBM 
[14]; Rapidminer; and KNIME [6]. Some of these tools, like 
R and WEKA, for example, are not scalable by default and 
they are also used in traditional data mining and machine 
learning environments, where processing large training sets 
is not a significant concern. Over time, these tools were 
extended with several connectors for scalable Big Data 
stores and packages for distributed processing (e.g., SparkR, 
RHadoop, RHive, distributedWekaHadoop), but by default, 
without these extensions, they are better suited for small to 
moderate datasets. This does not mean that they are not 
useful in Big Data mining, quite the opposite, but the 
volume of data that serves as training and testing sets should 
be considered (preprocessing large datasets can be useful in 
these cases). The same principle applies to other algorithms 
implemented in any other language like Python or Java, for 
example. It must be remembered that one of main 
challenges regarding the Big Data life cycle is to scale the 
algorithms to extract value from data [27]. 

IV. DATA MODELING 
As already highlighted in this paper, in a Big Data 

context, the ability to collect, process and store data 
increases with the use of NoSQL databases. These databases 
are characterized by being schema-free, allowing the storage 
of huge amounts of data without many concerns about its 
structure. These concerns usually emerge later on a schema-
on-read approach, in which data is parsed, formatted and 
cleaned at runtime. Although having fewer concerns at the 
beginning of the collection phase, this adds several tasks 
latter when there is the need to develop specific data 
management applications. At some point, these schema-free 
repositories need to be transformed into some structured 
data model that allows data manipulation and analysis by the 
users. Our previous work described in [42] introduced some 
modeling concepts in a Big Data environment, proposing a 
set of rules for the automatic transformation of a relational 
data model into an HBase columnar format and, also, 
proposing transformation rules for identifying Hive tables.  

Although in [42] the identification of several data 
structures suited to be implemented in HBase was achieved, 
not all the descriptive tables needed to support organizations 
in their day-by-day activities were identified. In this paper, 
we enhance and extend the set of rules needed to transform 



 

an operational data model, based in a relational schema, into 
an HBase model, identifying all the needed descriptive and 
analytical tables. The descriptive tables give support to 
operational activities, while the analytical tables give 
support to operational and analytical activities in the 
organization, namely supporting the decision-making 
process. These analytical tables are intended to answer 
queries that manipulate hundreds or thousands of records, 
and not millions or billions, as in this case the 
implementation of a Big Data Warehouse in Hive would be 
more appropriate [43]. 

For the transformation of a relational data model into a 
columnar data model, namely for HBase, it is necessary to 
consider that a column-oriented database is constituted by a 
set of tables integrating rows, but organized by groups of 
columns usually named column-families. This organization 
makes a vertical partitioning of the data. Each column-
family may contain a variable number of columns and 
allows the lack of some columns between different rows of 
the same table [44].  

Given this context, the following definitions formalize the 
concept of a relational data model and a columnar data 
model. 
Definition 1. A Relational Data Model, 𝑅𝐷𝑀 = (𝑇, 𝐴), 
includes a set of tables 𝑇 = {𝑇+, 𝑇,, … , 𝑇.} and the 
corresponding attributes, 𝐴 = {𝐴+, 𝐴,, … , 𝐴.}, where 𝐴+ is 
the set of attributes for table 𝑇+, 𝐴+ = {𝐴++, 𝐴,+, … , 𝐴0+}. 
Tables in a data schema are linked to each other through 
relationships, being cardinalities of type	1: 𝑛, 𝑚: 𝑛 or	1: 1, 
with the optional 0 when needed. Each table includes an 
attribute that represents the primary key of the table (PK) 
and may include one or more attributes representing foreign 
keys (FK), linking this table to other tables in the data 
schema. 
Definition 2. A Columnar Data Model, 𝐶𝐷𝑀 = (𝑇, 𝐶𝐹), 
includes a set of tables 𝑇 = {𝑇+, 𝑇,, … , 𝑇.}. Each table 
integrates a key and a set of column-families, as 𝑇9 =
𝑘𝑒𝑦9, 𝐶𝐹+, … , 𝐶𝐹= . Each column-family integrates a set 

of columns representing the atomic values to be stored, 
𝐶𝐹> = 𝐶>+, … , 𝐶>0 . 
Considering these definitions, the following rules can be 
adopted for the transformation of a relational data model 
into a columnar data model. This set of rules can also be 
used to make the necessary transformations for other 
NoSQL databases, based in the columnar format, like 
Cassandra, as long as the necessary adaptations are 
performed, as the organization of the columns, or the way 
the key attribute of each table is defined, may be slightly 
different. 
Rule CDM.1. Identification of Column-Families. The 
identification of column-families of a CDM follows a two-
step approach. 
Rule CDM.1.1. Identification of Descriptive Column-
Families. All tables that do not include any FK in the RDM 
correspond to descriptive column-families in the CDM, as 
these tables are core tables storing the data associated with 
the main entities of the application domain, like Students, 
Teachers, Facilities, among others. These are the core 
descriptive column-families that may also help identifying 
the complementary descriptive column-families. These 

complementary column-families are derived from tables that 
are linked to core tables through a 1: 𝑛 relationship, from the 
core table to the complementary table, and are tables usually 
split in the normalization process. Usually, these tables are 
used to complement the description of the core entities. As 
an example, in the relationship a Department has many 
Teachers, Department is the core table and Teachers the 
complementary table. These complementary tables are quite 
static over time, meaning that the set of Teachers of a 
Department is not changing daily, for instance. This 
represents a type of relationship different from a Student has 
many Evaluations, for example, as with time a Student will 
be enrolled in many evaluations. Rule CDM.1.1 does not 
handle this last type of relationship, in which the entities are 
used to feed business processes and not to describe the main 
entities of the application domain. After the identification of 
the descriptive column-families, both core and 
complementary, their columns must also be identified. The 
columns of a descriptive column-family are constituted by 
the set of non-key attributes (excluding primary or foreign 
keys) of the corresponding tables in the RDM. 
Rule CDM.1.2. Identification of Analytical Column-
Families. All tables present in the RDM not identified by 
Rule CDM.1.1 as descriptive column-families give origin to 
analytical column-families, integrating the day-by-day 
activities of an application domain or the main changes in 
the characterization of the core entities of the application 
domain. These analytical column-families will be stored, 
processed and analyzed considering the several descriptive 
column-families. Rule CDM.1.2 excludes tables from the 
RDM that do not include any attributes beside keys (primary 
or foreign). The columns of analytical column-families are 
constituted by the set of non-key attributes (excluding 
primary or foreign keys) of the corresponding tables in the 
RDM. 
Rule CDM.2. Identification of Tables. Two types of tables 
are proposed for a CDM, descriptive and analytical tables. 
Rule CDM.2.1. Descriptive Tables. Descriptive tables are 
those tables that support specific data management tasks in 
an operational system. Each descriptive column-family 
identified by Rule CDM.1.1 gives origin to a descriptive 
table.  
Rule CDM.2.2. Analytical Tables. For the identification of 
the set of analytical tables there is the need of identifying the 
data workflows present in the RDM. For identifying the data 
workflows of a RDM, all tables present in the RDM not 
identified by Rule CDM.1.1 as descriptive column-families 
start a data workflow following the n:1 relationships 
associated to them, and all other n:1 relationships that 
follow. A data workflow ends when no other n:1 
relationships are found, meaning that it was possible to join 
a coherent piece of information that is related with each 
other and that was split in the RDM by the normalization 
process. This means that a specific table in the RDM starts a 
data workflow and two or more tables without any FK end 
the data workflow. All identified workflows give origin to 
analytical tables.  
Rule CDM.3. Integration of Column-Families into 
Tables. A specific table integrates a key, a very important 
component of a table in a CDM, and a set of column-
families, which may vary depending on the table’s type.  



 

Rule CDM.3.1. Column-Families of Descriptive Tables. 
A descriptive table derived from a main descriptive column-
family will include this main descriptive column-family as 
its unique column-family. A descriptive table derived from a 
complementary descriptive column-family will include as 
column-families the complementary and the core descriptive 
column-families to which it is associated. In case of multiple 
1:n relationships between, for instance, many main 
descriptive column-families and a complementary 
descriptive column-family, the related set of column-
families is integrated in the descriptive table.  
Rule CDM.3.2. Column-Families of Analytical Tables. 
An analytical table includes as column-families the 
descriptive column-families and, if applicable, the analytical 
column-families associated with the tables of the RDM 
included in the data workflow that gave origin to a specific 
analytical table by Rule CDM.2.2.  
Rule CDM.4. Definition of the Tables’ Key. A table’s key 
should be able to assure an adequate performance 
throughout read and write access patterns from the 
applications. The key represents a set of one or more 
attributes (concatenated) that has the potential to form a 
natural key that properly identifies each row in the CDM. 
This key must serve the applications’ get, scan and put 
patterns, keeping them as short as possible, while 
maintaining the potential for adequate access patterns [44]. 
The order in which the attributes are concatenated plays a 
relevant role in the design of the key, since HBase stores 
keys in a sorted order [44]. 

For demonstrating the usefulness of the proposed set of 
rules, let us take as an example the data model used in [42] 
and see how the rules here proposed advance the previous 
ones, deriving a set of HBase tables that completely 
complement each other and provide a coherent support for 
business applications.  

The RDM used as starting point is presented in Fig. 6. 
The model integrates eight tables, several attributes, and the 
relationships among the tables, represented by the 
corresponding foreign keys.  

Starting by Rule CDM.1, in particular Rule CDM.1.1, 
two types of descriptive column-families are identified. The 
core descriptive column-families are HotelsCF, POIsCF, 
GuestsCF and AmenitiesCF, as these tables only receive 
relationships with cardinality of 1, not integrating any FK. 
One complementary descriptive column-family is identified, 
associated with the Rooms table, giving origin to the 
RoomsCF. A table in the model gives origin to an analytical 
column-family (Rule CDM.1.2), namely ReservationsCF. In 
this model, HotelPOIs and RoomAmenities are not identified 
as analytical column-families as they do not include any 
other attribute besides keys. The attributes of the identified 
column-families are the attributes of the corresponding 
tables in the RDM, excluding the keys, either PK or FK. 

Regarding Rule CDM.2, the descriptive tables are 
HotelsT, RoomsT, POIsT, GuestsT and AmenitiesT associated 
with the identified descriptive column-families (Rule 
CDM.2.1), while for the identification of the analytical 
tables there is the need of identifying the data workflows of 
the RDM (Rule CDM.2.2).  

Using all the tables present in the RDM that were not 
identified as descriptive column-families, HotelPOIs, 
RoomAmenities and Reservations, three data workflows are 
identified (Fig. 7) following the n:1 relationships starting in 
these tables and following this type of relationship until no 
others n:1 relationships are found. Following this procedure, 
the three workflows originate three analytical tables, from 
now on named as ReservationsT, RoomAmenitiesT and 
HotelPOIsT. 

 
 

 

 
Fig. 6. RDM for the Hotel’s Demonstration Case. Redrawn based on [45], p. 63. 

 
 



 

 
Fig. 7. Data Workflows for the Hotel’s Demonstration Case. 

 
Having identified the column-families and the several 

tables, it is now necessary to assign to each table its 
respective column-families (Rule CDM.3.1). Each 
descriptive table integrates the core column-family, or a set 
of column-families including the core and the 
complementary descriptive column-families, from which it 
was derived. Taking RoomsT as an example, as this table 
was derived from the complementary descriptive column-
family RoomsCF, besides this column-family, the HBase 
table also needs to include the column-family associated 
with the HotelsCF, which is the core descriptive column-
family. HotelsT, POIsT, GuestsT and AmenitiesT include the 
corresponding core column-families, namely HotelsCF, 
POIsCF, GuestsCF and AmenitiesCF. 

For the analytical tables (Rule CDM.3.2), ReservationsT 
integrates four column-families, HotelsCF, RoomsCF, 
ReservationsCF and GuestsCF; RoomAmenitiesT integrates 
three column-families, HotelsCF, RoomsCF and AmenitiesCF; 
and, HotelPOIsT integrates two column-families, HotelsCF 
and POIsCF. 

After following the proposed rules, the identified 
columnar data model for HBase includes five descriptive 
tables and three analytical data tables, as depicted in Fig. 8 
showing the proposed keys (Rule CDM.4) and columns. 

The obtained data model allows data management for all 
descriptive tables in terms of inserting/updating/deleting 
hotels, rooms, guests, amenities and POIs, as well as 
upgrading new facts generated by the organization’s day-by-
day activities, namely new reservations, new amenities for 
the available rooms or new POIs characterizing the hotels’ 
surroundings. Besides adding these new facts, it is possible 
to query the available data, answering questions that the 
operational or tactical managers may have, supporting their 
decision-making processes.  

Looking to the obtained model and comparing it with the 
one presented in [45], it is possible to verify that although 
both models present a similar number of tables (seven vs. 
eight), they are organized in a different way. While the 
model presented here includes descriptive tables for 
inserting new POIs or amenities, the model proposed in [45] 
only includes base tables for hotels, guests and rooms. 
Reservations and POIs by hotel are organized in a similar 
way in both models.  

The main difference is associated with the possibility of 
managing all the available data using the approach proposed 
here, against the possibility of having some specific tables 
for querying the data, like the available rooms or hotels by 
city, using the model proposed in [45]. Nevertheless, both 
data models are able to answer the same questions, as they 
include the same base columns.  

 

 

 
Fig. 8. CDM for the Hotel’s Demonstration Case. 



 

At this point, it is important to mention that while the data 
model here obtained (Fig. 8) is suited for HBase, the one 
proposed in [45] is suited for Cassandra, highlighting the 
many different ways of organizing a columnar data schema. 

After showing how the proposed rules can be applied, a 
similar exercise is now followed for transforming a well-
known RDM into a CDM. The TPC Benchmark™ H (TPC-
H) is a decision support benchmark that includes a set of 
business oriented ad-hoc queries and concurrent data 
modifications [46]. It is usually used for benchmarking 
decision support systems that process large volumes of data, 
justifying the transformation of its data model into a CDM. 
The obtained CDM can afterwards be used for 
benchmarking processing technologies with data stored in 
denormalized tables.  

The data model of the TPC-H benchmark is depicted in 
Fig. 9. As can be seen, this data model includes eight 
transactional tables dealing with sales, customers and 
suppliers, modelling a business that manages, sells and 
distributes products. 

Following the proposed rules, and starting by Rule 
CDM.1, Rule CDM.1.1, two types of descriptive column-
families are identified. The core descriptive column-families 
are RegionCF and PartCF, as these tables only receive 
relationships with cardinality of 1, not integrating any FK. 
Three complementary descriptive column-families are 
identified, giving origin to NationCF, SupplierCF and 
CustomerCF. Three other tables give origin to analytical 
column-families (Rule CDM.1.2), namely PartSuppCF, 
OrdersCF and LineItemCF. The attributes of the identified 
column-families are the attributes of the corresponding 
tables in the RDM, excluding the keys, either PK or FK. 

Regarding Rule CDM.2, the descriptive tables are 
RegionT, PartT, NationT, SupplierT and CustomerT associated 
with the identified descriptive column-families (Rule 
CDM.2.1), while for the identification of the analytical 
tables there is the need of identifying the data workflows of 
the RDM (Rule CDM.2.2).  

Using all the tables present in the RDM that were not 
identified as descriptive column-families, PartSupp, Orders 
and LineItem, three data workflows are identified (Fig. 10) 
using the n:1 relationships starting in these tables and 
following this type of relationship until no more n:1 
relationships are found. Following this procedure, the three 
data workflows originate three analytical tables, named as 
PartSuppT, OrdersT and LineItemT. 

Having identified the column-families and the several 
tables, it is now necessary to assign to each table its 
respective column-families. Each descriptive table (Rule 
CDM.3.1) integrates a core column-family, or a set of 
column-families including the core and the complementary 
descriptive column-families, from which it was derived.  

Taking CustomerT as an example, and as this table was 
derived from the complementary descriptive column-family 
CustomerCF, besides this column-family, the HBase table 
also needs to include the column-families associated with it, 
which are the NationCF complementary descriptive column-
family and the RegionCF core descriptive column-family. 
RegionT and PartT include the corresponding core column-
families, RegionCF and PartCF, respectively. NationT 
includes the core RegionCF and the complementary 
NationCF. SupplierT includes NationCF and SupplierCF as 
complementary column-families and RegionCF as core 
column-family.  

 
 

 
Fig. 9. RDM for the TPC-H data model. Redrawn based on [46]. 



 

For the analytical tables (Rule CDM.3.2), PartSuppT 
includes five column-families, PartSuppCF, PartCF, 
SupplierCF, NationCF and RegionCF; OrdersT integrates 
four column-families, OrdersCF, CustomerCF, NationCF 
and RegionCF; and, LineItemT integrates the eight column-
families, achieving a complete denormalization of the 
relational schema: LineItemCF, PartSuppCF, PartCF, 
SupplierCF, OrdersCF, CustomerCF, NationCF and 
RegionCF. Moreover, and for this table, it is worth 
mentioning that NationCF and RegionCF are denormalized 
twice, as there is the need of specifying the nation and 

region of the supplier, and the nation and region of the 
customer. 

After following the proposed rules, the identified CDM 
for HBase includes five descriptive tables, as depicted in 
Fig. 11 showing the proposed keys (Rule CDM.4) and 
columns. For the analytical tables, and also showing the 
proposed keys (Rule CDM.4) and columns, Fig. 12 
highlights the three obtained analytical tables and the 
virtual aggregation of column-families to verify the 
several denormalizations of NationCF and RegionCF.  

 
 

 
Fig. 10. Data workflows for the TPC-H data model. 

 

 
Fig. 11. CDM with the descriptive tables for the TPC-H data model. 

 



 

 

Fig. 12. CDM with the analytical tables for the TPC-H data model. 

 
After following the proposed rules for transforming a 

RDM into a CDM, several tables are obtained, addressing 
different purposes in terms of data management. Some 
tables have a more operational role, maintaining information 
about the main entities of an application domain, and some 
others present an analytical profile, being able to answer 
specific questions about the business processes of an 
organization. It is up to the information system engineers to 
decide which tables must be implemented, having into 
consideration the data management and analytical tasks that 
must be supported. In particular, for the analytical tables, 
PartSuppT and OrdersT are fully contained in LineItemT, so 
all queries can be answered by this last one, being redundant 
the implementation of the other two tables. 

Another issue that depends of the business context in 
which these tables are going to be used is the definition of 
the tables’ keys. The keys here presented are merely 
suggestions of how they can be composed and defined for 
each table. For instance, these can be more appropriate for 
inserting or searching data, depending on the attributes and 
concatenation order between them.  

V. BIG DATA CHALLENGES 
This section presents several challenges regarding Big 

Data, including general dilemmas, challenges in the Big 
Data life cycle, issues in security, privacy and monitoring, 
and required changes in organizations. These challenges are 
also useful for identifying relevant research topics in this 
field. 

A. Big Data General Dilemmas 
General dilemmas may include challenges such as the 

lack of consensus and rigor in Big Data’s definition, models 
and architectures, for example. In [6], the authors claim that 
the concept of Big Data is often more commercial 
speculation than it is a scientific research topic. The authors 
also mention the lack of standardization in Big Data, such as 
data quality evaluation and benchmarking. In fact, the lack 
of standard benchmarks to compare different technologies is 
seriously aggravated by the constant technological evolution 
in Big Data environments [47].  

Even the ways to fully use Big Data remain an open 
subject to explore, such as applications in science, 
engineering, medicine, finance, education, government, 
retail, transportation or telecommunications, for example 
[6]. Discussions such as how to select the most appropriate 
data within several sources, or how to estimate their value, 
remain as Big Data dilemmas [19]. Another commonly 
discussed pitfall is how Big Data helps representing the 
population better than a small dataset [22]. This obviously 
varies with the context, but the authors call our attention for 
not assuming that more data is always better. 

B. Challenges in the Big Data Life Cycle 
These challenges are related to technical difficulties in 

tasks such as Big Data collection, integration, cleansing, 
transformation, storage, processing, analysis or governance: 

• The need to rethink storage devices, architectures, 
mechanisms and networks, in order to achieve 
more efficient input/output (I/O), data accessibility 
and data transmission [10]; 

• Scalability becomes crucial to store and analyze 
data. Handling increasing amounts of data requires 
redesigning databases and algorithms to extract 
value from it [27]. Parallel computing becomes 
crucial to deal with Big Data, assuring availability, 
cost efficiency and elasticity [6]; 

• Assuring data quality and adding value through 
data preparation becomes challenging in Big Data 
environments [10]. Different data sources may 
have different data quality problems [27]. These 
problems and vast amounts of redundancy can also 
make data integration more difficult [6]. The 
heterogeneity resulting from multiple sources 
augment these challenges, as traditional techniques 
for data analysis expect homogeneous data [48]. 
Heterogeneity brings implications on data 
integration [28] and consequences in the analysis of 
Big Data, since the unstructured nature of data 
sources presents several challenges regarding 
transformations to support adequate analytical 
tasks; 



 

• Visualizing Big Data requires rethinking traditional 
approaches due to the volume of data, thus joining 
appearance and functionality is crucial [10]. 
Advanced data visualizations are needed to extract 
value from Big Data [49], having the capability to 
scale to thousands or millions of data points, handle 
multiple data types, and be easy to use in order to 
satisfy several users. Manipulating Big Data is 
challenging due to its characteristics, namely 
executing drilldowns or rollups. In these 
visualizations, data from multiple sources is 
typically integrated into a single picture. 
Technological evolutions are being made to 
address the challenge of manipulating Big Data 
interactively [14]; 

• Searching, mining and analyzing Big Data is a 
challenging and relevant research trend, including 
Big Data searching algorithms, recommendation 
systems, real-time Big Data mining, image mining, 
text mining, among others [6]. As [15] claim, size 
is frequently the main concern in Big Data, but the 
unstructured nature of data also deserves attention 
(e.g., text, audio, video) and imposes significant 
challenges in these tasks; 

• Big Data governance faces challenges regarding 
control and authority over massive amounts of data 
from different sources [27]. Managing such 
heterogeneous environment to plan access policies 
and assure traceability can quickly become almost 
impossible without adequate governance tools. 

Organizations face several challenges in Big Data life 
cycle. New business problems require technological 
innovations in the way data flows across the organization. 
Surpassing these challenges will depend on the 
organization’s maturity, since legacy applications and the 
use of incompatible formats can impose several difficulties 
to an adequate integration and extraction of value from Big 
Data. Collecting data, namely gaining access to it, may also 
be a challenge, since integrating data from multiple sources, 
including external ones, raises questions about others’ 
intention to share it free of charge [5]. 

In [6], the authors state that the efficiency in data flows is 
key to assure an adequate Big Data processing. The authors 
also highlight the challenge of building effective computing 
models in real-time and online applications to analyze Big 
Data. Other challenges related to processing Big Data may 
include reutilization and reorganization of data, which 
become laborious at scale. The characteristics of Big Data 
require a paradigm shift in databases and analytical 
technologies, since dealing with Big Data throughout its life 
cycle can potentially create severe bottlenecks in networks, 
storage devices and relational databases. Technology is 
evolving to execute these stages in distributed environments, 
becoming dependent on high storage capacity and 
processing power.  

Even relational databases are evolving to accommodate 
these trends, increasing query performance and being able to 
deal with more data variety [3]. Combining the benefits of 
RDBMSs and NoSQL databases actually represents a 
research trend, as well as query optimization in Big Data 
technologies [28]. Furthermore, advancements are being 

made in scalable storage and algorithms. The work of [50] 
argues that processing queries in Big Data may take 
significant time, since it is challenging to sequentially iterate 
through the whole dataset in a short amount of time. 
Consequently, the authors highlight the relevance of 
designing indexes and consider adequate preprocessing 
technologies. In [27], it is identified the need to study 
adequate models to store and retrieve data, a crucial factor to 
successfully implement Big Data solutions. Models and 
algorithms for scalable data analysis also remain an open 
research issue, as well as the integration and analysis of data 
arriving continuously from streams. Mining data streams has 
been identified as an emergent research topic in Big Data 
analytics [51]. 

C. Big Data in Secure, Private and Monitored 
Environments 
Nowadays, keeping data secure and private is one of the 

most concerning tasks for organizations [6], [48]. Users 
want to rest assure that any leaks into the public domain will 
not occur [19]. In [52], citing a survey from [53], it is 
claimed that security and privacy are frequently mentioned 
among the Big Data concerns of Information Technology 
(IT) managers. It is relevant to plan a Big Data driven 
security model for organizations to accurately specify risks 
and prevent illegal activity or cyber threats. Several 
considerations are mentioned, such as authentication, 
authorization, network traffic analysis, data protection laws 
and mining data related to security. In [6], it is also 
discussed the potential for Big Data applications related to 
security concerns.  

Due to the characteristics of Big Data, more risks arise 
and traditional data protection methods must be rethought. 
The work of [6] argues that Big Data applications face 
multiple challenges related to security, privacy and 
monitoring: protection of personal privacy during not only 
data collection, but also in its subsequent storage and flows; 
Big Data quality and its influence to appropriate and secure 
uses; the performance of security mechanisms like 
encryption is largely influenced by the scale and variety of 
data; and other aspects related to secure communications, 
administration and monitoring in environments with 
multiple users and services. Other relevant challenge, as 
highlighted by [27], is assuring Big Data integrity, i.e., data 
is only modified by the owner or other authorized entities. 

Policies related to data are also relevant today, at a time 
when there is a significant amount of sensitive data about 
individuals, such as the one related with their health or 
finances [5]. Legal issues are being raised regarding the 
easiness to copy, integrate and recurrently use data by 
different people. Intellectual property, data ownership and 
responsibility regarding inaccurate data, deserve proper 
attention from policy makers [5]. Legal and regulatory 
issues deserve attention in several aspects [50], like 
analyzing the adequacy of current laws and regulations to 
properly protect data about individuals [27]. Even the 
constant tracking on employees within an organization can 
raise discussions about adequate work policies [54].  

Besides these issues, the work of [55] raises questions 
about the implications of having data widely and 
transparently available. Assuring privacy is both a technical 



 

and sociological problem, as [48] argue. Inadequate 
availability of location-based data allows the possibility to 
infer a person’s residence, office location and identity, for 
example. Moreover, many other data sources can contain 
personal identifiers, or even if no personal identifiers exist, 
when data is rich enough, one can draw reasonable 
inferences from it [56]. Another relevant topic, briefly 
mentioned above, is data ownership, due to its value for 
certain organizations that are currently debating about ways 
of sharing or selling data without losing control of it [48]. 
Data ownership is often discussed regarding social media 
websites, since users’ data is not owned by organizations, 
although they store it [19]. As [56] discuss, these 
organizations tend to assume that they hold the rights of the 
data, and sometimes the current legislation benefits them, 
allowing organizations to not permanently delete data, even 
when users ask for it. 

Discussing Big Data security, privacy and monitoring in 
cloud environments is also relevant. Organizations 
frequently recognize that using Big Data technologies in 
cloud environments helps reducing their IT costs [50], 
although raising concerns about Big Data storage and 
processing infrastructures. Therefore, as [50] claim, one of 
the challenges lies in assuring adequate monitoring and 
security without exposing users’ data when processing it. 

D. Organizational Change 
Surely Big Data may sound appealing to most 

organizations, but frequently organizational leaders lack the 
understanding of its value and how to extract it [5]. 
Occasionally, the lack of knowledge in how to use analytics 
is mentioned as the leading obstacle to become more data-
driven [57]. Within several business areas, organizations 
need to monitor trends and gain advantages compared to 
their competitors, but as [5] discuss, many of them lack the 
talent, the rigorous workflows structure and the incentives 
for adequate Big Data initiatives to better support decision-
making. Leaders and policy makers must understand how 
Big Data can create value, as well as critically thinking 
about IT capabilities, data strategies, analytical talent and 
data-driven approaches.  

This paradigm shift in organizations requires them to 
move analytics into the core business and operational 
functions [3], changing business processes, delivering 
insights related to customers, products, services, and other 
transactions. [58] present challenges that organizations will 
face in management, caused by Big Data initiatives, among 
which can be highlighted: the need for adequate leadership 
and data scientists [59], computer scientists or other 
professionals to deal with Big Data; the adequate 
understanding and use of Big Data technology; and the need 
to change organizational culture. Big Data initiatives require 
a multidisciplinary approach, demanding collaboration to 
deliver useful results that must be properly understandable 
by the organization [48], although to accomplish this, 
significant organizational changes must occur. 

VI. CONCLUSION 
This paper presented a state-of-the-art literature review in 

Big Data and also a modelling approach to convert relational 
databases into column-oriented databases. Besides this 

modelling approach, this work discussed the relevance, 
definition and challenges in Big Data, as well as how to 
design Big Data solutions through the use of current 
techniques and technologies.  

Big Data is a concept of major relevance in today’s world, 
and its popularity has increased considerably during the last 
years. Business areas like healthcare, retail, manufacturing 
and modern cities will benefit from the collection, storage, 
processing and analysis of Big Data, leveraging 
unprecedented data-driven workflows and considerably 
improving decision-making. This new type of data is being 
defined not only by its characteristics (e.g., volume, variety, 
velocity), but also by the limitations it imposes in traditional 
technologies. 

Several requirements and techniques to design Big Data 
solutions were discussed. Moreover, Hadoop and related 
projects were presented, as well as scalable databases and 
other technologies for Big Data Analytics. One can conclude 
that there is no common approach to work with Big Data 
and there are innumerous technologies to choose from, each 
trying to stand out, which creates barriers in the design and 
implementation of Big Data solutions, since most of the 
time they are competitors, or their role is misunderstood, 
overlapping each other. Logical architectures discussed in 
this work solve part of the problem by orchestrating 
components according to their role and interactions, but 
ambiguity regarding the Big Data technology most suitable 
to a specific role still prevails, mainly due to the diverse set 
of possible choices. 

Organizations implementing Big Data initiatives will face 
many challenges, among which can be highlighted: the lack 
of consensus in definitions, models or architectures; 
challenges regarding the Big Data life cycle; concerns 
related to security, privacy and monitoring; and 
organizational change, such as new skills and changes in 
business processes. The proposed modelling approach to 
convert relational databases into column-oriented databases 
aims to solve part of these challenges, helping practitioners 
to perform migrations from traditional contexts to Big Data 
contexts. 

For future work, one will study the concept of Big Data 
Warehouse (BDW), namely its main characteristics, changes 
from traditional environments, storage technologies, 
advancements in OLAP, query and integration mechanisms 
for BDWs, and implementations in specific contexts. 
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