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Abstract—Generally, a robot acquires environment data from
the sensor that is attached to the robot itself and merely obtains
local information. Artificial Potential Field (APF) is designed
as the path planning with global information. Therefore, local
information becomes one of the issues in the APF based path
planning. This paper proposes an approach to handle the local
information in the APF using framework transformation. With
integration of image processing, clustering, and framework
transformation, the initial, goal, and obstacles from the real
world coordinate can be determined in the APF environment
scenario. Transformation of the two-dimensional image is used
to generate the APF path planning. The local optima in the
local information is set as waypoint for the global optimum in
whole environment scenario. In order to test performance of
the algorithm, local data set is used. Two scenarios are used in
this research, i.e. static environment and dynamic environment
with a moving obstacle. The results show that the proposed
method can be applied in the real time implementation.

Index Terms—APF, local information, framework transfor-
mation.

I. INTRODUCTION

Many applications for either civilian or military purposes

used autonomous robots. There are some abilities that have

to be fulfilled to warrant an autonomous system in the real

implementation. Localization, path planning, and mapping

are the abilities that should be have in the autonomous robot

system [1]. The hierarchy process of the autonomous robot

can be depicted as in Figure 1.

Figure 1 shows that the path planning level is higher than

the controller in the autonomous robot system. The path

planning is a compulsory component which aims to guide the

controller to reach the mission planning and task allocation

[2]. Therefore, path planning takes important roles regarding

autonomous robot system. In order to compensate the control

system limitation, the objective of the path planning is

to find the feasible path starting from the initial to goal

position which the robot is able to accomplish the task

allocation. The connecting lines mean data acquisition gives

the environment data to construct path planning. After path

planning generation, the controller drives the robot through
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Fig. 1. Hierarchy Process of An Autonomous Robot

the waypoints. The process continued until the robot reaches

the objective.

Many algorithms were introduced to construct path plan-

ning. Some conventional algorithms generate decomposed

region such as Heuristic A∗ and Dijkstra algorithm. Heuristic

A∗ had been proven to be easy and powerful algorithm when

using in the path planning field [3]. Similar to A∗, Dijkstra

algorithm was also used as the path planning algorithm [4].

One of the well-known approach of path planning algo-

rithm is based on Artificial Intelligence (AI) algorithm [5].

Genetic Algorithm (GA) [6] [7] [8], Particle Swarm Opti-

mization (PSO) [9] [10] [11], and Ant Colony Optimization

(ACO) [12] [13] are the examples of AI algorithm that

used as path planning algorithm. The approaches define the

chromosome, particle, and ant as candidates of the possible

solution. The newest approach based on the natural science

such as bee colony was also used in the path planning

area [14]. The fitness function is set with some parameters

related the feasible path. The feasible path means that the

path is the shortest distance but without neglecting kinematic

constraint as the robot boundary and safety factor between

the robot against the environment. Using the iterative method

of optimization, the path will be produced by AI-based

algorithm considering the feasible parameters.

The other approach such as RRT (Random Rapidly Tree)

was used for robot maneuver in the path planning system

[15]. In the research of Yang et. al. [16], RRT was used

for the generation of a collision-free piecewise linear path

while a path smoothing algorithm was applied which satisfies

curvature continuity and non-holonomic constraints.

The curve algorithm is a path planner approach using poly-

nomial equation to build a certain path geometry [17], [18].



Generally, the curve algorithm is applied in the static envi-

ronment. The dynamic curve path algorithm was introduced

by [19]. The curve algorithm considers two constraints, i.e.

maximum curvature and maximum torsion bound. Based

on the constraints, the path is constructed using geometry

approach.

All of the path planning approaches that were aforemen-

tioned, generally, can solve path planning problem which

meets kinematic constraint, but most of them are not de-

signed to become a reactive obstacle avoidance. The con-

ventional and AI-based algorithm have to rearrange and re-

planning using the iterative method. In spite of rearranging

and re-planning, the curve based algorithm has to add one

or more points to avoid an obstacle.

The APF is one of the path planning approaches which is

based on the idea in term of electric field [20]. There are two

important characteristics of force in the APF, i.e. repulsive

and attractive force. In the path planning case, the repulsive

force is used for obstacle avoidance and imaginary held on

the obstacle. The goal takes advantage from the attractive

force in the potential field. From the characteristic, the APF

has an advantage in the real-time obstacle avoidance despite

its weakness in the information acquisition. Environment data

is global view which the robot must have a prior knowledge.

Therefore, this research focuses on how to handle the local

information.

This paper is organized as follows. The second section

explains the problem formulation in the APF regarding the

local information. The third section describes the concept

and idea how to solve the problem of local information in

the APF based path planning. The last two sections deliver

the results, discussion, and conclusion.

II. PROBLEM DESCRIPTION

The APF follows the natural characteristic of electrostatic

potential [21]. The concept of electric field motion is applied

to the robot initial position and goal position. The goal po-

sition becomes the lowest potential while the initial position

is the representative of the highest potential. From nature of

the potential field, the potential energy will move from the

highest to the lowest. The obstacle set as opposite direction

force due to unsafe area of the robot that coined as the

repulsive force.

The attractive forces of APF can be modeled as

fa(x, y) = ∇Va(x, y) (1)

and the forces in a certain position (x, y) are

fxa(x, y) =
∂Va(x, y)

∂x
, fya(x, y) =

∂Va(x, y)

∂y
, (2)

where

Va(x, y) =
1

2
Ka[(x− xT )

2 + (y − yT )
2]. (3)

Variable Ka is the attractive gain parameter and (xT , yT ) is

the goal position.

The potential surface in a single point of the obstacle is

Vo(x, y) =
Ko

√

(x− xo)2 + (y − yo)2
, (4)

where Ko is the repulsive gain parameter and (xo, yo) is the

point of the obstacle position. From the (4), the repulsive

force of APF in certain position of the obstacle (x, y) can

be formulated as

fxo(x, y) =
∂Vo(x, y)

∂x
, fyo(x, y) =

∂Vo(x, y)

∂y
. (5)

If the obstacle has more than one point, then the formula

becomes

Vo(x, y) =

j
∑

i=1

Voi(xi, yi). (6)

Variable i is the number of the obstacle’s point from i = 1
to j, where j is the total number of the obstacles.

The total of the force field can be determined as

f(x, y) = fa(x, y) + fo(x, y). (7)

Consequently, it can be concluded that the total force of APF

is the sum of attractive and repulsive force. The example of

total forces in the APF can be depicted in Figure 2.

The variable xT , yT , and Vo(x, y) as in the (3) and (4) and

Figure 2, are known variables in the APF scenario. It means

that the prior knowledge of the information becomes the

natural characteristic of the APF. However, local information

without prior knowledge of the environment is difficult to

solve. Thus, one of the main problems in the APF based

path planning is to handle local information.

III. THE PROPOSED METHOD

In this research, the data acquisition process uses a stereo

camera to capture the images. The stereo camera obtains

depth or distance from the environment. After the distance

is obtained, image processing is utilized to manipulate and

create the environment scenario for the APF. Result of the

image processing is then transformed into a new frame. The

transformation yields the position of the obstacle and goal

in the new environment scenario. Therefore, the APF can be

implemented directly as real-time obstacle avoidance in the

path planning using local information. The flowchart of the

algorithm can be depicted as in Figure 3.

Figure 3 shows that the feature description uses SURF

(Speeded Up Robust Features) [22]. The approximation with

respect to repeatability, distinctiveness, and robustness, yet

can be computed and compared much faster is consideration

of SURF application.

Fig. 2. Example of the Total Force in the APF



Fig. 3. Algorithm Process of the Proposed Method

A. SURF

SURF is a feature descriptor that uses a Hessian matrix-

based measure for the detector. Given a point x = (x, y) in

an image I, the Hessian matrix H(x, σ) in x at scale σ is

defined [22] as

H(x, σ) =
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

, (8)

where

Lxx(x, σ) = I(x) ∗
∂2

∂x2
g(σ) (9)

Lxy(x, σ) = I(x) ∗
∂2

∂xy
g(σ). (10)

In (9), Lxx(x, σ) is the convolution of the Gaussian second

order derivative with the image I in point x, and similarly

for Lxy(x, σ) and Lyy(x, σ). The relative weights in the

expression for the Hessians determinant with

|Lxy(1.2)|F |Dxx(9)|F
|Lxx(1.2)|F |Dxy(9)|F

= 0.912 ≃ 0.9, (11)

where |x|F is the Frobenius norm1. Thus,

det(Happrox) = DxxDyy(0.9Dxy)
2. (12)

By the Hessian matrix, the eigen vectors show the direction

of curve (gradient) of the image. The SURF descriptor

is based on Haar wavelet responses to assess the primary

direction of the feature [23]. The direction is determined by

the change of intensity.

The result of feature detection is then have to match for

both cameras. In order to match the feature of both cameras,

Random Sample Consensus (RANSAC) is employed.

1Frobenius norm is described as the absolute summation of the diagonal
of a matrix

B. RANSAC

RANSAC is a sampling technique to estimate the model

parameters by using minimum number of observations [24].

By defining sample of random points from both camera

images, the features can be matched by considering the

distance of the point. The distance and standard deviation

are as the threshold for inlier. Consequently, the probability

of the outlier is

v = 1− q, (13)

where q represent the probability that any selected data point

is an inlier. A confidence number p is used to set a thresholds

for acceptance of the points as intermediate results of the

solution. It means that the sets of random samples have a

very small probability as an outlier. The confidence number

p has relation that

1− p = 1− (1− vm)N , (14)

where m is the minimum number of the points or size of

the samples, and N is the number of iteration that can be

computed as

N =
log(1− p)

log(1− (1− o)m)
. (15)

The termination of the algorithm is based upon the expected

number of trials N required to select a subset of m good

data points.

In this research, RANSAC is used to remove outlier in

the feature matching of the SURF approach. Figure 4 is the

application of RANSAC that reduces the outlier in the feature

matching. Consequently, it will eliminate the features itself.

The main point of RANSAC in this research is to obtain

the feature matching of two cameras thus it can measure the

depth or distance of each feature.



Fig. 4. The Final Result of SURF+RANSAC

C. K-means Clustering

The next stage of proposed method is K-means clustering

with outlier removal [27]. This stage is based on the obser-

vation that the environment density of an object is greater

than the environment that is not an object. The mathematical

model can be described as

σobject ≥ σ∼object, (16)

where σobject is density of the environment of an object while

in contrast, σ∼object is density of the environment that is not

an object.

Therefore, the strategy of this stage makes a grouping of

the feature detections into each cluster and defining the rules

when a particular point is more than outlier threshold. The

strategy is divided into two steps. First, every feature must be

grouped into each cluster. Secondly, based on (16), the point

that has a distance less than outlier threshold is determined

as part of the object. It means that if distance of the points

is larger than the outlier threshold then it can be neglected

since the point is not part of an object.

The clustering stage performs K-means algorithm until it

meets convergence. Division of the cluster depends on the

distance from a point xi to the centroid (c) which is modeled

as

D =
n
∑

i=1

√

(xi − ck)2. (17)

The update of the centroid of k is as follows

ck =
1

Ni

Ni
∑

i=1

xi , (18)

where Ni is total data on each cluster.

The second step is to assign an outlyingness factor. The

factor depends on the distance from the cluster centroid. The

formula of the outlyingness factor is described as

Outlier =
||xi − ck||

Dmax

, i = 1, ..., N (19)

and

Dmax = max||xi − ck||, i = 1, ..., N. (20)

The outlyingness factor is normalized within scale [0,1]. In

this research, the total number of clustering is two clusters.

The total number is to meet goal point convergent in local

information. If there are more than two obstacles, then the

goal point can be obtained more than one as well. Since

Fig. 5. Example of K-means Clustering with Outlier Removal

the APF merely needs one goal point as optimum solution,

then it is difficult to determine the optimum solution in local

information.

Figure 5 is the example of K-means clustering with outlier

removal. It shows that the outlier is removed from the

cluster while it means the outlier is not part of neither an

object nor an obstacle. It means that the point in the outlier

can be neglected as part of the environment in the APF

scenario. This stage yields a certain obstacle in the image

environment. The example how to define the obstacle is

shown in Figure 6 and 7 which uses data set from IMAGE

PROCESSING LAB (IPLAB) [25]. Figure 6 is the initial

condition when the SURF algorithm was previously applied

without K-Means clustering. Then, the blue and red dots are

the obstacle detection after K-Means clustering with outlier

removal process. It proves that the method can be used for

obstacle detection and removing the non-obstacle points.

D. Framework Transformation

The transformation stage is the key to handle the local

information. The simple idea is by transforming the image

into planar (with a fixed altitude). The first step is to find

depth from the result of K-means clustering with outlier

removal. By using a simple triangulation in Figure 8, the

depth measurement can be obtained easily [26].

Fig. 6. Example of SURF Application, black round circles are the features
detection



Fig. 7. Example of the Obstacle Detection [25], red and blue dots are the
obstacle detection

From Figure 8, f is focal length, P is a point (x,y) in the

image, b is disparity camera and the formula of triangulation

is

b

Z
=

b− (d+ d′)

Z − f
=

d+ d′

f
. (21)

Thus, (21) can be simplified as

Z =
f.b

D
. (22)

The implementation of the triangulation usually cannot

obtain accurate depth measurement. The approximation of

disparity and intrinsic value of focal length from the both

camera are the most problem in stereo vision. It is difficult

to acquire the exact value of camera disparity since it cannot

define the real position of lens from the both cameras. In

order to compensate the problem, a fitting method based on

logarithmic equation is introduced as

Dact = a ln(Z)− b, (23)

where a and b are constant values which set of 17.502 and

37.194 respectively. Variable Dact is the approximation of

real distance value. By using (23), the distance from the

measurement can be refined and obtained an accurate result

of depth measurement.

The height of each feature is measured by congruent

triangle concept. The illustration of height measurement can

be depicted in the Figure 9. The formula is defined as follows

tg θ = h′/Z ′, and (24)

Fig. 8. Triangulation for Depth Measurement

Fig. 9. Height Measurement using Congruent Triangle

tg θ = h/Z, (25)

then,

h′ =
h.Z ′

Z
(26)

The variable Z and Z ′ are obtained by distance measurement

of triangulation method (22) and (23). Variable h is a

constant altitude of the robot.

After the height measurement of each feature can be

determined, each feature can be represented by 3D position.

Then, the 3D position transforms into the new frame. The

transformation is illustrated in Figure 10.

The distance is obtained from the fitting method based

on logarithmic equation of the stereo camera as in (23).

From Figure 10, the coordinate camera of an image (xI , yI)
will be used as the parameter of the new coordinates. The

mathematical model can be defined as

Q =





yI
xI

Dact



 , (27)

thus Q′ = RQ when

R =





0 0 xI

Dact

0 Dact

xI

0
h
yI

0 0



 , (28)

where Q is 3D coordinate in the image environment and Q′

is the new 3D coordinate in the APF scenario environment.

The framework transformation yields the points which part

of the obstacle in the APF scenario environment. In the APF

scenario environment, the 2D plane consists of initial, goal,

and Q(h,Dact) which can be modeled as

{(xinit, yinit) ∪ (xT , yT ) ∪Q′(h,Dact)} ∈ {APF(x,y)}.
(29)

After the points can be defined, the obstacle has to be

reconstructed regarding the approximation of the geometry

shape of an obstacle. The obstacle shape converts from

the unstructured to polygon shape [28]. The conversion of

polygon shape is coined as virtual geometry.

E. Convex Hull

The first step of virtual geometry is created by convex hull

algorithm. The virtual geometry reconstructs the features to

become an object. Based on K-means clustering approach,

the reconstruction is divided into two clusters as well. Each

cluster will become a virtual geometry.



Fig. 10. Framework Transformation

Fig. 11. Q-Scanning Algorithm

The convex hull algorithm uses the Q-scanning approach

[29]. The block diagram of Q-scanning algorithm can be

illustrated as in Figure 11.

The algorithm starts with dividing the hull into four set

points which are called q1, q2, q3, and q4 referring for the

position of four quadrants. The complete solution of convex

hull algorithm is the integration of convex hull on each

quadrant. The extreme points are determined by each vertex

of each quadrant. The maximum value of y with maximum

value of x is one of the extreme points of vertex q1 in

quadrant I as

{ǫtr ⊂ q1|ǫtr = p(max(x),max(y))}. (30)

The other extreme point in quadrant I is the point that has a

maximum value of y. The mathematical model is

{ǫr ⊂ q1|ǫr = p(max(x), y))}. (31)

The lowest point of x and y value is the extreme point in

quadrant II,

{ǫtl ⊂ q2|ǫtl = p(min(x),max(y))}. (32)

The left most point is determined by the minimum value of

x,

{ǫl ⊂ q2|ǫl = p(min(x), y))}. (33)

It has to be noted that if the extreme points of quadrant I

and II are found similar, then the extreme points of quadrant

I and II are an identical point.

By contradicting process of quadrant I and II, the extreme

points of quadrant III and IV are obtained from the lowest

value of x in the lowest and highest value of y. The extreme

point formula of quadrant III and IV can be described as

follows.

{ǫbl ⊂ q3|ǫbl = p(min(x),min(y))}. (34)

{ǫbr ⊂ q4|ǫbr = p(max(x),min(y))}. (35)



Then, Q-scanning can be implemented to obtain the com-

plete convex hull. The Q-scanning compares the point value

from the max(y) until meets the most left and right points.

Otherwise, point value from the min(y) has to be compared

to obtain q3 and q4 hull.

It can be concluded that the Q-scanning yields the vertex of

each hull in quadrant I, II, III, and IV respectively. Integration

of the hull from the Q-scanning method is the complete

solution of the convex hull.

The objective of this stage is to determine the obstacle in

the opposite direction of the robot during the robot movement

toward the goal. Since the hull points cannot cover all the

surface of the obstacle, an interpolation method is used to fill

the blank points. The prediction of line that connects a point

(x1, y1) with a point (x2, y2) can be stated with formula

y − y1
y2 − y1

=
x− x1

x2 − x1
. (36)

Based on the (36), the points (x, y) that fill between the

point (x1, y1) and the point (x2, y2) can be obtained easily.

This research sets the distance to one unit between original

point and additional point. The completion of additional

points is to avoid local optima phenomena in the APF that

exists due to the concave shape of an obstacle. On the other

hands, the completion points will generate the shortest path

since it consider the edge of the obstacle. Determining the

repulsive forces surrounding an obstacle that equal to the

distance of c-obstacle will yield the shortest path.

F. Goal Point on Local Information

Due to the local information, the problem solver obtains

the local optima. It means the proposed method merely solves

the problem of local information in certain time. Related

local optima, the goal point has to meet safety constraint

that assumes as equilibrium point in certain time. The goal

point is defined as the center point among the two obstacles

[30] as described as

xloc =
|cobsx1 + cobsx2|

2
(37)

and

yloc =
|cobsy1 + cobsy2|

2
, (38)

where cobsx and cobsy are the centroid of each cluster that

represent the center of each obstacle. Variable xloc and

ylocare the goal point that reflects the solution of local optima

from local information.

G. Global Optimum

All the stages of the proposed method achieve the trans-

formation of the real world environment. The initial, goal,

and obstacles have transformation points in the APF scenario

environment. Then, the APF can employ directly. In addition,

the obstacle has been manipulated to avoid the local optima

phenomena from the concave obstacle.

The manner of the proposed method is to cope the problem

of local information which means obtain local optima from

local information. However, the destination of the robot is

the global optimum point from the inertial coordinate. The

relation between local optima point from local information

and global optimum point from the whole environment

scenario is depicted in Figure 12.

Figure 12 means that the global optimum point follows

Markov Chain Model which means the next state depends

on the current state. Thus, the mathematical model of global

optimum is

p(sz|(xT , yT )) =
z
∏

j=1

p((xlocj , ylocj)|(odom,Q′(h,Dact)),

(39)

where z is total of the goal points from initial condition

until the robot reaches global optimum. Equation (39) means

probability of the last state (sz) depends on the position of

the robot in the goal point. Robot’s belief on the goal position

is product rule of positions on the goal point from a certain

local information which depends on the robot odometry and

image acquisition. The total distance from initial to global

optimum point is sum of the distance from initial point travels

to next local optima until reaches the goal point. The global

optimum is reached when condition xloc = xT and yloc = yT
are satisfied.

From (39), the global optimum point from the whole en-

vironment can be attained by connecting the goal point from

local information. For the static environment, the solving

problem of local information is obtained from every single

frame. Every frame has its own local optima. It means that

the global optimum point in the inertial coordinate is met by

following the goal of local optima point from one or more

than one frames. On the other hands, a similar concept is

applied in the moving obstacle. The different is during the

robot movement, the acquisition data sensor perceives the

alteration of the environment in the real time. If the new

data insists to the robot to re-planning the path, then the

robot will follow result of the path planning from the new

data acquisition. For instance, if during the movement, an

obstacle moves toward to the robot, then the previous path

will change to the new path with a new local optima from the

local information. The condition will continue until the robot

reaches the global optimum point in the inertial coordinate.

IV. EXPERIMENTAL SETUP

A. Research Material

A Personal Computer (PC) laid on the chair is assumed

as a robot with 60 cm height. Here, this research assumes

the altitude is in a constant condition. Integration of two web

cameras Logitech C270 as a stereo camera is used for data

acquisition. The laptop specification is AMD A6 processor, 4

DDR3 1333 MHz SDRAM, AMD Radeon HD 6520G2+HD

7670M with Dual Graphics. For the robot, this research uses

Kobuki Yunjin Robot which is differential drive robot as seen

in Figure 13. The robot has circle shape with 34 cm of radius.

The control system uses integration of closed loop control

Fig. 12. Markov Chain Model of Global Optimum



system and APF based on [31]. Since the control system

considers non-holonomic constraint, then it has curvature

and acceleration bound. The inertial coordinate refers to

odometry that is attached to the robot. The robot and camera

frame are set similar to the inertial coordinate.

B. Data Set

This research uses local data set. The environment is in the

corridor of Block H at Fakulti Teknologi and Sains Maklumat

(FTSM) University Kebangsaan Malaysia and Microwave

Laboratorium Indonesian Airforce Academy.

V. RESULTS AND DISCUSSION

The experimental setup is divided into two scenarios. Each

scenario consists of two different kind of obstacles, i.e. static

and moving obstacle. The first scenario tests the proposed

method in the real stereo camera without the robot in order to

check performance of the proposed method before integrating

with the real robot. The second scenario uses the robot

with stereo camera for obstacle avoidance and the proposed

method is applied in the camera.

A. First Scenario

The test is conducted in the night time using light from

the lamp to keep the illumination in a stable condition. The

objects are static and moving in opposite direction (along the

z axis). The static objects in surrounding environment are the

obstacles. On the other hands, the K-means clustering outlier

threshold is set to 0.75. The scenario of the experiment is

explained as follows. The moving obstacle is assumed as a

human that moves toward to the robot and the robot has fixed

altitude of 60 cm. The goal is to avoid the moving obstacle

and find a safety path to the goal point. The goal point

considers the maximum accurate distance of stereo vision

and the safety area. The maximum accurate distance is 5 m.

Results of the scenario can be seen in Figure 14 and 15.

Figure 14 and 15 show that the proposed method can be

used to implement in the APF using local information. The

red and white lines are the goal position which meet safety

constraint. In the scenario, the robot is assumed as a point

mass and the safety constraint is met if the robot is not

passing one of the obstacle’s point.

Due to the fixed altitude assumption in the scenario, the

transformation follows Figure 10 and (27). Consequently,

the height of each obstacle’s point has been neglected and

the height measurement is merely used to avoid the floor

detection as an obstacle. The transformation from the local

Fig. 13. Kobuki Yunjin Robot

Fig. 14. Example of the final results for static object, the line in white
color is robot’s direction

Fig. 15. Example of the final results for moving object, the line in red
color is robot’s direction

Fig. 16. Example of the final results in the APF scenario, blue triangle is
the robot, black and red part are the obstacles, blue line is the path



Fig. 17. Time vs robot pose on x and y axes of the APF scenario environment

information to APF scenario environment can be depicted in

ℜ2 and seen in the Figure 16.

Figure 17 show that the robot’s path planning meets

convergent for both x and y position. It means that the APF is

satisfied to apply in the scenario. The APF has been avoided

the obstacles in front and met the goal point.

Since the moving obstacle moves toward to the robot, then

trajectory model of the moving obstacle does not necessary

to be calculated. By using the proposed method, the robot

moves forward until the obstacle has been detected and

the robot creates a path for avoiding the moving obstacle.

Therefore, random movement of the obstacle needs a further

prediction method which is used to determine the APF path

planning that meets safety and optimum constraints.

B. Second Scenario

In the second scenario, the experiment uses Kobuki as

the robot platform. Stereo camera are installed on the robot

and the proposed algorithm is implemented. The initial and

goal position of the robot are set on the position (0, 0) and

(2.5, 0.3) respectively. A fire extinguisher as the obstacle is

arranged in between the initial and goal at (1.5, 0). Scenario

with the static obstacle can be seen in Figure 18.

Fig. 18. Scenario 1 using the real robot

In the beginning, the distance of the camera is set to

10 cm following the first scenario. Since the camera has

a very limited beam and the robot has a certain size, then

result of the experiment showed the robot hits the obstacles.

Thus, this research sets the distance of the camera at the

maximum distance 22 cm referring size of the camera place.

The distance of safety constraint is set to 90 cm. It means

that if the distance between the robot and obstacle is equal

or below 90 cm then the repulsive force will active and the

robot will avoid the obstacle.

Result of the experiment can be seen in Figure 19. It

shows the proposed method can be used in the real time

system considering kinematic constraints of the robot. The

robot avoids the obstacle and reaches its goal.

In order to confirm the experimental result, the position

of the robot is plotted in two-dimensional as seen in Figure

20. Figure 20 proves the robot avoids the obstacle in an

Fig. 20. 2D Plot of Robot’s Position, Obstacle - red circle

accurate distance. At 90 cm of distance between the robot

and obstacle, the repulsive force is active which is indicated

by the robot turn to right avoiding the obstacle. Finally, the

robot reaches destination at the goal position.

The next experiment uses a human as the moving obstacle.

Similar to first scenario, the obstacle moves toward to the

robot with a certain velocity and the robot tries to avoid

the obstacle. Figure 21 show the robot avoids the moving

obstacle. The trajectory of the robot can be depicted in Figure

22. It can be seen that the robot avoids the moving obstacle

at position (1.1, 0).

Regarding the feasible path which relates to the shortest



Fig. 19. Result experiment in the real robot with static obstacle

Fig. 21. Result experiment in the real robot with moving obstacle

Fig. 22. 2D Plot of Robot’s Position, Obstacle - red circle, Red dash line
- obstacle’s movement

distance of the path, distances of robot trajectory are shown

in Table I.

TABLE I
DISTANCE OF TRAJECTORY

Scenario Distance (m) Shortest Diff (%)

Distance (m)

Static osbtacle 2.64 2.52 0.96

Moving obstacle 4.18 4 1.04

Table I describes the distance of robot’s trajectory is dif-

ferent with the shortest distance. It means that the generated

paths from the proposed algorithm are not the shortest paths

distance and needs further research to obtain the shortest

path.

Another limitation of the experiment is that the moving

obstacle is assigned in linear movement. Therefore, it cannot

be guaranteed the robot can avoid the obstacle if the moving

obstacle has the other modeling of obstacle’s movement. The

result of the trajectory depicts the robot’s movement is not

smooth and needs further research to make smooth trajectory.

VI. CONCLUSION

APF is designed successfully using global information.

The position of the obstacle, goal, and initial are a prior

knowledge. Thus, local information is an issue in the APF.

To deal with that, this research proposes a method using

framework transformation. The method transforms the sensor

framework into the new frame. The image that was acquired

by the sensor is used as APF environment scenario with

the assumption of a constant altitude. The new frame result

determines the goal position, initial and obstacle in the APF

scenario. It has been seen that the algorithm can compensate

the local information with the assumption of constant altitude

level and then, the APF can be applied easily. Furthermore,

this research merely considers the linear movement of the

obstacle and neglects the other movement of moving obsta-

cle. On the other hands, smooth trajectory must consider due

to kinematic and dynamic constraints of the robot.
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