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Abstract—The classifier chains method is one of the most
well-known methods for multi-label classification, which can
model label correlations while keeping acceptable computation-
al complexity. However, the drawbacks are that potential label
redundancies may be overlooked and label relevances have not
been specifically measured, making a rough and redundant
model. In this paper, we present a new architecture of the
classifier chains based on max-relevance and min-redundancy
feature selection method, called mRMR-CC, and provide a
dynamic learning algorithm of selection labels in the process of
classifier chains. The algorithm considers concretely not only
label correlations but also label redundancies, which allows
us to select a compact additional attributes set for each base
classifier. A series of numeric studies are performed using a
broad range of multi-label data sets with a variety of evaluation
metrics. Extensive experiments show that the proposed selective
classifier chains model leads to promising improvement on
additional attributes selection of the classifier chains method
and predictive performance.

Index Terms—Multi-label classification, Classifier chains,
Max-relevance, Min-redundancy.

I. Introduction

MULTI-LABEL classification [1] is a common classifi-
cation problem where each instance may be assigned

to multiple labels simultaneously. In recent years, the multi-
label classification problems have attracted increasing atten-
tion of many research fields, such as image annotation, text
categorization, semantic scene classification and bioinformat-
ics, among others. For instance, in the scene classification
[2], a scene may include sunsets and beaches at the same
time.

Multi-label classification methods can be divided into three
categories [3], which are problem transformation methods,
algorithm adaptation methods and ensemble methods respec-
tively. A widely used method for multi-label classification
is to conduct problem transformation that our work main-
ly concentrates on. In problem transformation methods, a
multi-label classification problem is transformed into one
or more single-label classification tasks, so that traditional
classifier learning algorithm can be used directly to deal with
multi-label classification. Two main types of methods have
been presented for problem transformation methods: binary

Manuscript received March 14, 2017; revised July 15, 2017
Ge Huang is with the Department of Mathematics and Statistics, Xidian

University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126,
China, e-mail: hg8121019@126.com.

Youlong Yang is with the Department of Mathematics and Statistics,
Xidian University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi
710126, China, e-mail: ylyang@mail.xidian.edu.cn.

Jing Bai is with the Department of Mathematics and Statistics, Xidian
University, 266 Xinglong Section of Xifeng Road, Xi’an, Shaanxi 710126,
China.

relevance method(BR) and label power-set approach(LP).
A straightforward approach for problem transformation is
binary relevance method(BR)[4], which decomposes a multi-
label classification problem into multiple binary classification
tasks. Nevertheless, it overlooks the interdependencies be-
tween labels. Thus, BR method suffers potential information
loss.

Recently, in order to overcome the existing defects in
BR method, many papers have introduced the importance
of label correlations, including theoretical analyses of label
dependence in the context of MLC [5]. In this regard,
two types of dependence have been formally distinguished,
which are conditional dependence and marginal (uncondi-
tional) dependence respectively. In conditional dependence,
the classifier chains method(CC) [6], [7] has been proposed
for incorporating label interactions based on BR method.
It includes d base classifiers linked in a chain, such that
each classifier includes the labels predicted by all previ-
ous classifiers as additional attributes. The method could
model label correlations while maintaining the acceptable
computational complexity. However, there are three existing
disadvantages for CC method: (1) label relevances have not
been specifically measured;(2) label redundancies may be
overlooked; (3) it becomes problematic for certain domains
because the number of additional attributes increases with
the number of labels. In addition to, the order of labels has
a strong impact on predictive accuracy and an ensemble of
classifier chains (ECC) is used with complicated computation
[7], [8], [9]. Besides, a multi-dimension Bayesian network
classifier [10], [11], [12] has been proposed for modeling
label relevances and defending the combinatorial explosion
of power-set approach. However, it suffers from the high
computational complexity for learning a complete Bayesian
network with numerous class variables.

In fact, the process of extending labels is corresponding
to variable selection process, and feature selection is an
important problem for pattern classification problem. When
it comes to variable selection, it is easy to think of the
max-relevance and min-redundancy feature selection algo-
rithm based on mutual information (mRMR) [13]. In this
method, mutual information is used to measure the nonlinear
dependence, which is widely applied in feature selection
and other methods [14], [15], [16], [17], [18]. The mRMR
method not only describes the relevance between a candidate
variable Xi and class Ci but also considers the redundancy
between any pair of candidate variables Xi and X j. In
addition to, to overcome the limitation of previous works,
an improvement for the mRMR algorithm has been pro-
posed in [19], which introduces the max-relevance and min-



redundancy feature selection method based on normalized
mutual information(NMIFS). Besides, other feature selection
methods have been also proposed in some papers [20], [21],
[22].

In the paper, we propose a dynamic selective classifier
chains method on the basis of max-relevance and min-
redundancy algorithm for additional attributes selection,
called mRMR-CC method. It is well known that very little
work has been reported about the redundancies between
additional attributes. Our aim is to select directly a compact
additional attributes set from all previous labels for each
base classifier, which considers concretely not only the
relevances between class labels with additional attributes
but also the redundancies between the additional attributes.
That is, for every class label Ci, the additional attributes
selection is to find an additional attributes set S i−1, which
has the maximal dependency with the target class Ci and
the minimal redundancy between additional attributes. The
method can also effectively reduce the number of additional
attributes (label variables) in the process of classifier chains.
Moreover, extensive experiments are conducted to show the
effectiveness of the proposed method.

Finally, the main contributions of the paper are as follows:
1) for each classifier, consider the redundancy between

any pair of additional attributes and reduce the number
of additional attributes.

2) measure specifically the dependency between class
label with any additional attribute at each classifier.

3) propose a dynamic process of selection labels for the
classifier chains model based on mRMR algorithm.

4) conduct numerous experiments and show the effective-
ness of the proposed method.

The rest of this paper is organized as follows: Section
2 introduces the multi-label classification and analyzes the
previous work. We discuss the max-relevance and min-
redundancy feature selection work in Section 3. In section 4,
we propose the dynamic selective classifier chains method
based on max-relevance and min-redundancy and describe
the related algorithm. The results of numerical experiments
are summarized in section 5. Finally, our conclusion and
future work are given in Sections 6.

II. Multi-label classification

In this section, we briefly review the multi-label classifica-
tion problem at first. Then we introduce the state-of-the-art
methods for multi-label classification that are used in this
paper, including the binary relevance method(BR)and the
classifier chains method(CC).

A. Multi-label classification

The multi-label classification task [1], [2], [12] is cor-
responding to searching for a function H, which assigns
each instance represented by a vector of n features val-
ues X = (x1, x2, ..., xn) of n dimensional features variable
(X1, X2, ..., Xn) to a vector of d class values C = (c1, c2, ..., cd)
of the d dimensional class variable (C1,C2, ...,Cd):

H : ΩX1 × ... ×ΩXn → ΩC1 × ... ×ΩCd

(X1, X2, ..., Xn)→ (C1,C2, ...,Cd)

here, Xi is the ith feature variable, which could be discrete
or continuous, C j represents the jth class variable that takes
value is 0 or 1. And ΩXi and ΩC j represent their sample
space, respectively. The goal of H function is to assign each
instance X to the most likely combination of classes, that is:

C∗ = argmaxc1,...,cd P(C1 = c1, ...,Cd = cd |X) (1)

B. Binary relevance method-BR

Recently, numerous methods have been proposed for deal-
ing with multi-label classification problems. The most direct
and simple approach for multi-label classification task is
binary relevance (BR) method [1], [4], [23]. The BR method
transforms a given multi-label classification task with d
labels into d binary classification tasks. More specifically,
the d labels are supposed as independent with each other
and are predicted separately in the testing phase.

The shortcoming of the technique is that it cannot model
any label dependence, which treats multi-label classification
as simple. Though the existing disadvantages of BR, it also
exhibits competitive advantages: (1) each binary classifier
can be built directly as a base classifier; (2) the complexity
is linear with respect to the numbers of labels; (3) in spite
of its simplicity, it obtains competitive results in multi-label
classification problems; (4) the BR method has been proven
theoretically and empirically that it exhibits quite strong
performance in terms of decomposable loss functions. It can
be explained from a probabilistic point of view.

C. Traditional classifier chains method-CC

On the basis of BR method, the classifier chains mod-
el(CC) has been proposed as an important improvement from
some papers[6], [7], [23]. It could be seen as an alternative
method for multi-label classification, which overcomes the
disadvantages of BR method, achieves higher performance
and maintains the computational efficiency of BR method.
As its name suggests, CC selects randomly a label ordering
and trains each binary classifier following this ordering.

In the training phase, a classifier chains model consists of
d base binary classifiers that are linked in a chain, and the
feature space of each classifier is extended with the true label
information of all previous labels in the chain. For instance,
if the chain follows the order of labels C1 → C2 → ...→ Cd,
then each classifier hi in the chain is trained to learn asso-
ciation of label Ci given (X, c1, c2, ..., ci−1). In the prediction
phase, for an unknown instance X without labels, a prediction
Ĉ = (ĉ1, ..., ĉd) is produced by successively querying each
classifier hi. However, the inputs of these classifiers are not
well-defined, since the true attributes c1, c2, ..., ci−1 are not
available at prediction stage. These missing values are there-
fore replaced by their respective predictions, for instance, c1
is replaced by ĉ1 = h1(X), ĉ1 is used by h2(X) as an additional
input, c2 is replaced by ĉ2 = h2(X), ĉ1 and ĉ2 are used by
h3(X) as additional inputs, and so forth. Finally, the class
vector is informed by concatenating the outputs of all binary
classifiers in the chain. And we select Naive Bayesian (NB)
classifier as the base classifier [24], [25], [26].

It is well known that a single CC model can be poorly
ordered. Moreover, there is the possible effect of error
propagation along the chain in classification phase. Thus,



the ensemble of classifier chains (ECC) method has been
proposed in [6], [7], [8], [9], which takes random subsets
of attributes and instances or random label orders. In this
paper, m chain classifiers are trained by changing the order
of the class variables in the chain. Finally, the label vector is
obtained by using a voting scheme. Though the ECC method
overcomes the instability of label prediction, it has quite
higher computational complexity.

Recently, the Bayesian Chain Classifiers (BCC) has been
presented in [10], [11], [12]. In the method, the parents of
each class variable are only extended as additional attributes
because we can represent the joint probability distribution of
class variables given the features as a Bayesian network. But
the main disadvantage is that learning a Bayesian network is
difficult, especially with many variables. The process is:

C∗ = argmaxc1,...,cd

d∏
i=1

P(ci|pa(Ci), X) (2)

where pa(Ci) are the parents of the ith class variable.

III. Max-relevance and min-redundancy algorithm

In this section, we introduce mainly basic max-relevance
and min-redundancy feature selection algorithm. There are
two parts: (1) introduce the entropy and mutual information;
(2) describe the max-relevance and min-redundancy feature
selection algorithm.

A. Entropy and mutual information

Shannon’s entropy function H(X) of a random variable
X measures its priori uncertainty in terms of its probability
[17]. It is widely used in different domains. The conditional
entropy function H(X|Y) represents a posteriori uncertainty
of X after Y . The MI is usually used to learn feature
subset selection method [14], which measures the amount
of uncertainty in X which is reduced if Y has been observed.

Definition 3.1([17]): For a continuous variable X, H(X) is
expressed as follows:

H(X) =

∫ +∞

−∞

ρ(x) log
1
ρ(x)

dx (3)

for discrete variable X, the H(X) is defined as:

H(X) =
∑

ρ(x) log
1
ρ(x)

(4)

and for discrete variables X and Y , the H(X|Y) is computed
as:

H(X|Y) =
∑∑

ρ(x, y) log
1

ρ(x|y)
(5)

Finally, the mutual information(MI) I(X; Y) between X and
Y can be defined as:

I(X; Y) = H(X) − H(X|Y) (6)

B. The existing max-relevance and min-redundancy algorith-
m

In recent years, the max-relevance and min-redundancy
feature selection approach has been proposed for the classi-
fication task [13], [19]. And the relevances and redundancies
between variables are measured by mutual information(MI).

Definition3.2([17]): For a classification problem, let Xi is
a candidate feature variable, X j is a selected variable, C is
the class variable, we call:

1) Relevance(Xi; C): it indicates the relevance between the
feature Xi and the class variable C by using mutual
information as a measurement.

2) Redundancy(Xi; X j): it indicates the redundancy be-
tween any pair of candidate variables Xi and X j mea-
sured by mutual information.

Definition3.3([13]): The purpose of feature selection is to
find a feature set S with m features Xi, i = 1, ...,m, it satisfies:

1) Max-Relevance: it is to find features according to
(7), which equals to the mean value of all mutual
information values between individual feature Xi and
class C:

max D(S,C), D =
1
|S|

∑
Xi∈S

I(Xi; C) (7)

2) Min-Redundancy: it is the mean value of all mutual
information values between any pair of candidate vari-
ables Xi and X j in the feature set S. The equation is
denoted as follows:

min R(S), R =
1
|S|2

∑
Xi,X j∈S

I(Xi, X j) (8)

The criterion combining the above two constraints
is called ”minimal-redundancy-maximal-relevance”(mRMR)
[13]. The operator Φ(D,R) by combining D and R is opti-
mized simultaneously by following equation:

max Φ(D,R), Φ = D/R (9)

In fact, the incremental search method can be used to find
the near-optimal features defined by Φ(.). Assume that we
have the existing feature set Sm−1 with m − 1 features. The
object is to select the mth feature from the set X−S m−1. This
is done by selecting the feature that maximizes Φ(.). Recent-
ly, an improved max-relevance and min-redundancy feature
selection algorithm based on normalized mutual information
(NMIFS) has been proposed by Vinh et al in [19]. And MI
takes value in the range [0, 1] for this algorithm. That is:

max
X j∈X−S m−1

[
I(X j; C)

min{H(X j); H(C)}
/

1
|S m−1|

∑
Xi∈S m−1

I(X j; Xi)
min{H(X j); H(Xi)}

]

(10)

IV. Selective classifier chains based on mRMR–mRMR-CC

In this section, we propose mainly the dynamic selec-
tive classifier chains method based on max-relevance and
min-redundancy algorithm, called mRMR-CC method. Our
mRMR-CC model relies on two main respects: first, it
uses the max-relevance and min-redundancy feature selection
algorithm as a measure to extend the feature space from
all previous class variables for each base classifier (inherit
attributes are viewed as unchanged). We use the normalized
mutual information NMIFS algorithm. Second, the most
probable prediction of the whole class vector is estimated
by the concatenation of the most probable individual class
variables.

The first respect is the core of research in base classifier
chains model. It is well known that the main advantage



of classifier chains method is to consider the dependencies
between class variables. In each base classifier, the attributes
space is extended by all previous class variables down the
chain. In fact, the process corresponds to a feature selection
process. Thus, in order to consider the redundancies and
relevances between class variables, we use the mRMR algo-
rithm. In second respect, since the whole abduction inference
problem is an NP-hard problem, we use the concatenation of
individual classes used widely in BR and CC.

A. Training phase

Generally, each classifier incorporates the attributes ex-
tended by all previous labels as additional attributes. At
present, the feature space is extended with true label in-
formation of the selected labels by NMIFS method at each
classifier. The following algorithm provides the selection
process of the ith class label Ci (i = 1, ..., d) for additional
attributes. Firstly, S i−1 is initially empty set and represents
the additional attributes set for label Ci (S 0 = ∅). The algo-
rithm selects additional attributes by the incremental search
method (normalized mutual information NMIFS method) at
every time and obtains a series of additional attributes sets
S 1 ⊂ S 2 ⊂ ... ⊂ S i−1 (1, 2, ..., i − 1 represents the number
of additional attributes). Then the algorithm selects compact
additional attributes set S i−1 from S 1, S 2, ..., S i−1 for label
Ci. If a candidate attribute C makes D/R(S i−1

⋃
C) value

increase, that is, the relevance between Ci and S i−1 is increas-
ing and the redundancy between any pair of variables of S i−1
is reducing, then we will keep the attribute for S i−1. Other-
wise, we remove it. Finally, the algorithm obtains S i−1 with
the largest D/R value from D/R(S 1),D/R(S 2), ...,D/R(S i−1),
which could keep the maximal relevance between the set with
Ci and the minimal redundancy between additional attributes.

We could summarize the Algorithm 1 process as follows
and initialize S i−1 = ∅, D/R(S i−1) = 0, Ai = {C1,C2, ...,Ci−1},
Ai is the candidate attributes set of the ith label Ci:

1) First, for label Ci, ∀C j ∈ Ai − S i−1, compute
{

I(C j;Ci)
min{H(C j);H(Ci)}

/ 1
|S i−1 |

∑
Cr∈S i−1

I(C j;Cr)
min{H(C j);H(Cr)} },choose C =

arg maxC j [
I(C j;Ci)

min{H(C j);H(Ci)}
/ 1
|S i−1 |

∑
Cr∈S i−1

I(C j;Cr)
min{H(C j);H(Cr)} ],

and get S 1 = S i−1
⋃

C;
2) Then, let S i−1 = S 1, repeat the above process and get

S 2 = S 1⋃C, and so forth. This leads to i−1 sequential
additional attributes sets S 1 ⊂ S 2 ⊂ ... ⊂ S i−1;

3) Compute D/R(S k) (according to (7),(8),(9) and use
normalized mutual information, label is Ci, D/R(S k)
is the D/R value of selected set S k, 1 ≤ k ≤ i − 1),
k is the number of the attributes in S k, and compare
all D/R(S k) values of the i − 1 sequential additional
attributes sets, finally select the S k with the largest
D/R value. Thus S i−1 = S k is the compact additional
attributes set of label Ci.

The method provides a dynamic process of selection labels
for each base classifier in the classifier chains. The specific
training process is as follows: first, we randomly select a
label ordering, C1 → C2 → ... → Cd, which consists of d
base binary classifiers. Then, each classifier hi(i = 1, ..., d)
in the chain is trained to learn the association of label Ci

given (X, S i−1), where S i−1 represents the selected additional
attributes set in the ith classifier from all previous class
variables along the chain. That is, for each classifier hi, the

training data consists of instance (X, S i−1) labeled with Ci.
The dynamic training process is defined as Algorithm 2:

Algorithm 2: mRMR-CC’s training phase for the training set
Training(D = {(X1,C1), ..., (XN ,CN)})

1 for i = 1, ..., d
2 Do . the ith binary transformation and training
3 D′i ← {}
4 for (X,C) ∈ D
5 return Algorithm 1 get S i−1
6 do X′ ← [x1, ..., xn, S i−1]
7 D′i ← D′i

⋃
(X′,Ci)

8 . train hi to predict binary relevance of Ci

9 do D′i → {0, 1}

The training process is shown in Fig. 1 and Fig. 2. We
assume these labels are C1,C2,C3 and C4. Fig. 1 represents
the whole selection process, Fig. 2 is the base classifier
for label Ci – Naive Bayesian classifier (NB). NB classifier
is a simple and effective classifier, which is widely used
in classification problems. And it takes advantage of the
conditional independence assumption, which makes model
simplification. In our method, we consider mainly the extend-
ing process of labels in CC. Thus we select uniformly NB
classifier as the base classifier. And the prediction structure
is the same as the training structure:

X

1 C 2 C 4 C3 C

mRMR

mRMR

2 
s1 

s

mRMR

3 
s

Fig. 1. Dynamic selective classifier chains method – mRMR-CC
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1 
x

2 
x nx  1is

Fig. 2. The base classifier of mRMR-CC

B. Prediction phase

For the classifier chains method, the actually observed
labels values c1, ..., ci−2 and ci−1 are available as additional
attributes to train the binary classifier hi only during the
training stage, whereas this information is unknown for
predicting the ith label Ci of a new instance. Thus, in order
to make the mRMR-CC applicable, these values are replaced



by their respective predictions. In the prediction process of
label Ci, the extended attributes are also the element of S i−1
determined by training process. For an unknown instance X,
c1 is replaced by ĉ1 = h1(X), and we could obtain the Ŝ 1,
then Ŝ 1 is used by h2(X) as an additional attributes set. c2
is replaced by ĉ2 = h2(X), and we could obtain the Ŝ 2, Ŝ 2
is used by h3(X) as an additional attributes set, and so on.
Finally, we could obtain Ŝ i−1. The whole testing process of
the label Ci is represented in Algorithm3(Ŝ 0 = ∅):

Algorithm 3: mRMR-CC’s prediction phase for the testing set
Classify(X)

1 . global h = (h1, ..., hd)
2 C ← [ĉ1, ..., ĉd]
3 for i = 1, ..., d
4 predict c1, ..., ci−1 and get Ŝ i−1

5 do X′ ← [x1, ..., xn, Ŝ i−1]
6 ĉi ← hi(X′)
7 return Ĉ

The method leads to promising improvement on exploiting
the relevances and redundancies between labels. It does not
include other processes. Like Bayesian Chain Classifiers
method(BCC), it learns the label dependence structure with
a preprocessing step. But the mRMR-CC method considers
the relevances and redundancies between labels by using a
dynamic and direct process. Especially, it is quite effective
with many label variables.

C. Computational complexity

Firstly, the BR’s complexity is O(d × f (n,N)), where
f (n,N) represents the complexity of the n attributes and N
samples in each classifier. The CC’s complexity is computed
as O(d× f (n + d,N)), and the number of additional attributes
is d at most. Assume that each classifier is linear, the
f (n,N) becomes n f (1,N). Then, the CC’s complexity is
O(d × f (n + d,N)) = O(d × n × f (1,N) + d × d × f (1,N)).
When d ≤ n, the O(d × n × f (1,N) + d × d × f (1,N)) is
approximately equal to O(d×n× f (1,N)), which corresponds
to the complexity of BR. The O(d×n× f (1,N)+d×d× f (1,N))
is approximately equal to O(d×d× f (1,N)) when n ≤ d. The
mRMR-CC method mainly intends to select compact addi-
tional attributes set for CC method, which greatly reduces the
number of additional attributes. That is, the d is reduced. And
the complexity of CC is also reduced when the d is reduced
without considering other processes, which is significative
for CC method.

V. Numeric experiments

In the section, to verify the effectiveness of the proposed
mRMR-CC method, we test it with four continuous data
sets and five discrete data sets in MATLAB. For these data
sets, we empirically evaluate the mRMR-CC and compare it
against other state-of-the-art multi-label classifiers.

A. Data sets

In this experiment, nine benchmark datasets are used with
media, biology, and text three different application areas [27].
These data sets are described concretely in TABLE I: N is
the size of the data set, d is the number of binary classes

or labels, n is the number of features, a indicates numeric
attributes and b indicates binary attributes. All class variables
are binary and the attributes are discrete or continuous in
these data sets. These data sets are not dealt with additional
process like discretization approach. Each base classifier uses
Naive Bayesian classifier.

TABLE I
TheMulti-label Datasets used in the experiment

Datasets N d n LC PU PM DOMAIN

Emotion 590 6 72a 1.87 0.046 0.137 media
Scene 2407 6 294a 1.07 0.006 0.168 media
Yeast 2417 14 103a 4.24 0.082 0.098 biology

Slashdot 3782 22 1079b 1.18 0.041 0.139 text
Genbase 661 27 1185b 1.25 0.048 0.257 biology
Medical 978 45 1449b 1.25 0.096 0.158 text
Enron 1702 53 1001b 3.38 0.442 0.096 text

Langlog 1460 75 1004b 1.18 0.208 0.142 text
Retures 6000 103 500a 1.46 0.147 0.064 text

Besides, there are sparse labels in some data sets, such
as Genbase, Medical and so on [28], [29]. In these datasets,
the distributions of labels are unbalanced, which cause some
redundant information between labels. Thus we firstly reduce
some sparse labels from these datesets since we mainly
intend to test our experiments on dense labels for their
relevances and redundancies.

B. Multi-label evaluation metrics

Recently, several evaluation metrics have been used to
measure the performances of multi-label classifiers [7], [12].
These metrics are parted into two respects: (1) evaluating
the performance of the multi-label classifier over each class
independently of the rest. (2) measuring the performance
of all the classes at the same time. Thus, to verify the
effectiveness of this method, we select some evaluation
metrics from two respects. These evaluation metrics are
described as follows:

1) Mean accuracy of the d class variables:

M − Acc =
1
d

d∑
j=1

1
N

N∑
i=1

δ(c′i j, ci j) (11)

where c′i j denotes the C j class value predicted by the
model for instance i and ci j is its true value, and
δ(c′i j, ci j) = 1 if c′i j = ci j and 0 otherwise.

2) Hamming Loss is the simplest loss function, which is
defined as:

Hamming Loss = 1 −
1
N

N∑
i=1

1
d

d∑
j=1

δ(c′i j, ci j) (12)

3) F-measure is also called the harmonic mean between
precision and recall, and it is calculated per label and
then averaged. In order to distinguish two types of F-
measure, we call it as F-measure1:

F − measure1 =
1
d

d∑
j=1

1
N

N∑
i=1

2pi jri j

(pi j + ri j)
(13)

where pi j and ri j are the precision and recall for C j

and instance i.



4) 0/1 Loss as a loss measure:

0/1 Loss = 1 −
1
N

N∑
i=1

δ(C′i ,Ci) (14)

where δ(C′i ,Ci) = 1 if C′i = Ci and 0 otherwise. We
call for a total coincidence on all components of the
vector of predicted classes C′i and the vector of real
classes Ci.

5) Multi-label accuracy is also called Jaccard measure,
which is defined as follows:

ML − Acc =
1
N

N∑
i=1

|C′i ∧Ci|

|C′i ∨Ci|
(15)

where in the numerator we count the number of
coincidences of the two vectors, and the denominator
we count the number of labels covered by some of
both vectors.

6) Another F-measure is based-sample set evaluation, and
we call it as F-measure2: where pi and ri are the
precision and the recall for C j.

F − measure2 =
1
N

N∑
i=1

2piri

(pi + ri)
(16)

C. Experiments and conclusion

In this section, different experiment methods are used to
compare the proposed mRMR-CC method. These methods
include CC, ECC, the tree Naive Bayesian chain classifier
(TNBCC)and Path-Bayesian chain classifier(Path-BCC)[12].
Our method mainly intends to improve base CC method, thus
we compare it with CC method at first. Then on the basis of
it, we compare other multi-label classification methods with
our method in pairs. Finally, we compare all methods and
get the average ranking for each evaluation metric. Since
the numbers of the variables and samples are different in
these data sets, we use 10-cold cross-validation for the first
three smaller data sets and 5-cold cross-validation for the
remaining larger data sets. These comparisons are divided
into the following three parts:

1) mRMR-CC against traditional classifier chains method.
2) mRMR-CC against the ensemble of classifier chains,

the tree Naive Bayesian chain classifier and the Path-
Bayesian chain classifier in pairs.

3) the whole comparison.
1) mRMR-CC vs CC: In this section, we compare mainly

the base CC and the selective classifier chains mRMR-CC.
These results are shown in the Table II: (a)in ML-Acc, we
obtain five wins; (b)in M-Acc, F-measure 1,F-measure 2 and
Hamming Loss, the mRMR-CC outperforms the CC in six
datasets; (c)in 0/1 Loss, our method obtains seven wins. On
the one hand, from the Table II, it can be shown that in
average, the mRMR-CC method achieves better performance
than traditional CC in most data sets.

On the other hand, these results are shown in the Fig. 3.
These figures represent the performance of CC and mRMR-
CC in M-Acc, ML-Acc, F-measure1, F-measure2, 0/1 Loss,
Hamming Loss,respectively. In the Fig. 3 (a)-(d), the higher
the evaluation value, the better. We could see that the pro-
posed mRMR-CC method is better than the traditional chains
classifiers. In the Fig. 3 (e)-(f), the lower the evaluation

value, the better. The mRMR-CC method outperforms the
CC method in most data sets. The size of the change is
not very obvious since the number of labels is far less
than the number of features in most multi-label data sets.
However, in terms of performance, the experiment shows that
considering redundant information between classes clearly
benefits traditional classifier chains method.

TABLE II
The comparison of the CC and the mRMR-CC method

Datasets mRMR-CC CC mRMR-CC CC

M-Acc F-measure1

Emotion 0.7417 ± 0.0280 0.7403 ± 0.0314 0.5112 ± 0.0401 0.5029 ± 0.0568

Scene 0.7782 ± 0.0090 0.8018 ± 0.0061 0.1725 ± 0.0574 0.0855 ± 0.0074

Yeast 0.6703 ± 0.0090 0.6753 ± 0.0129 0.3835 ± 0.0178 0.3624 ± 0.0092

Slashdot 0.9473 ± 0.0033 0.9272 ± 0.0031 0.4283 ± 0.0446 0.4309 ± 0.0446
Genbase 0.9816 ± 0.0077 0.9814 ± 0.0078 0.7447 ± 0.0631 0.7445 ± 0.0636

Medical 0.8807 ± 0.0068 0.8696 ± 0.0090 0.2812 ± 0.0043 0.2787 ± 0.0001

Enron 0.7029 ± 0.0182 0.7029 ± 0.0182 0.4230 ± 0.0139 0.4227 ± 0.0076

Langlog 0.4916 ± 0.0338 0.4936 ± 0.0347 0.1728 ± 0.0146 0.1740 ± 0.0155
Retures 0.9494 ± 0.0018 0.9494 ± 0.0018 - -

0/1 Loss ML-Acc

Emotion 0.8264 ± 0.0383 0.8265 ± 0.0322 0.4778 ± 0.0498 0.4724 ± 0.0555

Scene 0.9165 ± 0.0197 0.8638 ± 0.0133 0.1844 ± 0.0248 0.1452 ± 0.0150

Yeast 0.9905 ± 0.0047 0.9909 ± 0.0028 0.3473 ± 0.0136 0.3482 ± 0.0145
Slashdot 0.2800 ± 0.0159 0.2792 ± 0.0151 0.1858 ± 0.0127 0.1868 ± 0.0124
Genbase 0.0620 ± 0.0211 0.0629 ± 0.0213 0.1200 ± 0.0200 0.1100 ± 0.0211

Medical 0.4885 ± 0.0235 0.5269 ± 0.0308 0.2899 ± 0.0002 0.2732 ± 0.0238

Enron 0.8628 ± 0.0245 0.8628 ± 0.0245 0.3784 ± 0.0102 0.3784 ± 0.0102

Langlog 0.8582 ± 0.0125 0.8588 ± 0.0125 0.0813 ± 0.0075 0.0819 ± 0.0084
Retures 0.2750 ± 0.0068 0.2750 ± 0.0068 - -

F-measure2 Hamming Loss

Emotion 0.6164 ± 0.0541 0.6105 ± 0.0593 0.2583 ± 0.0280 0.2597 ± 0.0031

Scene 0.2254 ± 0.0375 0.1495 ± 0.0161 0.2218 ± 0.0090 0.1982 ± 0.0061
Yeast 0.5060 ± 0.0149 0.5027 ± 0.0143 0.3502 ± 0.0091 0.3247 ± 0.0129

Slashdot 0.1896 ± 0.0120 0.1906 ± 0.0120 0.0526 ± 0.0032 0.0628 ± 0.0031

Genbase 0.1127 ± 0.0230 0.1124 ± 0.0200 0.0101 ± 0.0021 0.0102 ± 0.0032

Medical 0.3265 ± 0.0025 0.3165 ± 0.0166 0.1193 ± 0.0068 0.1305 ± 0.0090

Enron 0.4791 ± 0.0020 0.4791 ± 0.0020 0.2971 ± 0.0182 0.2971 ± 0.0182

Langlog 0.1315 ± 0.0116 0.1319 ± 0.0125 0.5084 ± 0.0339 0.5064 ± 0.0347
Retures - - 0.0506 ± 0.0018 0.0506 ± 0.0018

TABLE III
The comparison of the ECC and the mRMR-CC method

Datasets mRMR-CC ECC mRMR-CC ECC

M-Acc F-measure1

Emotion 0.7417 ± 0.0280 0.7298 ± 0.0569 0.5112 ± 0.0401 0.5134 ± 0.0530
Scene 0.7782 ± 0.0090 0.7966 ± 0.0047 0.1725 ± 0.0574 0.1138 ± 0.0164

Yeast 0.6703 ± 0.0090 0.6708 ± 0.0115 0.3835 ± 0.0178 0.3886 ± 0.0141
Slashdot 0.9473 ± 0.0033 0.9270 ± 0.0031 0.4283 ± 0.0446 0.4268 ± 0.0461

Genbase 0.9816 ± 0.0077 0.9815 ± 0.0078 0.7447 ± 0.0631 0.7440 ± 0.0567

Medical 0.8807 ± 0.0068 0.8696 ± 0.0090 0.2812 ± 0.0043 0.2787 ± 0.0001

Enron 0.7029 ± 0.0182 0.7029 ± 0.0182 0.4230 ± 0.0139 0.4230 ± 0.0139

Langlog 0.4916 ± 0.0338 0.4936 ± 0.0347 0.1728 ± 0.0146 0.1740 ± 0.0155
Retures 0.9494 ± 0.0018 0.9494 ± 0.0018 - -

0/1 Loss ML-Acc

Emotion 0.8264 ± 0.0383 0.8281 ± 0.0338 0.4778 ± 0.0498 0.4813 ± 0.0504
Scene 0.9165 ± 0.0197 0.8714 ± 0.0188 0.1844 ± 0.0248 0.1330 ± 0.0191

Yeast 0.9905 ± 0.0047 0.9921 ± 0.0027 0.3473 ± 0.0136 0.3500 ± 0.0121
Slashdot 0.2800 ± 0.0159 0.2787 ± 0.0138 0.1858 ± 0.0127 0.1856 ± 0.0120

Genbase 0.0620 ± 0.0211 0.0628 ± 0.0213 0.1200 ± 0.0200 0.1105 ± 0.0220

Medical 0.4885 ± 0.0235 0.5264 ± 0.0302 0.2899 ± 0.0002 0.2732 ± 0.0238

Enron 0.8628 ± 0.0245 0.8628 ± 0.0245 0.3784 ± 0.0102 0.3784 ± 0.0102

Langlog 0.8582 ± 0.0125 0.8599 ± 0.0125 0.0813 ± 0.0075 0.0817 ± 0.0082
Retures 0.2750 ± 0.0068 0.2750 ± 0.0068 - -

F-measure2 Hamming Loss

Emotion 0.6164 ± 0.0541 0.6194 ± 0.0558 0.2583 ± 0.0280 0.2683 ± 0.0280

Scene 0.2254 ± 0.0375 0.1364 ± 0.0196 0.2218 ± 0.0090 0.2034 ± 0.0470
Yeast 0.5060 ± 0.0149 0.5076 ± 0.0145 0.3502 ± 0.0091 0.3292 ± 0.0115

Slashdot 0.1896 ± 0.0120 0.1893 ± 0.0116 0.0526 ± 0.0032 0.0527 ± 0.0029

Genbase 0.1127 ± 0.0230 0.1125 ± 0.0231 0.0101 ± 0.0021 0.0102 ± 0.0031

Medical 0.3265 ± 0.0025 0.3165 ± 0.0166 0.1193 ± 0.0068 0.1305 ± 0.0090

Enron 0.4791 ± 0.0020 0.4791 ± 0.0020 0.2971 ± 0.0182 0.2971 ± 0.0182

Langlog 0.1315 ± 0.0116 0.1319 ± 0.0125 0.5084 ± 0.0339 0.5064 ± 0.0347
Retures - - 0.0506 ± 0.0018 0.0506 ± 0.0018

2) mRMR-CC vs ECC, TNBCC and Path-BCC: (a) There
are some comparisons between the mRMR-CC and ECC.
In order to conduct the ECC method, we adopt the voting
method by selecting different classifier chains. Obviously,
the complexity of ECC is higher than CC method. From



the Table III, in F-measure1, ML-Acc and F-measure2, we
obtain five wins; in M-Acc and Hamming Loss, the mRMR-
CC wins ECC in six data sets; and in 0/1 Loss, our method
outperforms ECC in seven datasets. In addition to, there is
high computational complexity in the ensemble of classifier
chains. Finally, the results show that the mRMR-CC is an
effective approach.

TABLE IV
The comparison of the TNBCC and the mRMR-CC methods

Datasets mRMR-CC TNBCC mRMR-CC TNBCC

M-Acc F-measure1

Emotion 0.7417 ± 0.0280 0.7266 ± 0.0302 0.5112 ± 0.0401 0.5207 ± 0.0560
Scene 0.7782 ± 0.0090 0.7859 ± 0.0149 0.1725 ± 0.0574 0.2629 ± 0.0018
Yeast 0.6703 ± 0.0090 0.7085 ± 0.0139 0.3835 ± 0.0178 0.4584 ± 0.0125

Slashdot 0.9473 ± 0.0033 0.9478 ± 0.0032 0.4283 ± 0.0446 0.4269 ± 0.0456

Genbase 0.9816 ± 0.0077 0.9815 ± 0.0077 0.7447 ± 0.0631 0.7446 ± 0.0629

Medical 0.8807 ± 0.0068 0.8805 ± 0.0068 0.2812 ± 0.0043 0.2813 ± 0.0043
Enron 0.7029 ± 0.0182 0.7028 ± 0.0174 0.4230 ± 0.0139 0.4269 ± 0.0131

Langlog 0.4916 ± 0.0338 0.4936 ± 0.0393 0.1728 ± 0.0146 0.1738 ± 0.0155
Retures 0.9494 ± 0.0018 0.9494 ± 0.0018 - -

0/1 Loss ML-Acc

Emotion 0.8264 ± 0.0383 0.8669 ± 0.0337 0.4778 ± 0.0498 0.4642 ± 0.0464

Scene 0.9165 ± 0.0197 0.8600 ± 0.0302 0.1844 ± 0.0248 0.2718 ± 0.0344
Yeast 0.9905 ± 0.0047 0.8953 ± 0.0161 0.3473 ± 0.0136 0.4578 ± 0.0151

Slashdot 0.2800 ± 0.0159 0.2855 ± 0.0122 0.1858 ± 0.0127 0.1848 ± 0.0128

Genbase 0.0620 ± 0.0211 0.0621 ± 0.0211 0.1200 ± 0.0200 0.1199 ± 0.0100

Medical 0.4885 ± 0.0235 0.4885 ± 0.0235 0.2899 ± 0.0002 0.2899 ± 0.0002

Enron 0.8628 ± 0.0245 0.8630 ± 0.0245 0.3784 ± 0.0102 0.3793 ± 0.0096
Langlog 0.8582 ± 0.0125 0.8590 ± 0.0125 0.0813 ± 0.0075 0.0817 ± 0.0075
Retures 0.2750 ± 0.0068 0.2750 ± 0.0068 - -

F-measure2 Hamming Loss

Emotion 0.6164 ± 0.0541 0.6072 ± 0.0564 0.2583 ± 0.0280 0.2734 ± 0.0302

Scene 0.2254 ± 0.0375 0.3279 ± 0.0467 0.2218 ± 0.0090 0.2140 ± 0.0149
Yeast 0.5060 ± 0.0149 0.6114 ± 0.0121 0.3502 ± 0.0091 0.2915 ± 0.0139

Slashdot 0.1896 ± 0.0120 0.1885 ± 0.0121 0.0526 ± 0.0032 0.0524 ± 0.0030
Genbase 0.1127 ± 0.0230 0.1126 ± 0.0231 0.0101 ± 0.0021 0.0102 ± 0.0031

Medical 0.3265 ± 0.0025 0.3265 ± 0.0025 0.1193 ± 0.0068 0.1290 ± 0.0068

Enron 0.4791 ± 0.0020 0.4801 ± 0.0017 0.2971 ± 0.0182 0.2971 ± 0.0177

Langlog 0.1315 ± 0.0116 0.1319 ± 0.0117 0.5084 ± 0.0339 0.5092 ± 0.0336

Retures - - 0.0506 ± 0.0018 0.0506 ± 0.0018

TABLE V
The comparison of the Path-BCC and the mRMR-CC methods

Datasets mRMR-CC Path-BCC mRMR-CC Path-BCC

M-Acc F-measure1

Emotion 0.7417 ± 0.0280 0.7269 ± 0.0190 0.5112 ± 0.0401 0.5003 ± 0.0450

Scene 0.7782 ± 0.0090 0.7843 ± 0.0152 0.1725 ± 0.0574 0.2618 ± 0.0481
Yeast 0.6703 ± 0.0090 0.7108 ± 0.0139 0.3835 ± 0.0178 0.4463 ± 0.0222

Slashdot 0.9473 ± 0.0033 0.9478 ± 0.0032 0.4283 ± 0.0446 0.4269 ± 0.0456

Genbase 0.9816 ± 0.0077 0.9815 ± 0.0077 0.7447 ± 0.0631 0.7446 ± 0.0629

Medical 0.8807 ± 0.0068 0.8807 ± 0.0068 0.2812 ± 0.0043 0.2813 ± 0.0043
Enron 0.7029 ± 0.0182 0.7029 ± 0.0192 0.4230 ± 0.0139 0.4214 ± 0.0162

Langlog 0.4916 ± 0.0338 0.4928 ± 0.0337 0.1728 ± 0.0146 0.1746 ± 0.0156
Retures 0.9494 ± 0.0018 0.9475 ± 0.0047 - -

0/1 Loss ML-Acc

Emotion 0.8264 ± 0.0383 0.8702 ± 0.0360 0.4778 ± 0.0498 0.4592 ± 0.0397

Scene 0.9165 ± 0.0197 0.8712 ± 0.0356 0.1844 ± 0.0248 0.2723 ± 0.0389
Yeast 0.9905 ± 0.0047 0.9073 ± 0.0355 0.3473 ± 0.0136 0.4491 ± 0.0223

Slashdot 0.2800 ± 0.0159 0.2855 ± 0.0122 0.1858 ± 0.0127 0.1848 ± 0.0128

Genbase 0.0620 ± 0.0211 0.0621 ± 0.0211 0.1200 ± 0.0200 0.1199 ± 0.0100

Medical 0.4885 ± 0.0235 0.4885 ± 0.0235 0.2899 ± 0.0002 0.2899 ± 0.0002

Enron 0.8628 ± 0.0245 0.8635 ± 0.0290 0.3784 ± 0.0102 0.3781 ± 0.0117

Langlog 0.8582 ± 0.0125 0.8582 ± 0.0125 0.0813 ± 0.0075 0.0820 ± 0.0079
Retures 0.2750 ± 0.0068 0.2750 ± 0.0068 - -

F-measure2 Hamming Loss

Emotion 0.6164 ± 0.0541 0.6017 ± 0.0505 0.2583 ± 0.0280 0.2732 ± 0.0190

Scene 0.2254 ± 0.0375 0.3207 ± 0.0461 0.2218 ± 0.0090 0.2170 ± 0.0162
Yeast 0.5060 ± 0.0149 0.6030 ± 0.0180 0.3502 ± 0.0091 0.2920 ± 0.0163

Slashdot 0.1896 ± 0.0120 0.1885 ± 0.0121 0.0526 ± 0.0032 0.0524 ± 0.0030
Genbase 0.1127 ± 0.0230 0.1126 ± 0.0231 0.0101 ± 0.0021 0.0102 ± 0.0031

Medical 0.3265 ± 0.0025 0.3265 ± 0.0025 0.1193 ± 0.0068 0.1291 ± 0.0068

Enron 0.4791 ± 0.0020 0.4792 ± 0.0029 0.2971 ± 0.0182 0.2971 ± 0.0192

Langlog 0.1315 ± 0.0116 0.1322 ± 0.0121 0.5084 ± 0.0339 0.5072 ± 0.0337
Retures - - 0.0506 ± 0.0018 0.0506 ± 0.0018

(b) The next experiment compares the mRMR-CC and the
TNBCC. The comparison is shown in Table IV based on
six evaluation metrics. It is well known that the TNBCC
method is a superior method against other methods in multi-
label classifier. From the Table IV, we could summarize these

results: (i) in ML-Acc and F-measure2, we obtain four wins;
(ii) our method obtains five wins in M-Acc; (iii) the proposed
mRMR-CC method obtains six wins in Hamming Loss; (iv)
in 0/1 Loss, our method outperforms CC in seven data sets.
Besides, in F-measure1, the performance of TNBCC is better
than our method in six datasets.

According to these results, we could conclude that the
mRMR-CC method is a competitive method against the
TNBCC method. And the mRMR-CC method need not
specially learn a dependence structure like TNBCC method.
And the mRMR-CC method is used by a direct way. As
a whole, the mRMR-CC method could lead to significative
results.

TABLE VI
The comparison in all algorithms

Datasets mRMR-CC CC ECC TNBCC Path-BCC

M-Acc

Emotion 0.7417(1.0) 0.7403(2.0) 0.7298(3.0) 0.7266(5.0) 0.7269(4.0)

Scene 0.7782(5.0) 0.8018(1.0) 0.7966(2.0) 0.7859(3.0) 0.7843(4.0)

Yeast 0.6703(5.0) 0.6753(3.0) 0.6708(4.0) 0.7085(2.0) 0.7108(1.0)

Slashdot 0.9473(3.0) 0.9272(4.0) 0.9270(5.0) 0.9478(1.5) 0.9478(1.5)

Genbase 0.9816(1.0) 0.9814(5.0) 0.9815(3.0) 0.9815(3.0) 0.9815(3.0)

Medical 0.8807(1.5) 0.8696(4.5) 0.8696(4.5) 0.8805(3.0) 0.8807(1.5)

Enron 0.7029(2.5) 0.7029(2.5) 0.7029(2.5) 0.7028(5.0) 0.7029(2.5)

Langlog 0.4916(5.0) 0.4936(2.0) 0.4936(2.0) 0.4936(2.0) 0.4928(4.0)

Retures 0.9494(2.5) 0.9494(2.5) 0.9494(2.5) 0.9494(2.5) 0.9475(5.0)

Average Ranking 2.94 2.94 3.17 3.00 2.94

ML-Acc

Emotion 0.4778(2.0) 0.4724(3.0) 0.4813(1.0) 0.4642(4.0) 0.4592(5.0)

Scene 0.1844(3.0) 0.1452(4.0) 0.1330(5.0) 0.2718(2.0) 0.2723(1.0)

Yeast 0.3473(5.0) 0.3482(4.0) 0.3500(3.0) 0.4578(1.0) 0.4491(2.0)

Slashdot 0.1858(2.0) 0.1868(1.0) 0.1856(3.0) 0.1848(4.5) 0.1848(4.5)

Genbase 0.1200(1.0) 0.1100(5.0) 0.1105(4.0) 0.1199(2.5) 0.1199(2.5)

Medical 0.2899(2.0) 0.2732(4.5) 0.2732(4.5) 0.2899(2.0) 0.2899(2.0)

Enron 0.3784(3.0) 0.3784(3.0) 0.3784(3.0) 0.3793(1.0) 0.3781(5.0)

Langlog 0.0813(5.0) 0.0819(2.0) 0.0817(3.5) 0.0817(3.5) 0.0820(1.0)

Retures - - - - -

Average Ranking 2.88 3.31 3.38 2.56 2.88

Hamming Loss

Emotion 0.2583(1.0) 0.2597(2.0) 0.2683(3.0) 0.2734(5.0) 0.2732(4.0)

Scene 0.2218(5.0) 0.1982(1.0) 0.2034(2.0) 0.2140(3.0) 0.2170(4.0)

Yeast 0.3502(5.0) 0.3247(3.0) 0.3292(4.0) 0.2915(1.0) 0.2920(2.0)

Slashdot 0.0526(3.0) 0.0628(5.0) 0.0527(4.0) 0.0524(1.5) 0.0524(1.5)

Genbase 0.0101(1.0) 0.0102(3.5) 0.0102(3.5) 0.0102(3.5) 0.0102(3.5)

Medical 0.1193(1.0) 0.1305(4.5) 0.1305(4.5) 0.1290(2.0) 0.1291(3.0)

Enron 0.2971(3.0) 0.2971(3.0) 0.2971(3.0) 0.2971(3.0) 0.2971(3.0)

Langlog 0.5084(4.0) 0.5064(1.5) 0.5064(1.5) 0.5092(5.0) 0.5072(3.0)

Retures 0.0506(3.0) 0.0506(3.0) 0.0506(3.0) 0.0506(3.0) 0.0506(3.0)

Average Ranking 2.89 2.94 3.17 3.00 3.00

0/1 Loss

Emotion 0.8264(1.0) 0.8265(2.0) 0.8281(3.0) 0.8669(4.0) 0.8702(5.0)

Scene 0.9165(5.0) 0.8638(2.0) 0.8714(4.0) 0.8600(1.0) 0.8712(3.0)

Yeast 0.9905(3.0) 0.9909(4.0) 0.9921(5.0) 0.8953(1.0) 0.9073(2.0)

Slashdot 0.2800(3.0) 0.2792(2.0) 0.2787(1.0) 0.2855(4.5) 0.2855(4.5)

Genbase 0.0620(1.0) 0.0629(5.0) 0.0628(4.0) 0.0621(2.5) 0.0621(2.5)

Medical 0.4885(2.0) 0.5269(5.0) 0.5264(4.0) 0.4885(2.0) 0.4885(2.0)

Enron 0.8628(2.0) 0.8628(2.0) 0.8628(2.0) 0.8630(4.0) 0.8635(5.0)

Langlog 0.8582(1.5) 0.8588(3.0) 0.8599(5.0) 0.8590(4.0) 0.8582(1.5)

Retures 0.2750(3.0) 0.2750(3.0) 0.2750(3.0) 0.2750(3.0) 0.2750(3.0)

Average Ranking 2.39 3.11 3.44 2.89 3.17

F-measure1

Emotion 0.5112(3.0) 0.5029(4.0) 0.5134(2.0) 0.5207(1.0) 0.5003(5.0)

Scene 0.1725(3.0) 0.0855(5.0) 0.1138(4.0) 0.2629(1.0) 0.2618(2.0)

Yeast 0.3835(4.0) 0.3624(5.0) 0.3886(3.0) 0.4584(1.0) 0.4463(2.0)

Slashdot 0.4283(2.0) 0.4309(1.0) 0.4268(5.0) 0.4269(3.5) 0.4269(3.5)

Genbase 0.7447(1.0) 0.7445(4.0) 0.7440(5.0) 0.7446(2.5) 0.7446(2.5)

Medical 0.2812(3.0) 0.2787(4.5) 0.2787(4.5) 0.2813(1.5) 0.2813(1.5)

Enron 0.4230(2.5) 0.4227(4.0) 0.4230(2.5) 0.4269(1.0) 0.4214(5.0)

Langlog 0.1728(5.0) 0.1740(2.5) 0.1740(2.5) 0.1738(4.0) 0.1746(1.0)

Retures - - - - -

Average Ranking 2.94 3.75 3.56 1.94 2.81

F-measure2

Emotion 0.6164(2.0) 0.6105(3.0) 0.6194(1.0) 0.6072(4.0) 0.6017(5.0)

Scene 0.2254(3.0) 0.1495(4.0) 0.1364(5.0) 0.3279(1.0) 0.3207(2.0)

Yeast 0.5060(4.0) 0.5027(5.0) 0.5076(3.0) 0.6114(1.0) 0.6030(2.0)

Slashdot 0.1896(2.0) 0.1906(1.0) 0.1893(3.0) 0.1885(4.5) 0.1885(4.5)

Genbase 0.1127(1.0) 0.1124(5.0) 0.1125(4.0) 0.1126(2.5) 0.1126(2.5)

Medical 0.3265(2.0) 0.3165(4.5) 0.3165(4.5) 0.3265(2.0) 0.3265(2.0)

Enron 0.4791(4.0) 0.4791(4.0) 0.4791(4.0) 0.4801(1.0) 0.4792(2.0)

Langlog 0.1315(5.0) 0.1319(3.0) 0.1319(3.0) 0.1319(3.0) 0.1322(1.0)

Retures - - - - -

Average Ranking 2.88 3.69 3.44 2.38 2.63
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Fig. 3. The results on the test data for CC and mRMR-CC method. From (a)-(f), these figures show the experimental results of six evaluation metrics
in different data sets.

(c) The proposed mRMR-CC and the Path-BCC method
are compared in the section. The Path-BCC method incor-
porates all previous classes in the path towards the root of
the tree as additional attributes. Detailed experiment results
are summarized in Table V. From the Table V, the mRMR-
CC is also effective than the Path-BCC method. In terms of
the results, in F-measure1 and F-measure2, we obtain four
wins; in M-Acc, ML-Acc and Hamming Loss, our method
has five wins, and in 0/1 Loss, our method outperforms
the CC method in seven data sets. Though the Path-BCC
uses all previous classes as additional attributes for each
base classifier, it also exists redundant information between
classes. Thus, the experiment shows that using redundant
labels is not beneficial to multi-label classification. The result
value 0 (Retures) is not given in these tables.

3) the whole comparison: Finally, on the one hand, we
compare the proposed mRMR-CC method with other meth-

ods and conclude these comparisons results in Table VI. We
only summarize the mean value of each evaluation metric.
The Table VI shows the average ranking of each algorithm in
all evaluation metrics and all datasets. In M-Acc, Hamming
Loss and 0/1 Loss, the mRMR-CC is ranked first in all
algorithms. In ML-Acc, the method is ranked second in
all methods. In F-measure1 and F-measure2, our method is
ranked third in all methods. On average, the mRMR-CC is
better than these multi-label methods.

On the other hand, these results are shown in the Fig. 4 and
Fig. 5. In Fig. 4 and Fig. 5, the lower the value of average
ranking, the better. The average rankings of mRMR-CC and
CC in six evaluation measures are shown in Fig. 4. In Fig. 4,
we could find that the mRMR-CC method is all ranked first
in the two methods. On the whole, the proposed mRMR-CC
method can improve the classifier chains method and has
competitive results in terms of predictive performance.
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Fig. 5. The Average Rankings of all methods in Different Metrics.

And these results are described more clearly in Fig. 5. In
Fig. 5 (a), we describe the average rankings of all methods in
M-Acc, Hamming Loss and 0/1 Loss. We could find that the
proposed mRMR-CC method is ranked first in all algorithms.
The average rankings of all methods in ML-Acc, F-measure1
and F-measure2 are concluded in Fig. 5 (b). In ML-Acc,
the method is ranked second in all algorithms, and in F-
measure1 and F-measure2, it is ranked third in all methods.
Thus, we could conclude that the mRMR-CC method leads
to the promising improvement on the CC method. And the
mRMR-CC method could consider all information between
labels.

VI. Conclusion and future work

Although multi-label classification can be seen as a simple
extension of the well-studied single-class classification, it
comes with the challenge that labels generally display de-
pendencies and redundancies amongst each other. In view of
the classifier chains method, this paper proposes a dynamic
process of selection labels based on the max-relevance and
min-redundancy feature selection algorithm. To that end, the
original input space is extended with the selected labels
set for each classifier. Traditional classifier chains method
only takes into account the dependencies between labels.
The main goal of our method is to consider the redundancy
between any pair of additional attributes based on the CC.
In addition to, it could also measure the relevances between
labels. The mRMR-CC method can be directly used to
improve the classifier chains without another preprocessing
process.

At present, these experiments results have shown that the
mRMR-CC model is able to detect the labels redundancies
by comparing the existing methods in MLC. This is due to
the fact that the method uses all available information. Thus,
in term of predictive performance, the method is available
for CC method.

As future work, we will plan to further study how to deal
with the noise problem of additional attributes and inhere
attributes by a proper way. Moreover, since the label ordering
has an important influence on the process of a classifier
chain, we need to consider the problem in the next step.
And we will find alternative method to improve the classifier
chains.
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