
Construction of High Quality Key-dependent

S-boxes
Tianyong Ao, Jinli Rao, Kui Dai, and Xuecheng Zou

Abstract—High quality key-dependent S-boxes can break the
preconditions of many cryptanalysis technologies, but it is diffi-
cult to construct them efficiently. Here, we proposed a method
for fast constructing good key-dependent S-boxes, which are
generated by means of a key-dependent affine transformation
on a good base S-box. We proved their security by classifying
the evaluative criteria of S-boxes into three categories: affine
static, conditional affine static and affine dynamic criteria. We
found that algebraic degree of an S-box may be decreased
through an affine transformation and proved the condition for
keeping it invariant under an affine transformation. In order
to efficiently get affine key-dependent S-boxes, we presented
three fast constructing algorithms for obtaining key-dependent
nonsingular Boolean matrix, matrix multiplication of an S-
box, and eliminating fixed points, respectively. The theoretical
analysis and statistical results show that the key-dependent
S-boxes generated by this method have good cryptographic
properties.

Index Terms—key-dependent S-Box; affine transformation;
fast matrix multiplication; Block cipher;

I. INTRODUCTION

BLOCK ciphers are widely used in the field of infor-

mation security. With the development of cryptanalysis

technology and computing power, improving block ciphers

is always required. Substitution boxes (S-boxes) play a core

role in block ciphers. The precondition of many cryptanal-

ysis methods, such as differential cryptanalysis [1], linear

cryptanalysis [2], and algebraic attacks [3], is that the char-

acteristics of S-boxes can be known by attackers. An S-box

is called a key-dependent S-box if its content depends on a

secret key. If key-dependent S-boxes are used in ciphers, it

is hard to take advantage of special properties of S-boxes for

cryptanalysis, since attackers cannot know the content of a

key-dependent S-box. Many studies have shown that good

key-dependent S-boxes can enhance the security of block

ciphers [4], [5], [6], and key-dependent S-boxes are used in

many ciphers such as Khufu [7], Blowfish [4] and Twofish

[8].

The previous methods of constructing key-dependent S-

boxes can be summarized as the following three categories.

(1) Key-dependent S-boxes are created by a randomized

permutation. For example, Khufu uses a pseudo-random

Manuscript received February 8, 2017; revised June 29, 2017. This
work is supported by Science and Technology Project of Henan
Province(152102210055).

Tianyong Ao is with the School of Physics and Electronics, Henan
University, Kaifeng, China (e-mail: tyaohust@gmail.com).

Jinli Rao is with the School of Optical and Electronic Information,
Huazhong University of Science and Technology, Wuhan, China (e-mail:
ary.xsnow@gmail.com).

Kui Dai is with the School of Optical and Electronic Information,
Huazhong University of Science and Technology, Wuhan, China (e-
mail:daikui@mail.hust.edu.cn).

Xuecheng Zou is with the School of Optical and Electronic Informa-
tion, Huazhong University of Science and Technology, Wuhan, China (e-
mail:estxczou@gmail.com).

function to generate an S-box from a user key. Blowfish

uses iterations of its encryption function. K. Kazlauskas and

J. Kazlauskas present a method that key-dependent S-boxes

are generated by key pseudo-expansion words adding on a

pseudo-permutation [9].

(2) Key-dependent S-boxes are produced by chaos system,

e.g., Masuda et al. propose chaos block cipher with key-

dependent S-boxes generated from modified skew tent map

[10].

(3) Several good S-boxes are given in a cipher in advance,

but which one will be used depending on the user key, e.g.,

Stoianov proposes one of four S-boxes being selected by an

user key instead of only a fixed S-box in AES [11].

However, the previous methods have disadvantages. For

example, weak S-boxes or weak keys maybe appear in the

designs of the first two categories [12]. There will be a

huge risk if weak key-dependent S-boxes are used in ciphers.

Although weak S-boxes can be filtrated by the technologies

of evaluating S-boxes, it will require too much time to

evaluate them completely. The number of key-dependent S-

boxes is limited in the last category. In addition, practical

ciphers should be both high security and high performance.

In a word, how to fleetly construct good key-dependent S-

boxes is still a problem. In order to address this problem, a

method of fast constructing good key-dependent S-boxes is

proposed in this paper.

This paper makes the following major contributions.

(1) We gave the notion of affine key-dependent S-boxes

and proposed a method for constructing high quality affine

key-dependent S-boxes.

(2) We comprehensively investigated the effect of affine

transformation on the evaluative criteria of an S-box, and

classified the evaluative criteria of an S-box into three

categories: affine static, conditional affine static and affine

dynamic. We found that the algebraic degree of an S-box

may be decreased under affine transformation, and proved the

condition of keeping it invariant under affine transformations.

(3) Three fast algorithms were proposed for obtaining

a key-dependent nonsingular Boolean matrix, doing matrix

multiplication of an S-box, and eliminating fixed points,

respectively. The fast algorithm for matrix multiplication of

an S-box, which is based on Gray code, only required 2m

XOR operations rather than m(m + 2) ∗ 2m operations in

straightforward way. These algorithms not only can be used

in fast constructing affine key-dependent S-boxes, but also

can be used in other applications such as searching golden

S-boxes.

The remainder of this paper is structured as follows.

The following section introduces preliminaries of affine key-

dependent S-boxes. The security of affine key-dependent

S-boxes will be analyzed in section 3. In section 4, fast

algorithms for constructing affine key-dependent S-boxes are



presented. In section 5, an instantiation for generating affine

key-dependent S-boxes is given and discussed. Finally, the

conclusions are drawn in section 6.

II. PRELIMINARIES OF AFFINE KEY-DEPENDENT

S-BOXES

An S-box is the mapping S : Fn
2 → Fm

2 . S can be repre-

sented by the vector {f1, f2, · · · , fm}, where fi : F
n
2 → F2

(1 ≤ i ≤ m) represents a component function of the S.

The S-boxes can be called affine key-dependent S-boxes if

they are produced by an S-box under a key-dependent affine

transformations. An affine transformation consists of multi-

plication by a matrix followed by addition of a vector. This

paper focuses on the key-dependent affine transformation on

the output of a bijection S-box, i.e.

SA(X) = A ∗ SB(X)⊕ C, (1)

where SA and SB is called an affine key-dependent S-box

and a base S-box, respectively, and the values of both A and

C are dependent on a secret key. In order to make all key-

dependent S-boxes injective and consistent with base S-box

in size, A should be a nonsingular Boolean square matrix.

Let A = {aij}m∗m (1 ≤ i, j ≤ m), C = {cm · · · c2c1},

SB(X) = {bm · · · b2b1}, SA(X) = {b
′

m · · · b
′

2b
′

1}, where

aij , ci, bi, b
′

i ∈ F2, X ∈ Fm
2 . Then each element of

SA(X), X ∈ Fm
2 can be computed as:











b
′

1

b
′

2
...

b
′

m











=











a11 a12 · · · a1m
a21 a22 · · · a2m

...
...

...
...

am1 am2 · · ·amm





















b1
b2
...

bm











⊕











c1
c2
...

cm











. (2)

In the following, we will analyze the security of affine

key-dependent S-boxes.

III. SECURITY OF AFFINE KEY-DEPENDENT S-BOX

The mainly evaluative criteria of S-boxes are the following

[13], [14], [15]:

(1) Nonlinearity (Ns),

(2) Differential uniformity (δs),

(3) Algebraic degree (def ),

(4) Resistance of S-box against Algebraic Attack (RAA),

(5) Strict Avalanche Criterion (SAC),

(6) Number of monomials (Nmon),

(7) Number of fixed points (Nfpt).
In addition, C.Boura and A. Canteaut given a criterion of

an S-box, named (v, w)-linearity, to evaluate the propagation

of linear relations [16].

A high quality S-box should have the following charac-

teristics: high nonlinearity, low differential uniformity, high

resistance against algebraic attack, high algebraic degree, a

great number of monomials, good strict avalanche effect and

without fixed points.

A good S-box also should be a balanced function. For

S : Fn
2 → Fm

2 , S is said to be balanced if every element

y ∈ Fm
2 has the same number of pre-images by S. The

affine key-dependent S-boxes will be balanced if the base S-

box is balanced, since different inputs will generate different

outputs under affine transformation.

Many studies have investigated the impact on the security

of S-boxes under affine transformations. It has been proved

that the nonlinearity and differential uniformity of S-boxes

are invariant by means of affine transformations [17]. The

effect of affine transformations of an S-box on the maximal

expected differential probability and linear potential is inves-

tigated in [18]. The effects of affine transformations on other

evaluative criteria of an S-box are discussed in the following.

A. Algebraic Degree

Any Boolean function f : Fn
2 → F2 can be uniquely

represented as a multivariate polynomial over GF(2), called

Algebraic Normal Form (ANF), i.e.

f(X) = f(x1, · · · , xn) =
∑

u∈Fn
2

αux
u1
1 · · ·xun

n , (3)

where the coefficient αu ∈ F2, ui ∈ F2,u = {u1 · · ·un}, and

xui

i = xi, if ui = 1 and xui

i = 1, if ui = 0 . The xu1
1 · · ·xun

n

in the ANF is called a monomial of f .

The algebraic degree of f is the maximum degree of

those monomials with nonzero coefficients in the ANF. The

algebraic degree of an S-box is the minimum algebraic

degree of all the component functions of the S-box.

The algebraic degree is considered as invariant under affine

transformations in [18]. However, we found that algebraic

degree of S-boxes may be decreased by means of affine

transformation.

For example, Let SA1 = M1 ∗ SB1, M1 =
[1, 0, 0, 0; 0, 1, 0, 0; 0, 0, 0, 1; 0, 1, 1, 1], seeing SB1 and SA1

in table 1. Obviously, the algebraic degree of each component

function of the S-box SB1 is 3, but the algebraic degree of

the first component function of the S-box SA1 is 2.

TABLE I
THE S-BOXES SA1 AND SB1

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SB1(x) 12 6 7 9 10 0 11 14 1 15 13 8 4 5 2 3

SA1(x) 12 5 6 11 9 0 10 13 3 14 15 8 4 7 1 2

Here, we give a theorem about the algebraic degree of

affine key-dependent S-boxes.

Theorem 1. Let d be the maximum algebraic degree of all

component functions of the base S-box SB , and M be the

matrix whose i-th row vector consists of all the coefficients

of d order monomials in the ANF of fi, where fi is the i-
th component function of SB . If the rank of M is greater

than or equal to d, the algebraic degree of each component

function of SA is equal to d, where SA = A ∗ SB(X)⊕ C.

Proof: Let SB : Fn
2 → Fm

2 , SB = {f1, · · · , fm};

SA = A ∗ SB(X)⊕ C = {fA1, · · · , fAm};

fj(X) =
∑

uj∈Fn
2

αuj
x
uj1

1 · · ·x
ujn
n ,

where A = {aij}m∗m (1 ≤ i, j ≤ m), C = {c1 · · · cm},

and uj = {uj1 · · ·ujn}, then,

fAi(X) = ci ⊕
∑

1≤j≤m

aij(
∑

uj∈Fn
2

αuj
x
uj1

1 · · ·xujn

n ). (4)

The algebraic degree of fAi is only dependent on the

values of aij and the coefficients of d order monomials in the

ANF of fj . So we only need to consider them. For simplicity,

let the vk(X) represent the k-th d order monomial in the

ANF of each the component function, and βjk represent



the coefficient of k-th d order monomial in the ANF of

fj , where vk(X) = xuk1
1 · · ·xukn

n , wt(uk1 · · ·ukn) = d,

k ≤ C(m, d) = q. Then, the sum of all d order monomials

in the ANF of fj can be represented as:

Pd(fj) =
∑

1≤k≤q

βjkvk(X). (5)

The sum of all d order monomials in the ANF of fAi can

be represented as:

Pd(fAi) =
∑

1≤j≤m

aij ∗ Pd(fj)

=
∑

1≤j≤m

aij
∑

1≤k≤q

βjkvk(X)

=
∑

1≤j≤m

∑

1≤k≤q

aijβjkvk(X).

(6)

Explicitly, if and only if all the coefficients of vk(X) in

the Pd(fAi) are equal to zero, the algebraic degree of fAi is

less than d.

For a given fAi, the problem whether all the coefficients

of vk(X) in Pd(fAi) are simultaneously zero is equivalent

to this problem: whether there are non-zero solutions for the

system of homogeneous equations in which aij (1 ≤ j ≤
m) are m unknown variables and its coefficients matrix is

B = {βjk}m∗q (1 ≤ j ≤ m, 1 ≤ k ≤ q). When the rank of

the matrix B is greater than or equal to m, The system of

homogeneous equations only have zero solutions, i.e. all the

m variables aij (1 ≤ j ≤ m) are equal to zero. However,

for any 1 ≤ i ≤ m, aij (1 ≤ j ≤ m) can not be zero

simultaneously since A is a nonsingular matrix.

Therefore, when the rank of the matrix B is greater than

or equal to m, the algebraic degrees of all the component

functions of SA are equal to d.

B. Resistance of S-boxes against Algebraic Attack

To do algebraic attack on a cipher, attackers should find

adequate independent equations from the cipher system and

then solve them to get the key. Unlike using algebraic

immunity [19] to evaluate the resistance of S-box against

algebraic attack for stream ciphers, Courtois et al. [20]

defined

Γ = ((t− r)/s)(t−r)/s (7)

to evaluate the actual contribution of S-boxes to the com-

plexity of algebraic attacks for block ciphers, where t
representing the number of monomials, r representing the

dimension of the space of equations, and s representing

the size of bijective S-boxes. Cheon and Lee [21] called

the Γ as the resistance of S-box against algebraic attacks.

Generally, the complexity of algebraic attack on block cipher

is almost decided by the number of independent equations

and monomials[3].

The number of independent equations from a given affine

key-dependent S-box will not change since the affine trans-

formation is reversible. Therefore, the resistance of S-boxes

against algebraic attack is invariant under affine transforma-

tion when the S-boxes are known by attackers. In fact, more

independent equations are required for algebraic attacks on a

cipher with key-dependent S-boxes since those S-boxes are

secret. Therefore, affine key-dependent S-boxes can tone up

the resistance of S-boxes against algebraic attacks for the

block cipher.

C. Strict Avalanche Criterion

An S-box satisfies the strict avalanche criterion if each

output bit of the S-box changes with a probability of one

half whenever single input bit is complemented [13]. Many

S-boxes in practical block ciphers, for example AES, are

not satisfies the strict avalanche criterion since there are

restriction relationships among the evaluative criteria of S-

box. Distance to Strict Avalanche Criterion (DSAC) can

be used to evaluate strict avalanche effect for S-boxes [17],

which can be defined as

DSAC(f) =
1

2
max
e∈Fn

2
wt(e)=1

∣

∣

∣
2n−1

−
∑

x∈Fn
2

wt(f(x) ⊕ f(x⊕ e))
∣

∣

∣
.

(8)

The value of DSAC is smaller, the strict avalanche

effect is better. The DSAC will be affected under affine

transformation on the output of base S-boxes.

D. (v, w)-linearity of an S-box

Let S : Fn
2 → Fm

2 , and Sλ : F2n → F2, Sλ(x) = λ·S(x),
where x ∈ Fn

2 , λ ∈ Fm
2 . S is (v, w)-linear if there exists a v-

dimensional linear subspaces V ⊂ Fn
2 and a w-dimensional

subspace W ⊂ Fm
2 , and for all λ ∈ W , the degree of Sλ is

not more than 1 [16].

Supposed that SA is an affine S-box with S, i.e. SA(x) =
A·S(x)⊕C, where A is a nonsingular Boolean square matrix

and C is a vector. The inverse matrix of A is denoted as A−1.

Then, S(x) = A−1 · (SA(x) ⊕ C).
If S is (v, w)-linear, then, for x ∈ V , λ ∈ W , Sλ(x) =

λ · S(x) = λ · (A−1 · (SA(x) ⊕ C)) = (λ · A−1 · SA(x)) ⊕
(λ · A−1 · C). Obviously,

Sλ(x)⊕ (λ · A−1 · C) = λ · A−1 · SA(x) (9)

Let

S
′

λ(x) = Sλ(x) ⊕ (λ · A−1 · C) (10)

and

λ
′

= λ ·A−1 (11)

Then,

S
′

λ(x) = λ
′

· SA(x) (12)

For each λ ∈ W , there is a unique λ
′

since A−1 is a

nonsingular Boolean square matrix. Let W
′

= {λ
′

|λ
′

=
λ ·A−1, λ ∈ W}. In addition, W is w-dimensional subspace.

Therefore, W
′

is w-dimensional subspace.

If the degree of Sλ(x) is not more than 1, then the degree

of S
′

λ(x) is also not greater than 1, since S
′

λ(x) is affine with

Sλ(x). Therefore, there exist two subspaces V and W
′

, and

for all λ
′

∈ W
′

, S
′

λ(x) has degree at most 1.

In conclusion, (v, w)-linearity property of an S-box will

be not affected under affine transformation.



E. Classification of Evaluative Criteria of S-boxes

The number of monomials of f is the number of all

monomials with nonzero coefficients in its ANF. Let S :
Fn
2 → Fm

2 , X is a fixed point of S if S(X) = X . The

number of fixed points of S is the dimensions of the set

{X ∈ Fn
2 |S(X) = X}. Both the number of monomials

of component functions and the number of fixed points

in affine key-dependent S-boxes are affected under affine

transformation.

According to the evaluative criteria of an S-box are

whether affected under affine transformation, we classify

them into three categories:

(1) Static affine criteria. They are invariant under affine

transformations, such as nonlinearity, differential uniformity,

resistance against algebraic attacks, balance and (v, w)-
linearity.

(2) Conditional affine static criteria. They can be main-

tained under certain conditions, like algebraic degree.

(3) Dynamic affine criteria. They maybe change under

affine transformation, such as number of monomials and

DSAC.

According to above analysis, if the base S-box is a good

one, the key-dependent affine S-boxes can keep the affine

static criteria and conditional affine static criteria as well as

that of the base S-box. A good S-box must have high non-

linearity. Generally, the number of monomials and avalanche

effect are highly dependent on the nonlinearity of S-boxes,

which can be proved by the following statistical results.

Therefore, affine dynamic criteria of affine key-dependent S-

boxes can also be accepted. In a word, if we choose a good

S-box as the base S-box, we can get good key-dependent

S-boxes by key-dependent affine transformation.

IV. FAST ALGORITHM FOR CONSTRUCTING AFFINE

KEY-DEPENDENT S-BOX

A. Overview of the Fast Algorithm

Performance is an important indicator of block ciphers. In

the following sections, we introduce how to fast construct

affine key-dependent S-boxes. Supposed SboxB is the base

S-box, a fast algorithm for constructing affine key-dependent

S-boxes is presented as Algorithm 1. It consists of three

steps. Firstly, a key-dependent Boolean matrix A and a vector

C are generated from a secret key. Secondly, a temporary S-

box, denoted Sboxt, is gotten by the matrix multiplication of

an S-box, in which each element of SboxB will be multiplied

by matrix A. In the third step, it is checked that whether fixed

points will appear in the S-box generated by adding vector

C to Sboxt. If there are fixed pointed, the value of C will

be changed, until it meets the requirement of the number of

fixed pointed.

The key problems of fast constructing affine key-

dependent S-boxes are how to get a nonsingular Boolean

matrix A, how to do the matrix multiplication of an S-box,

and how to make sure there are not fixed points in key-

dependent S-boxes. We will present three fast algorithms to

solve the three problems in the following section, respective-

ly.

Algorithm 1 Generating Key-dependent S-boxes

Input :Key, base S-box

Output:Key-dependent S-box

1: Generate a key-dependent nonsingular Boolean matrix A
and a vector C with a secret Key by the key-dependent

nonsingular matrix generation algorithm;

2: Get a temporary S-box, denoted Sboxt, by matrix multi-

plication of the S-box, where Sboxt[X ] = A∗SboxB[X ],
X ∈ Fm

2 ;

3: Check whether fixed points will appear in the S-box

SboxA for the given value of C, where SboxA[X ] =
Sboxt[X ] ⊕ C, X ∈ Fm

2 . If there are fixed points in

SboxA, the value of C will be adjusted until it meets

requirement of fixed points, and then output SboxA.

B. Fast Key-dependent Nonsingular Matrix Generation Al-

gorithm

Each row vector of a m ∗m nonsingular Boolean matrix

A can be seen as a m-bit vector, denoted vr, vr ∈ Fm
2 \0.

To get key-dependent nonsingular Boolean matrix A, we can

use m sub-word of a secret key as m indexes to select m
linear independent m-bit vector from the set {i|i ∈ Fm

2 \0}
as the m row vectors of A, respectively. The value of the

r-th index to select the r-th row vector is denoted as rind.

Supposed Sc is a candidate set consisting of the elements

which can be selected as the r-th row vector of A. After the

r-th row vector being selected, Sc is updated by removing

the elements which are linear dependent on the former r row

vectors from Sc.

To make different keys generate different nonsingular

Boolean matrixes, the elements in Sc are always ranged in

ascending order and labeled with 0, 1, 2, · · · , and so on,

respectively. There is a little trouble to find the rind row

vector based on rind since the label of the elements in Sc

will be changed when Sc is updated. there are two intuitive

approaches to get the element labeled with rind in Sc. One

is that all candidate elements are copied into an array and

ranged in ascending order when Sc is updated each time, and

then the rind− th element in the array is selected as the row

vector. The other is that a linked list is used to represent Sc.

However, those approaches are low efficient.

To fast update the candidate Sc and find the r-th row

vector, we present a fast key-dependent nonsingular matrix

generation algorithm, seeing Algorithm 2. In the algorithm,

three arrays, denoted Sc, Sl, Sv, are used to represent three

sets: candidate set, linear dependent set and selected set,

respectively. Their sizes are 2m, 2m−1 and m, respectively.

The index value of Sc (i.e. subscript of array ) represents the

value of a candidate element. The value of elements in Sc is

either 1 or 0. i is a candidate element if Sc[i] = 1. Otherwise,

it cannot be used as a row vector of the nonsingular Boolean

matrix. In initial state, all the element of Sc except the first

one are set to 1. When i is linear dependent on the selected

row vectors, Sc[i] will be set to 0. Let cnt =
∑n

i=1 Sc[i].
The value of cnt indicates how many elements ranged from

1 to n can be selected as row vectors. When the value of

cnt is equal to rind, indicating the rind − th elements being

found. As 0 is always not the candidate element, the value

of i − 1 is the expected row vector, denoted as vr. When



Algorithm 2 Generating Key-dependent Nonsingular Matrix

Input :Key

Output:Nonsingular matrix Sv

1: Initialization: Sl[0] = 0, Sc[i] =

{

0, i = 0
1, i 6= 0

2: for r=0 to m-1 do

3: Generate the r-th index (denoted rind) from Key;

//Get the r-th row vector (denoted vr) with rind
4: cnt = 0; i = 1;
5: while cnt ≤ rind do

6: cnt = cnt + Sc[i];
7: i = i+ 1;
8: end while

9: vr = i− 1;

//Update Sl and Sc.

10: Sv[r] = vr
11: if r < m− 1 then

12: for k=0 to 2r do

13: temp = vr ⊕ Sl[k];
14: Sl[k + 2r] = temp;

15: Sc[temp] = 0;

16: end for

17: end if

18: end for

the r-th row vector (vr) is chosen, make vr be added to all

the elements in the linear dependent set, and the results are

appendant into the linear dependent set Sl.

The first two row vectors in Sv can be directly gotten

from key with the result of rind subtracted 1 or 2 instead

of using cnt to further optimize this algorithm. The main

characteristics of the fast algorithm include: (1) Using index

value of an array to represent the candidate elements and

the value of array element indicating whether its index is

a candidate element. (2) To find the rind-th element in

the updated candidate set Sc, we use a counter rather than

intuitive approaches such as rearranging the element of array

Sc or using a linked list.

C. Fast Algorithm for Matrix Multiplication of S-boxes

In matrix multiplication of an S-box, each element of the

base S-box should be multiplied with the Boolean matrix A,

where each bit of an element in the target S-box should be

computed as equation (13):

bti =
m−1
⊕

i=0

aijbj . (13)

To finish the matrix multiplication of an S-box, m ∗ 2m

times computation like equation (13) are required in straight-

forward way. For this equation, one AND, m times Shift and

m−1 times XOR operations (or one look up table operation

instead of m − 1 XOR operations) are required in general

CPU. Therefore, the computation complexity of the matrix

multiplication of an S-box is O(m(m+ 2) ∗ 2m) at least. It

is a very low effective algorithm.

Here, we proposed a fast algorithm for the matrix multipli-

cation of an S-box by taking the advantage of Gray code. In

Algorithm 3 Fast Matrix Multiplication of S-boxes

Input :A
Output:Sboxt

1: Initialization: Sboxt[0] = 0; rst = 0; G1 = 0;
2: for r = 0 to 2m − 1 do

3: G = i⊕ (i >> 1);
4: diff = Gi ⊕G1;

5: Switch the column vector A[:, j] from matrix A

according to the value of diff
6: rst = rst⊕A[:, j];
7: Sboxt[invSboxB[G]] = rst;
8: G1 = G;

9: end for

Gray code, the representation of two successive values only

differs in one bit. It is very easy to get the Gray number

of an original number in a binary representation. Let G is

the resulting Gray number, i is the original number, then

G = i ⊕ (i >> 1) ,where >> represents the binary right

shift.

Let Z , Zj , Y and Yj are m-bit vector, A[:, j] represents the

j-th column vector of matrix A, Z = A∗Y , and Zj = A∗Yj .

If the vectors Y and Yj only differs at the j-th bit of them,

then

Zj = Z ⊕A[:, j] (14)

Therefore, to do matrix multiplication of an S-box, we

can transform SboxB(X), X ∈ Fn
2 , into Gray codes in

turn, and then multiplication of SboxB(X +1) by matrix A
can be computed as equation (14), and the results are saved

into the appropriate location in the goal S-box (Sboxt). The

appropriate location can be found based on the inverse S-

box of base S-box (invSboxB). The fast algorithm of matrix

multiplication of an S-box is described as Algorithm 3.

In this fast algorithm, only three XOR, one shift, one

switch, one look-up-table and two store operations are re-

quired for generating one element of Sboxt. The computation

complexity of generating Sboxt is O(8 ∗ 2m). The proposed

method can save much time to do matrix multiplication of

an S-box compared with straightforward methods.

D. Fast Checking Fixed Points and Adjusting the Value of C

To avoid the S-boxes with fixed points being used, it

is necessary to check whether fixed points will be appear

in the affine key-dependent S-boxes and maybe adjust the

value of vector C. To address this problem, a straightforward

method maybe judge whether the result of Sboxt[i] ⊕ C
is equal to i for all i ∈ Fn

2 . If there are fixed points, the

value of C should be changed. The key pseudocode for the

straightforward method can be seen in Algorithm 4. This

method is low performance, especially when the value of C
should be adjusted many times to eliminate fixed points.

Here, we proposed a fast algorithm for judging and elim-

inating fixed points. In this algorithm, whether fixed points

will appear in SboxA for a given value of C can be directly

judged by accessing an array rather than checking fixed

points after adding C to elements of Sboxt one by one. We

find the rule that there will be a fixed point at SboxA[i] if C is

equal to the result of Sboxt[i]⊕i. Because if C = Sboxt[i]⊕



Algorithm 4 Straightforward Algorithm for Checking Fixed

Points and Adjusting the Value of C

Input :C, Sboxt

Output:SboxA

1: for j = 0 to 2m − 1 do

2: for i = 0 to 2m − 1 do

3: temp = Sboxt[i]⊕ C;

4: if temp == i then

5: C = C + 1 mod 2m; break;

6: end if

7: pstsbox[i] = temp;

8: end for

9: end for

Algorithm 5 Fast algorithm for Checking Fixed Points and

Adjusting the Value of C

Input :C, Sboxt

Output:SboxA

1: for i = 0 to 2m − 1 do

2: fixpt[Sboxt[i]⊕ i] = fixpt[Sboxt[i]⊕ i] + 1
3: end for

4: for i = 0 to 2m − 1 do

5: if fixpt[C] == 0 then

6: break;

7: else

8: C = C + 1 mod 2m;

9: end if

10: end for

i, then SboxA[i] = Sboxt[i]⊕C = i. According to this rule,

we can use an array (denoted fixpt[2m]) to indicate that

how many fixed points will appear in SboxA for the given

value of C. The elements in this array are initialized to zero,

and then let fixpt[Sboxt[i]⊕ i] = fixpt[Sboxt[i] ⊕ i] + 1,

i ∈ Fn
2 . The value of fixpt[i] denotes how many fixed points

will appear in SboxA if the value of C is equal to i. The fast

algorithm for checking fixed points and adjusting the value

of C is shown in Algorithm 5.

If Sboxt is such an S-box that there is always fixed points

in the SboxA for any C ∈ Fm
2 , we called Sboxt as one-

fixed-point S-box. If Sboxt is not a one-fixed-point S-box,

we can find a value of C which make no fixed points in

SboxA. It is a hard problem to prove whether one-fixed-point

S-boxes will be generated by affine transformation on a base

S-box, but we can prove that there is only one fixed point in

SboxA for any C if one-fixed-point S-boxes are generated.

Prove: If SboxA always has fixed points, then each element

in the array fixpt is greater than zero. However, there are

only 2m elements and the sum of all the elements in the

array fixpt is not more than 2m. Therefore, each element

in the array fixpt is 1. In other words, there is only one

fixed point will appear in SboxA in this case. A few fixed

points can be accepted in block cipher with key-dependent

S-boxes, because they are secret and diffusion units can drop

their weak by round function iterations. For example, fixed

points are accepted in Twofish cipher.

TABLE II
STATISTIC CHARACTERISTICS OF DSAC AND NUMBER OF

MONOMIALS

Minimum Maximum Average Standard Deviation

DSAC 4 8 7.96 0.29

Nmon 110 151 127 8.2

TABLE III
DISTRIBUTION OF NUMBER OF MONOMIALS WITH DIFFERENT DEGREE

Degree of Monomials

0 1 2 3 4 5 6 7 8

Ideal 0.5 4 14 28 35 28 14 4 0.5

Statistical 0 4 14 28 35 28 14 4 0

Standard
Deviation

0 1 2 3 4 4 3 1 0

V. INSTANTIATION AND DISCUSSIONS

In order to further validate the effectiveness of the pro-

posed method for key-dependent S-boxes, we presented an

instantiation of the key-dependent S-boxes, and analyzed

their evaluative criteria. In the instantiation, the base S-

box (denoted SB) is inverse function in GF (28) with

0 mapped on itself, where the irreducible polynomial is

m(x) = x8+x4+x3+x+1. The nonlinearity and differential

uniformity of this base S-box are 112 and 4/256, respectively.

The resistance of an S-box against algebraic attacks for all

the affine key-dependent S-boxes are same with that of the

S-box of AES cipher. Those affine static criteria are excellent.

The algebraic degrees of eight component functions of SB

are 7. It can be verified that the rank of the matrix which

consists of all the coefficients of monomials with degree 7

in the eight component functions is equal to 8. According to

theorem 1, the algebraic degrees of the component functions

of all key-dependent S-boxes are 7, which is the best number

for 8*8 S-boxes. So all affine key-dependent S-boxes with

inverse function in GF (28) as base S-box have good affine

static and conditional affine static criteria.

We implemented an affine key-dependent S-boxes genera-

tor in C language according to our proposed fast algorithms.

We used 64-bit key to generate the 8*8 nonsingular Boolean

matrix A and 8 bit vector C. The most left 8-bit of the

key is used to generate C. The remaining 56-bit is divided

into eight 7-bit independent sub-key used as the indexes

to select eight row vectors of A. As the key space is too

large to test all affine key-dependent S-boxes, we adopted

a random sampling method for statistical analysis of the

affine dynamic criteria from a statistical standpoint. We used

a random generator to produce 220 64-bit keys and identical

number affine key-dependent S-boxes were generated. We

had tested DSAC and the number of monomials for each

component functions of those affine key-dependent S-boxes.

The results are shown in table 2. In addition, the distributions

of the number of monomials with different degrees are shown

in table 3. The comparisons of evaluative criteria between

these affine key-dependent S-boxes and the S-box of AES

are shown in table 4. The one-fixed-point S-box is not found

in our statistical experiment. As can be seen from Table 5,

the key-dependent S-boxes obtained by our method have the

same security level with the S-box of AES.

We implemented the affine key-dependent S-boxes gener-



TABLE IV
COMPARISONS OF EVALUATIVE CRITERIA BETWEEN THE AFFINE

KEY-DEPENDENT S-BOXES AND THE S-BOX OF AES

Evaluative

Criteria

Affine Key-dependent

S-boxes

S-box of AES

Ns 112 112

δs 4/256 4/256

DSAC 4 - 8 8

def 7 7

Nmon 110 - 151 110 - 145

RAA 222.9 222.9

ation algorithm in C language, and simulated it with GEM5

based on ARM instruction set. We also implemented the C

functions for generating 8*8 nonsingular Boolean matrix, the

matrix multiplication of an S-box and checking fixed points

and adjusting the value of C in a straightforward way. The

simulation results show that approximately 11070 dynamic

instructions are required to get an 8*8 affine key-dependent

S-box by the fast algorithms on average. If the affine key-

dependent S-boxes are generated in a straightforward way,

36599 instructions will be required on average. The number

of executed instructions for fixed points checking and adjust-

ing the value of C is from 2758 to 3031 (2770 on average)

by the fast algorithm, while it is from 2152 to 42980 (3975

on average) in a straightforward way. The speedup of the

fast constructing affine key-dependent S-boxes can be up to

3.3 compared with the implementation in a straightforward

way.

To enhance the security of encrypted data, more rounds

and longer key may be used for a block cipher. For example,

AES-192 which has 12 rounds may be used instead of AES-

128 which has 10 rounds. However, the former is twenty

percent slower than the later. This is a large performance

overhead for encrypting bulk data such as a database and

video data. If we used the enhanced AES-128 in which

the fixed S-boxes are replaced by key-dependent S-boxes,

the performance overhead only spent on key-dependent S-

boxes establishment stage. According to results in [22], we

can find that each round of AES encryption needs about

164 instructions by ARM7. It means 328 instructions cycles

will be increased if using AES-192 instead of AES-128 to

encrypt one data block (128 bits). When the size of the

data to be encrypted is larger than 540 bytes, which is very

small compared to bulk data generally, the enhanced AES-

128 with key-dependent S-boxes will have an advantage of

performance compared with AES-192.

In addition,the proposed method of affine key-dependent

S-boxes may be useful in hash functions design since affine

key-dependent S-boxes can enhance the security of block

ciphers and it is becoming an interesting approach to imple-

ment a hash function using block ciphers [23], [24].

Therefore, the affine key-dependent S-boxes can be used

to replace the fixed S-boxes in the AES cipher. It not only

improve the security of the cipher, but also has an advantage

in performance for encrypting bulk data compared with

increasing the number of rounds to enhance the security.

These fast algorithms can also be used for other applications

such as fast searching golden S-boxes.

TABLE V
COMPARISONS OF SPEEDUP BETWEEN THE PROPOSED FAST

ALGORITHMS AND STRAIGHTFORWARD ALGORITHM

Algorithms Fast Straightforward Speedup

Generate affine 11070 36599 3.3

key-dependent S-box

Get nonsingular 3025 14012 3.8

Boolean matrixes

Matrix multiplication 4846 18183 3.9

of S-boxes

Checking fixed points 2770 3975 1.4

and adjusting C

VI. CONCLUSION

A method for constructing good key-dependent S-boxes

by means of key-dependent affine transformation on a good

base S-box is proposed in this paper. We investigated the

effect of affine transformation on the security of S-boxes

and classified the evaluative criteria of S-boxes into affine

static, conditional affine static and affine dynamic three

categories. It is found that the algebraic degree of an S-

box is conditional invariant under affine transformation and

the condition for keeping algebraic degree invariant is given.

Theoretical analysis shows that if the base S-box is a good

one, all key-dependent S-boxes generated by the proposed

method will be as good as the base S-box in nonlinearity,

differential uniformity, algebraic degree, balance property,

(v, w)-linearity and resistance of S-box against algebraic

attack for block cipher. Experimental results show that

the affine dynamic criteria such as DSAC and number

of monomials also have good cryptographic properties. In

addition, to fast generate affine key-dependent S-boxes, three

fast constructing algorithms for obtaining key-dependent

nonsingular Boolean matrix, matrix multiplication of an S-

box, and eliminating fixed points are proposed, respectively.

The speedup of the proposed fast algorithms is more than 3.3

compared with the implementations in straightforward way.

The highlight of the fast algorithm for matrix multiplication

of an S-box is taking advantage of Gray code. It provides a

new view of implementation of matrix multiplication of S-

boxes and may be helpful for other aspects like fast search-

ing golden S-boxes in intelligent algorithm. The proposed

method can ensure that all key-dependent S-boxes have good

cryptographic properties. It not only can enhance the security

of a cipher, but also has an advantage in performance of

encrypting bulk data compared with increasing the number

of rounds to enhance the security level.

REFERENCES

[1] E. Biham and A. Shamir, “Differential cryptanalysis of des-like
cryptosystems,” Journal of CRYPTOLOGY, vol. 4, no. 1, pp. 3–72,
1991.

[2] M. Matsui, “Linear cryptanalysis method for des cipher,” in Advances

in CryptologyEUROCRYPT93. Springer, 1994, pp. 386–397.
[3] N. T. Courtois and J. Pieprzyk, “Cryptanalysis of block ciphers with

overdefined systems of equations,” in Advances in CryptologyASI-

ACRYPT 2002. Springer, 2002, pp. 267–287.
[4] B. Schneier, “Description of a new variable-length key, 64-bit block

cipher (blowfish),” in Fast Software Encryption. Springer, 1994, pp.
191–204.

[5] A. Biryukov and A. Shamir, “Structural cryptanalysis of sasas,” in
Advances in CryptologyEUROCRYPT 2001. Springer, 2001, pp. 395–
405.



[6] L. Keliher, “Linear cryptanalysis of substitution-permutation network-
s,” Ph.D. dissertation, Queens University, 2003.

[7] R. C. Merkle, “Fast software encryption functions,” in Advances in

Cryptology-CRYPT090. Springer, 1991, pp. 477–501.
[8] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Fergu-

son, “Twofish: A 128-bit block cipher,” NIST AES Proposal, vol. 15,
1998.

[9] K. Kazlauskas and J. Kazlauskas, “Key-dependent s-box generation in
aes block cipher system,” Informatica, vol. 20, no. 1, pp. 23–34, 2009.

[10] N. Masuda, G. Jakimoski, K. Aihara, and L. Kocarev, “Chaotic block
ciphers: from theory to practical algorithms,” Circuits and Systems I:

Regular Papers, IEEE Transactions on, vol. 53, no. 6, pp. 1341–1352,
2006.

[11] N. Stoianov, “One approach of using key-dependent s-boxes in aes,” in
Multimedia Communications, Services and Security. Springer, 2011,
pp. 317–323.

[12] S. Vaudenay, “On the weak keys of blowfish,” in Fast Software

Encryption. Springer, 1996, pp. 27–32.
[13] A. Webster and S. E. Tavares, “On the design of s-boxes,” in Advances

in CryptologyCRYPTO85 Proceedings. Springer, 1986, pp. 523–534.
[14] S. Fischer and W. Meier, “Algebraic immunity of s-boxes and aug-

mented functions,” in Fast Software Encryption. Springer, 2007, pp.
366–381.

[15] M.-J. O. Saarinen, “Cryptographic analysis of all 4× 4-bit s-boxes,”
in Selected Areas in Cryptography. Springer, 2012, pp. 118–133.

[16] C. Boura and A. Canteaut, “A new criterion for avoiding the propaga-
tion of linear relations through an sbox,” in Fast Software Encryption.
Springer Berlin Heidelberg, 2013, pp. 763–764.

[17] S. Mister and C. Adams, “Practical s-box design,” in Workshop on

Selected Areas in Cryptography, SAC, vol. 96. Citeseer, 1996, pp.
61–76.

[18] A. Canteaut and J. Rou, “On the behaviors of affine equivalent sboxes
regarding differential and linear attacks,” in Advances in Cryptology

– EUROCRYPT 2015. Springer, 2015, pp. 45–74.
[19] W. Meier, E. Pasalic, and C. Carlet, “Algebraic attacks and decompo-

sition of boolean functions,” in Advances in Cryptology-EUROCRYPT

2004. Springer, 2004, pp. 474–491.
[20] N. T. Courtois, B. Debraize, and E. Garrido, “On exact algebraic

[non-] immunity of s-boxes based on power functions,” in Information

Security and Privacy. Springer, 2006, pp. 76–86.
[21] J. H. Cheon and D. H. Lee, “Resistance of s-boxes against algebraic

attacks,” in Fast Software Encryption. Springer, 2004, pp. 83–93.
[22] G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti, and S. March-

esin, “Efficient software implementation of aes on 32-bit platforms,”
in Cryptographic Hardware and Embedded Systems-CHES 2002.
Springer, 2003, pp. 159–171.

[23] N. Kishore and B. Kapoor, “Attacks on and advances in secure
hash algorithms,,” Iaeng International Journal of Computer Science,
vol. 43, no. 3, pp. 326–335, 2016.

[24] S. Hirose and H. Kuwakado, “A block-cipher-based hash function us-
ing an mmo-type double-block compression function,” Ieice Technical

Report Information Theory, vol. 111, pp. 45–51, 2012.


