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Abstract—Periodic Sensor Networks (PSNs) represent one
of the essential elements of emerging Cyber-Physical System
(CPS) designs because of their using in multiple applications.
PSNs are one of the major contributors of the big data in the
future. One fundamental challenge in PSNs is to periodically
collect the large volume of data in an energy efficient way and
then transmit them to the sink so as to enhance the network
lifetime. Since sensor batteries have a limited lifetime, therefore,
adaptive sampling method to periodic data collection is required
to support energy-efficient data gathering and fusion of CPS. In
this research, we suggest a protocol, called Distributed Adaptive
DAta Collection protocol (DADAC), which collects periodically
sensor readings and prolong the lifetime of a Periodic Sensor
Network (PSN). The lifetime of DADAC protocol is divided
into cycles. Each cycle is composed of four stages. First, data
collection. Second, dimensionality reduction using Piecewise Ag-
gregate Approximation (PAA) technique to reduce the amount
of data collected by each sensor. Third, Frequency Reduction
using SAX (Symbolic Aggregate approXimation) approach in
order to remove the redundant data before send them to
sink. Fourth, sampling rate adaptation based PAA similarity
to acclimate its rate of sampling according to the dynamic
modification of the monitored environment. DADAC allows each
sensor to remove the redundant collected data and adapts its
sampling rate in accordance with the monitored environment
conditions.

We conduct extensive simulation experiments on real sensor
data by applying OMNeT++ network simulator to explain the
effectiveness of the DADAC protocol in comparison with two
other existing methods.

Index Terms—Periodic Sensor Networks, Data Collection,
Adaptive Sampling Rate, PAA similarity & SAX, Network
Lifetime.

I. INTRODUCTION

In the last years, the Cyber-Physical System (CPS) has
appeared as an important trend to enhance the interac-
tions between virtual and physical worlds[1]. CPS combines
between physical devices such as sensors with the cyber
elements (i.e., informational) to form an intelligent system
deals with dynamic changes of the physical environment.
In many proposed studies, Wireless Sensor Network (WSN)
is considered as a primary component of cyber physical
systems. CPS is a combination between both cyber resources
and WSN. WSN represents an important factor in people’s
life, because of their widespread use in many applications
such as agricultural, healthcare, transportation, environment,
industry, and military [2], [3], [4], [5]. WSN is composed
of a large number of low-cost tiny sensors that deployed for
monitoring physical phenomena of a specific region of inter-
est such as temperature, sound, vibration, pressure, or motion
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[3]. Sensor node can sense, process, and communicate with
limited capabilities in battery power, storage, computation,
and bandwidth [4], [6], [7]. They collect the sensed data from
the monitored environment, manipulate the data locally, and
transmit them to the sink for further analysis [8].

One of the most critical constraints of the sensor node is
the battery life. Due to the environment or cost restrictions,
it is difficult or impossible to change or recharge the sensor
batteries. Thus, the sensor nodes are deployed with high
density in order to enhance the network lifetime. In sensor
node, the radio unit represents the principal source of energy
consumption. Therefore, it is important to remove redundant
sensed data before reporting them to the sink to save the
energy and improve the lifetime of sensor node [9], [10],
[11]. It is necessary to take into consideration data capturing,
communication, and routing problems in order to design
energy-saving protocol for PSN. Data collection approaches
determine the way of sensor’s work in data collection and
sending to the base station. Therefore, data collection rep-
resents the crucial function in PSNs [12]. The CPS gathers
sensor readings from physical environment and joins them
to different information sources for real-time analysis[13].

There are two models for data collection in WSNs: time-
driven and event-driven [12]. This work considers time-
driven data collection which is named Periodic Sensor Net-
works (PSNs). In PSN, every sensor node transmits the
sensed data of the monitored area to the sink periodically.
Several PSNs applications use the periodic way to monitor
certain conditions regularly such as pressure, humidity, tem-
perature, etc. Two main challenges in PSN. First, PSN has
to provide adequate lifetime in order to satisfy application’s
needs. Second, data management is more difficult due to
the huge amount of collected data by this network. Many
proposed works consider reducing the amount of data during
the collection and communication without considering the
accuracy of data. Data reduction aims to prolong the network
lifetime and facilitate data analysis and decision making. In
PSN, the change in the monitored environment can slow
down or speed up. The energy consumption can be decreased
when the sensor node modifies its sampling rate based on the
dynamic modification of the monitored phenomena. There-
fore, to prolong the network lifetime, adaptive sampling for
periodic data collection is required for energy optimization
and data reduction [14], [15].

This paper introduces the following contributions.
i) A protocol named DADAC is devised to collect the

sensor data in an adaptive way such that the volume
of data is reduced while PSN lifetime is enhanced.
The principal idea of DADAC protocol is to utilize the
similarity of collected data and adapts its sampling rate
accordingly. DADAC works into cycles. Four stages in
each cycle: data collection, dimensionality reduction,



frequency reduction using SAX technique, and sampling
rate adaptation using PAA similarity. The sensor node
provides a new sampling rate after each cycle based on
the similarity between the periods of one cycle.

ii) A new adaptive sampling rate algorithm based PAA sim-
ilarity is suggested. In each cycle, the speed of readings
capturing inside the sensor node depends mainly on the
previously calculated sampling rate adaptively. DADAC
protocol uses SAX approach to eliminate the redundancy
in the collected measures before sending them the base
station so as to save energy and improve the lifetime.

iii) The simulation results are accomplished by OMNeT++
network simulator to illustrate the effectiveness of the
DADAC protocol. The DADAC protocol has been com-
pared to two algorithms in the related works: PFF
algorithm that proposed by Bahi et al.(2014) [16] and
Harb et al. algorithm (2016) that introduced in [17].

The rest of this paper is organized as follows. Next section
exhibits literature review. Section 3 explains the description
of DADAC protocol. Protocol evaluation is shown in Section
4. Finally, we present the conclusion and future works in
Section 5.

II. LITERATURE REVIEW

Adaptive collection approaches are considered as a good
candidate to save energy and extend the network lifetime
of PSNs. The major objective of an adaptive collection
technique is to make the sensor node be able to change its
sampling rate dynamically in accordance with the monitored
environment conditions. This can reduce the repetitive gath-
ered data, consume less energy, and decrease the processing
load at the base station [14]. Adaptive collection avoids
capturing the redundant samples by exploiting the correlation
(temporal[18], [19], spatial[20], [21], or spatio-temporal[22],
[23], [24]) between sensed data. In order to save the energy
of a WSN, several methods are proposed in [25], [26], [27],
[28], [29] to improve the lifetime of the network.

This section reviews some related literature concerning the
adaptive data collection in WSNs. The works proposed in
[20], [21] consider adaptive sampling schemes based spatial
correlation among the physical sensed data. In [20], the
sampling rate is adapted by the base station. Initially, the
base station activates a set of sensors to get the sensed
data of monitored environment. The correlation percentage is
computed for the received sensed data to increase or decrease
the activated sensors.

Some other approaches study temporal correlation among
sensed data [18], [19]. Chatterja and Havinga [18] present
a sampling algorithm based temporal correlation among
sensed data. In this algorithm, the sampling rate is modified
depending on the stability of the monitored environment. The
sampling rate increases when the environment conditions are
unstable, otherwise the rate decreases.

Spatio-temporal correlation is used by some adaptive sam-
pling techniques such as in [22], [23], [24]. For instance,
Masoum et al. [24] introduce an energy-saving mechanism
for data collection. Their scheme exploits spatio-temporal
correlation among sensors and their sensed data to determine
the candidate sensors which are responsible for sampling and
transmission. The selected sensors are adaptively changed.

Some researchers used prediction as a way to adjust the
sampling rate of sensor nodes [30], [31], [32], [33], [34]. An
energy saving information gathering scheme is proposed by
Liu et al. [30] to predict the sampling rate inside sensor
using ARIMA model. In [31], the authors presented an
algorithm for adaptive sampling using Box-Jenkins approach
to estimate the future sensor readings, depending on the
existing readings. Alippi et al. [34] introduced a power
aware adaptive sampling method for snow monitoring. Their
algorithm provides online estimation based on fast Fourier
transform.

In recent years, several adaptive sampling approaches in
PSNs have been studied [35], [36], [37], [16], [14], [17].
Laiymani and Makhoul [35] proposed a scheme for adaptive
sampling using ANOVA model and Fisher test in PSNs. This
algorithm works at the sensor node to adapt its sampling rate.
The authors in [16] proposed method to remove the repetition
of collected data in PSN called Prefix Frequency Filtering
(PFF). Makhoul et al. [14] suggested adaptive data gathering
approach for PSN. They combine between ANOVA model
and remaining energy to permit every sensor node to modify
its sampling rate in accordance with environment dynamics.
Srbinovski et al. [36] proposed a power saving data collection
algorithm for power scavenging in WSNs. Their approach
takes the energy harvesting from the monitored sensing area
and modifies its sampling rate based on the remaining energy
and observed environment. An adaptive sampling algorithm
based on endocrine regulation mechanism (EASA) in WSN
is presented [37]. The EASA algorithm uses hormone in-
formation to control the nodes in working state or resting
state and adjusts collection frequency dynamically. Harb and
Makhoul [17] proposed adaptive data collection approach
based set similarity among sensor readings. Their technique
allows each sensor node to identify, first, the similarity
between data collected among successive periods using set
similarity function, then to adjust its sampling rate to the
newly calculated score of similarity. The sensor node reduces
the amount of redundant collected readings and extends the
network lifetime.

This paper suggested a Distributed Adaptive DAta Col-
lection (DADAC) protocol for PSNs. The major goal of
DADAC is to remove redundant sensor readings, save energy,
and improve the network lifetime. DADAC performs four
main phases. First, data collection according to adaptive
sampling rate. Second, PAA approach is applied to avoid
the redundancy in the collected data. Third, DADAC allows
to each sensor node to adapt its sampling rate for each
cycle (cycle = 2 periods) based on the PAA similarity.
Fourth, SAX technique is used to remove the repetition in the
collected data and then transmits them to the sink. DADAC
is simulated on the OMNeT++ network simulator using real
data of sensor nodes. The comparison results show that our
protocol can provide a better performance and prolong the
network lifetime.

III. DESCRIPTION OF THE DADAC PROTOCOL

DADAC protocol is given in more details in this section.
The main objective of this protocol is to enable each sensor
to modify its sampling rate adaptively in accordance with
the dynamic changing of the monitored environment. Con-
sequently, this reduces the amount of redundant gathered



data and minimizes energy consumption (extend the PSN
lifetime) whereas the quality of collected data is maintained
sufficiently to allow significant analysis. Figure 1 illustrates
the flowchart of the proposed DADAC protocol. This section
describes in detail DADAC protocol stages and algorithms
correlated with each stage. Table 1 explains some parameters
used in this paper.

TABLE I
SOME PARAMETERS USED IN THIS PAPER

SMPR Sampling rate
MINSMP Application criticality

S Temperature readings series S = s1, ...., sn
Sp PAA of S, Sp= cp1, ...., c

p
w

Sx Symbolic representation of Sp, Sx = cx1 , ..., c
x
w

w PAA segments number to represent S
a Number of alphabet (for instance, if the alphabet = (w,x,y,z), a = 4)
β Breakpoints, β = β1, ...., βa−1

n Sensor id
ne Remaining energy of sensor n

A. Data collection

Each sensor node senses the data reading periodically.
These sensed time-arranged data readings set forms time
series. Therefore, DADAC protocol treats the sensor readings
as a time series. In our work, we named this time series as
a temperature readings series.

DADAC protocol is periodic and works into cycles. The
cycle includes two periods (j=2). The period is partitioned
into time slots. Therefore, in this stage, the sensor node n
catches one temperature reading si each time slot. At the
end of each period, the temperature readings series of sensor
n is formed such that Sn ={s1, s2, ..., sρ−1, sρ}, where ρ
is the total number of temperature readings captured during
the period. The sensor node collect the temperature readings
at SMPR speed. The SMPR is initiated to ρ temperature
readings per period. The redundant temperature readings
captured by the sensor node increase in two states: short time
slot and slowly variation of a monitored area of interest.

B. Dimensionality reduction

Often, temperature readings series is too big to be an-
alyzed and thus data approximation is necessary. The aim
of data approximation is to minimize the volume of sensor
readings while retaining the signal fundamental shape and
characteristics. Since time series representation has a great
impact on the simplicity and effectiveness of data readings
mining; consequently, it is required to choose the suit-
able technique to represent the sensed readings series [38].
Several representation methods are found in the literature
such as Discrete Fourier Transform (DFT), the Discrete
Wavelet Transform (DWT), and Singular Value Decomposi-
tion (SVD)[39]. DADAC protocol uses a simple and efficient
representation technique called PAA [40], [38].

In this stage, DADAC protocol converts the temperature
readings series from its original form to the PAA represen-
tation in order to decrease the dimensionality of series. PAA
divides this series into equal portions. After that, it calculates
the mean for each portion. Data sorting is an integral part
of data analysis [41]. It improves the search and merges
the sequences efficiently. Therefore, to further improve the
efficiency of PAA, the sensed temperature readings are sorted
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Fig. 1. Flowchart of the proposed DADAC protocol.



in descending order to group the similar ( or close similar)
readings to each other. The sorted temperature readings series
S = {s1, ...., sρ}, is normalized using z-normalization before
transforming it into PAA representation. This procedure
guarantees that input temperature readings series converted
to output series whose mean is nearly 0 whilst the standard
deviation is in a range near to 1. This normalization is
necessary to permit our algorithm to concentrate on the
structural similarities/dissimilarities instead of the amplitude
[39], [42]. This normalization is calculated as follow

µ =

∑ρ
i=1(si)

ρ
(1)

σ =

√∑ρ
i=1(si − µ)2
ρ− 1

(2)

s
′

i =
si − µ
σ

(3)

Where σ, µ, and s
′

i are the mean, standard deviation, and
normalized temperature reading.

At each period, PAA represents the collected temperature
readings series S of length ρ in a w-dimensional space
(typically w � ρ) set such that Sp=sp1,... , spw. Each ith

value in Sp is computed using the following formula

spi =
w

ρ

ρ
w i∑

j= ρ
w (i−1)+1

spj (4)

In order to decrease the dimensionality of temperature
readings series from ρ to w, the sensed temperature readings
series is partitioned into segments with equal sizes. After
that, PAA computes the mean for the sensed data readings
within each segment so as to produce a sensed data-reduced
representation set. The time complexity of computing the
mean in Eq. 4 is O(ρ). The transformation process of
original temperature readings series to PAA representation
is presented in Algorithm 1.

Algorithm 1. PAA Dimensionality Reduction

Require: S (ρ-dimensional temperature readings series),
w (PAA segments number)

Ensure: Sp (set of PAA Coefficients)
1 : S ←− Sorting(S) in descending order
2 : For i←− 1 to ρ do
3 : spi ←−

si−µ
σ

4 : end for
5 : For k ←− 1 to w

6 : Spk ←− w
ρ

∑ ρ
w
k

j=
ρ
w

(k−1)+1
spj

7 : end for
8 : return Sp

Figure 2 depicts PAA transformation process of the orig-
inal temperature readings series to PAA representation. As
shown in this figure, The temperature readings of 250 length
is decreased to 10 dimensions.

(a)

(b)
Fig. 2. PAA transformation process (a) original temperature readings
series and (b) PAA representation.

C. Frequency reduction

Since radio component represents the most energy-
consuming element in the sensor node, therefore, it is nec-
essary to report as less as possible of sensed readings to
the base station so as to extend the PSN lifetime while
maintaining the accuracy of transmitted sensed readings. The
main objective of this stage is to minimize the number of
temperature readings which are gathered by each sensor node
and maintain the frequency for each reading so as to not
influence on the readings analysis in the base station. In this
stage, DADAC protocol uses SAX representation to eliminate
the redundant sensed temperature readings before sending
them to the base station. This can save energy and improve
the PSN lifetime. SAX method is one of the first sym-
bolic representation that reduces dimensionality/numerosity
of time series [39]. It converts the data series into a set of
symbols. Each symbol takes its value from a finite alphabet
[43].

The PAA representation Sp of the original temperature
readings series S is transformed into SAX representation Sx

using the following steps:
i) Partition the temperature readings series into w portions.

ii) The mean for each portion readings is computed.
iii) The mean values are quantized into symbols selected

from an alphabet of size N .
The first two steps are PAA representation. In step 3,

The quantization uses (N − 1) breakpoints which partition
the region under the Gaussian distribution into a equal
proportional regions. Breakpoints can be defined as a sorted
values list B = β1, ...., βa−1. The region under a N(0, 1)
Gaussian curve from βi to βi+1 = 1/a, where β0 and βa refer
to −∞ and ∞, respectively. The breakpoints are located by



search them in a statistical table. For instance, Table 2 shows
A lookup table of the breakpoints for a with values range
from 3 to 10 [39].

TABLE II
A LOOKUP TABLE OF THE BREAKPOINTS FOR a.

a 3 4 5 6 7 8 9 10
βi β1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28

β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84
β3 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52
β4 0.84 0.43 0.18 0 -0.14 -0.25
β5 0.97 0.57 0.32 0.14 0
β6 1.07 0.67 0.43 0.25
β7 1.15 0.76 0.52
β8 1.22 0.84
β9 1.28

When the breakpoints have been determined, the PAA
coefficients can be quantized as follow. Every PAA value
less than the smallest breakpoint will be converted to ”a”
symbol, whilst the PAA values that are equal to or larger
than the smallest breakpoint and less than the second smallest
breakpoint are converted into ”b” symbol, etc. Figure 3
presents mapping PAA values into SAX symbols using
breakpoints, where ρ =250, w = 10, and a = 5. In this
figure, the temperature readings series is mapped to the word
”caabbcdeee”.

Fig. 3. Mapping PAA values into SAX symbols using breakpoints.

In Figure 3, SAX representation provides five symbols: a,
b, c, d, and e. The symbols can be merged to introduce a
sequence called word. It can be defined as follow. Let alphai
indicates the ith value of the alphabet ( i.e., alpha1 = a and
alpha2= b). Consequently, the transformation from a PAA
representation Sp to a word Sx is computed as follows

Sxi = alphaj , iif βj−1 ≤ spi < βj . (5)

After converting the PAA values into SAX symbols, the
resulted SAX symbols sequence will include redundant sym-
bols due to multiple consecutive segments are transformed
to the same symbol. In this stage, DADAC protocol removes
these redundant symbols in each period to prevent transmit-
ting the same symbols to the base station. Therefore, we
will define a function that allows each sensor node to find
the similarity among the symbols of word Sx = sx1 , ..., s

x
w

to eliminate this redundancy.
The identical function identifies the similarity between two

symbols sxi and sxj and can be defined as follow

Identical(sxi , s
x
j ) =

{
1 if sxi = sxj
0 otherwise.

The sensor node n will search for the same symbols in
the word of the period j. If the same symbols are found, the
sensor will record only the first occurrence of the symbol,
and removes the others while increasing the frequency of the
symbol by one every time occurs in the word. Otherwise,
the sensor will add this symbol to the set and initiated its
frequency to 1. Frequency of the Symbol fr(sxi ) is defined
as the number of the occurrence of the same symbol in the
same set. This reduced set of symbols and its frequencies
will be transmitted to the base station after converting each
symbol to its equivalent mean of PAA segment. The process
of SAX frequency reduction is illustrated in algorithm 2.

Algorithm 2. SAX Frequency Reduction

Require: Sp (w-dimensional PAA coefficients),
a (Alphabet Length), α (Alphabetic)

Ensure: Rs (Reduced set of readings),
FR

s
(Frequencies of readings in Rs)

1 :For i←− 1 to w do
2 : For j ←− 1 to a do
3 : if βj ≤ spi < βj+1 then
4 : Sxi ←− αj
5 : end if
6 : end for
7 :end for
8 : z ←− 0
9 :For m←− 1 to a do
10 : z ←− z + 1
11 : For n←− 1 to w do
12 : if Identical(Sxn, αm) = 1 then
13 : FR

s

z ←− FR
s

z + 1
14 : end if
15 : end for
16 : if (FR

s

z > 1) then
17 : Rsz ←− αm
18 : end if
19 : end for
20 :For i←− 1 to z do
21 : d←− Ascii(Rsi )− 97
22 : Rsi ←− βd × σ + µ
23 : end for
24 : return Rs, FR

s

D. Adaptive sampling rate

In this stage, DADAC protocol modifies its sampling rate
based on the percentage of similarity between temperature
readings of different periods in the cycle. The main purpose
of this stage is to calculate the similarity among periods
after each finished cycle to acclimate the rate of sampling
according to the new similarity rate. DADAC protocol adapts
its rate of sampling at the end of each cycle. Therefore, it uses
the PAA distance measure to find the amount of similarity
between periods of each cycle.

1) Similarity measure: This section describes some mea-
sures used to give the distance between two temperature
readings series. Euclidean distance represents one of the most
famous distance measures. Euclidean distance between two



temperature readings series Q and C of the same length ρ
is given by the following formula

DE(Q,C) =

√√√√ ρ∑
i=1

(qi − ci)2. (6)

Let Q and C represent two collected temperature readings
series. The PAA representations for the two series are Qp

and Cp. The lower bounding approximation of the Euclidean
distance between the two temperature readings series Qp and
Cp can be obtained using the following formula

DPAA(Q
p, Cp) =

√
ρ

w

√√√√ w∑
i=1

(qpi − c
p
i )

2. (7)

An examples for the visual representation of distance
measures presented in Eq. 6 and Eq. 7 can be shown in[39].

DADAC protocol uses Similar function to identify the
Similarity between two transformed PAA temperature read-
ings series Qp and Cp. The Similar function refers to the
similarity between two PAA temperature readings series
using the following formula

SIM(Qp, Cp) =
1

1 +DPAA(Qp, Cp)
. (8)

After that, in order to measure the similarity percentage
(PSim), it is defined as follow

PSim = SIM(Qp, Cp)× 100. (9)

Algorithm 3 gives the similarity percentage (PSim) calcu-
lation between two PAA temperature readings series Qp and
Cp.

Algorithm 3. Similarity Algorithm

Require: Qp, Cp, ρ (dimension before reduction)
Ensure: PSim
1 : Sum ←− 0
2 : For i←− 1 to w do
3 : Sum ←− Sum+ (Qpi − Cpi)2
4 : end for
5 : if (Sum = 0)then
6 : DPAA ←− 0
7 : else
8 : DPAA ←−

√
ρ
w

√
Sum

9 : end if
10 : Sim ←− 1

1+DPAA
11 : PSim ←− Sim× 100
12 : return PSim

2) Verification the similarity of periods: In DADAC pro-
tocol, the sampling period refers to the time duration during
which the sensor capture sensed temperature readings from
the surrounding environment. The speed of change of envi-
ronmental conditions and what fundamental features should
be periodically gathered in temperature readings collection
model can influence on the sampling period. In DADAC
protocol, every node able to adapt its rate of sampling
according to the amount of similarity among temperature

readings series collected during different periods. The aim
of computing the similarity between the temperature read-
ings series every cycle is to adapt the rate of sampling
based on the new calculated similarity. Therefore, the PAA
similarity coefficient is employed to discover the similarity
percentage, PSim among several periods per cycle. On one
hand, if PSim is high, it means the monitored condition is
changed at a slow speed. Therefore, the sensor node will
decrease its rate of sampling to the minimum value to prevent
collecting redundant readings. On the other hand, if PSim
is low, the sensor node will collect temperature readings
at approximately maximum sampling rate so as to prevent
losing significant readings. Therefore, to acclimate the rate
of sampling of sensor node in accordance with the computed
similarity among periods, the reverse of similarity percentage
for PAA similarity coefficient RPSim is computed as follows

RPSim = 100− PSim. (10)

Consequently, the computed RPSim will be used to accli-
mate the rate of sampling of the sensor in the new periods.
When there is a high degree of similarity among periods
(i.e., PSim is high), the sensor node balances its rate of
sampling to the minimum value (RPSim is low). Otherwise,
it balances its rate of sampling to the maximum value. As
aforementioned, the process of adapting the sampling rate in
the sensor node depends on the RPSim , thus the application
criticality will be taken into consideration in this process.

3) Application criticality: The PSN can be used for moni-
toring disasters by using various kinds of sensor devices, e.g.,
for temperature, displacement, pressure, and concentration of
chemicals, or noise detection. The influence of disasters on
people and on the environment is not the same. Therefore, the
sensor can modifies its rate of sampling in a different manner
for each monitored disasters. In order that, if the risk level of
the disaster is high then the sensor node must collect sensed
readings more than if the risk level of the disaster is low. This
can provide collected readings with high quality to make both
of the analysis easier, and the monitored disaster is better
to understand. There is an inversely proportional relation
between PSim and RPSim . Therefore, when the similarity
among periods is high, the RPSim will force the sensor node
to make its sampling rate as minimum as possible.

In general, when the sensor node has the ability to alter
its rate of sampling depending on the application’s needs
in PSNs, this will save its energy. In DADAC protocol, the
criticality of application is expressed as a minimum amount
of sampling rate in a period for a sensor node, MINSMP .
MINSMP takes values in the range 0 to 100 which represent
the criticality level either low or high respectively. The sensor
node adapts the new sampling rate to the MINSMP (not
to the RPSim) when the recently calculated sampling rate
is less than MINSMP . Depending on the requirements of
the application and before the deployment, all the sensor
nodes initialize their MINSMP . It is also possible to change
MINSMP dynamically during the lifetime of the network
for the whole sensors or for just a given subgroup of sensors
if there are some types of management and control schemes
are available.

Algorithm 4 illustrates an adaptive sampling rate approach.
The main purpose of this algorithm is to give every sensor
device the ability to modify its rate of sampling to conserve



Algorithm 4. Adaptive Sampling Rate Algorithm

Require: j (One cycle = j periods), ρ, MINSMP , a: alphabet
Ensure: SMPR (new sampling rate)
1 : SMPR ←− ρ
2 : while ne > 0 do
3 : for i←− 1 to j do
4 : Collect readings series (Si) at SMPR speed
5 : Spi ←− Algorithm1 (Si, w)
6 : SendToSink(Rs, FR

s
)←− Algorithm2 (Spi , a, α)

7 : end for
8 : for each cycle do
9 : PSim ←− Algorithm3 (Sp1 , S

p
j , ρ)

10 : RPSim ←− 100− PSim
11 : if RPSim < MINSMP then
12 : SMPR ←− (MINSMP /100)× ρ
13 : else
14 : SMPR ←− (RPSim/100)× ρ
15 : end if
16 : end for
17 : end while

its power and to decrease the volume of collected data.
Algorithm 4 works into cycles and each cycle consists of
j periods. In each period, the sensor captures ρ temperature
readings. The number of periods j is fixed to 2 in algorithm
4. For each cycle, the sensor node looks for the similarity
percentage among periods (line 9), then it computes RPSim
(line 10). Therefore, the sensor node will decide to increase
its sampling rate to computed RPSim when it is greater
than MINSMP which is determined by the application.
Otherwise, it decreases its sampling rate to the MINSMP

(lines 11-15).

IV. PROTOCOL EVALUATION

A. Simulation framework

To study and evaluate DADAC protocol, extensive simula-
tions are performed with discrete event simulator OMNeT++
[44]. DADAC protocol is distributed at each sensor node and
it is based on the dataset of Intel Berkeley Research Lab
[45]. PSN in this Lab includes 54 Mica2Dot sensors. The
sensed data of the weather (such as temperature, humidity,
and light) are periodically collected by these sensors once
each 31 seconds. The base station is located at the center of
the Lab. It receives sensed readings from each sensor node
by a single hop. In our simulation, the sensor nodes use a log
file contains about 2.3 million readings collected previously
by Mica2Dot sensor nodes in the Lab. This article uses only
one measure of sensor node measurements: temperature1.
Some sensor nodes are not used in our simulation because its
data may be missing or truncated. Therefore, the temperature
readings of 47 sensor nodes are selected and stored. The
results are the average of 47 sensor nodes. Table III gives
the selected parameters settings.

In the experimental simulations, Some performance met-
rics are applied to assess the effectiveness of the DADAC
protocol such as sampling rate adaptation, number of col-
lected temperature readings by a sensor node, number of sent
temperature readings, energy consumption, and lifetime.

DADAC protocol uses the same energy consumption
model discussed in [17]. Energy consumed by the sensor

1the others are done by the same manner.

TABLE III
SIMULATION PARAMETERS FOR PSN INITIALIZATION

Parameter Value
PSN size 47 nodes

a 5 and 10 symbols
ρ 20, 50, 100 and 200 readings

MINSMP 20, 40 and 60
w 10%, 20%, 50%, 75% of the collected measures
j 2

Eelec 50 nJ/bit
βamp 100 pJ/bit/m2

node depends only on the periodically collected and sent tem-
perature readings to the base station. The cost of transmission
is calculated for a m− bits message and for a distance d as
follow

ETX(m, d) = Eelec ∗m+ βamp ∗m ∗ d2. (11)

The energy consumption required for capturing m− bits
by the sensor node is calculated as follow

ECX(m, d) = ETX(m, d)/7. (12)

These experiment simulations consider the length of data
reading m equal to 64. In the case of transmission, 16
bits are added to m − bits message which corresponds
to the frequency of data reading m. Consequently, Energy
consumption is defined as the total energy dissipated at each
sensor node during the collection and transmission of data
readings and formulated as follow

ETotal = ETX(m, d) + ECX(m, d). (13)

B. Performance analysis

In this section, several experiments are achieved to show
the performance of DADAC protocol. It is distributed at each
sensor node in the PSN. Every node reads real temperature
readings periodically and adapts its rate of sampling after
each cycle based on the similarity percentage among col-
lected sets of temperature readings.

1) Sampling rate adaptation: Figure 4 shows the adap-
tation of sampling rate and for two sizes of temperature
readings (50 and 100 respectively). The results illustrate
the ability of sensor device to modify its rate of sampling
dynamically depending on the application criticality level.
The risk level MINSMP can be determined according to
the type and requirement of application used to monitor the
disaster.

In this experiment, MINSMP uses two values: 20 for
low risk level disaster and 60 for high risk level disaster. As
shown in Figure 4, the adaptation of sampling rate is dynamic
and after each cycle based on the application criticality level
(i.e., MINSMP= 20 or 60). The results in Figure 4 (a) and
(b) validate the good performance of our protocol.

2) Number of collected readings: Figure 5 shows the
number of collected readings by the node at the end of
simulation. DADAC protocol uses different values for the
parameters SMPR, a, MINSMP , and w.

As shown in these results, the alphabet size a does not
affect the number of collected readings because of adaptation
of sampling rate depends basically on the similarity among
periods. DADAC protocol collects as large as possible of
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Fig. 4. Sampling rate adaptation (a) ρ = 50 and (b) ρ = 100.

temperature reading as the MINSMP increases. This can
support application requirements when the risk level is high
then DADAC protocol collect more readings. It can be
seen that increasing the ρ leads to increase the number of
collected readings because of the decreasing in the similarity
percentage between collected readings of successive periods.
Concerning the accuracy, it can be seen that when the number
of segments w decreases then the number of collected
readings decreases due to increasing the similarity among
collected readings according to the defined identical function.

3) Number of sent readings: In this experiment, the
number of sent readings by sensor node is evaluated. Another
task carried out by DADAC protocol is to remove redundant
collected readings before send them to the base station while
maintaining the accuracy of collected readings. Figure 6
indicates the number of sent readings by the node at the
end of the simulation.

Obviously, the number of sent readings increases with
the number of alphabet sizes. This is due to the lack of
similarity among collected readings. It can be seen that
DADAC protocol send the larger amount of readings to the
base station when the MINSMP increases. This can support
the application needs by sending a larger number of readings
when the risk level of application is high. It is obvious that
the increase in the SMPR leads to decrease the number
of sent measures due to SAX transformation of collected
readings into fixed number of symbols, each one associated
with different frequency. For example, suppose a =5 and
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Fig. 5. Number of collected readings (a) ρ = 50 and (b) ρ = 100.

SMPR=50, the 50 collected readings will be represented
by 5 symbols (a, b, c, d, and e). Each of these symbols
has a different associated frequency (e.g., 5, 4, 15, 10, 16).
If the SMPR increases to 100 for the same 5 symbols, it
leads to represent the 100 collected readings by the same
5 symbols and with different associated frequency for each
symbol. Therefore, DADAC protocol reduces the number of
redundant data before send them to the base station to saves
more energy and improve lifetime.

4) Energy consumption: In this experiment, the energy
consumption of the sensor node using DADAC protocol is
studied. Figure 7 illustrates energy consumption by a sensor
node at the end of the simulation.

As shown in Figure 7, when the a and w increase, the
number of sent readings increases (see Figure 6) thus energy
consumption by the sensor node using DADAC protocol
increases. DADAC protocol increases the sent readings when
the risk level of the application is high. Therefore, the
energy consumption by DADAC protocol increases when
the MINSMP increases. Furthermore, it is obvious that the
increase in the SMPR leads to decrease the number of sent
readings thus save the energy of sensor node.

5) Data Accuracy: This experiment shows another sig-
nificant evaluation metric to assess the quality of DADAC
protocol is the data accuracy of collected data. This metric
refers to the rate of the data lost. However, the data accuracy
is computed at the end of the experiment by subtracting the
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Fig. 6. Number of sent readings (a) ρ = 50 and (b) ρ = 100.

lost data readings rate from the total number of data readings
collected by the sensor without adaptive sampling. Tables IV
and V shows the data accuracy of DADAC protocol for ρ =
50 and ρ = 100 respectively with a = 5. The conducted results
confirm that the DADAC protocol gives a suitable level of
data accuracy. It gives at least 99.34 % of data accuracy.
Hence, the decision at the base station will be not affected.
Therefore, DADAC protocol can be considered as an energy-
efficient method to adapt the rate of sampling of the sensor
whilst keeping a high level of data accuracy of the gathered
data.

TABLE IV
DATA ACCURACY OF COLLECTED DATA (ρ = 50).

Segments
Ratio (%)

Data Accuracy (%)
Smin=20 Smin=40 Smin=60

10 99.36 99.34 99.64
20 99.39 99.59 99.69
50 99.56 99.66 99.73
75 99.34 99.54 99.67

C. Comparison results

Depending on the conducted results in the subsection IV-B,
DADAC protocol, with a = 5 and segments ratio = 10%,
seem to give the best results to be compared with the best
results of other two existing techniques. The first scheme
is called PFF that proposed by Bahi et al.(2014) [16]. The
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Fig. 7. Energy consumption by a sensor node (a) ρ = 50 and (b) ρ = 100.

TABLE V
DATA ACCURACY OF COLLECTED DATA (ρ = 100)

Segments
Ratio (%)

Data Accuracy (%)
Smin=20 Smin=40 Smin=60

10 99.49 99.58 99.64
20 99.56 99.61 99.66
50 99.54 99.57 99.62
75 99.57 99.60 99.63

second approach is called Harb et al. (2016) that introduced
in [17].

1) Number of collected readings: Figure 8 illustrates the
number of collected readings at the end of simulation by
every sensor node using DADAC protocol compared with
other two approaches. DADAC protocol decreases the num-
ber of collected readings by a sensor node from 18% to 76%
compared to PFF. The PFF does not allow to the sensor node
to adapt its sampling rate. Therefore, it always collects the
same number of readings. Whereas, in comparison with Harb
et al. approach which allows the sensor node to adapt its rate
of sampling based on the similarity between the periods of
one cycle, DADAC protocol decreases the collected readings
from 5% to 29%.

The results illustrate that DADAC protocol has the ability
to get rid of the redundant collected readings efficiently so
as to decrease the overhead of transmitted readings to the
base station thus improve the network lifetime. It can be
seen that DADAC protocol increases the volume of collected
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Fig. 8. Number of collected readings by a sensor node.

readings when the MINSMP is increased. This increment in
the collected readings is to meet the application requirements
when the risk level is high.

2) Number of sent readings: When collecting the data
readings at each period, DADAC protocol at the sensor
node able to decrease the number of sent readings to the
base station by using SAX method. Therefore, DADAC
protocol finds the redundant symbols in the word of each
period and allocates for every symbol its frequency. Figure 9
demonstrates the number of sent readings by a sensor node to
the base station at the end of simulation for DADAC protocol
compared with the PFF and Harb et al. methods.
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The results illustrate that DADAC protocol at each sensor
node decreases from 56% to 65% of the number of sent
readings to the base station as comparing to the PFF and
from 55% to 60% as comparing to the Harb et al. meth-
ods respectively. Therefore, DADAC protocol removes the
redundant collected readings successfully and the number of
sent readings to the base station is reduced. We can also see
that the volume of sent readings from the sensor node to the
base station decreases when ρ increases or w decreases. This
is due to the number of sent readings rely on the number of
collected readings, segments ratio, the identical function, and
the risk level of application.

3) Energy consumption: Figure 10 shows the energy
consuming by DADAC protocol at the sensor node compared
with PFF and Harb et al. approaches.
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As shown in Figure 10, DADAC protocol outperforms the
other approaches in term of energy consumption. It saves
energy because it reduces both collected and sent readings
at the sensor node. The consumed energy of a sensor node
using DADAC protocol is minimized from 37% to 70% as
compared to PFF and from 20% to 59% as compared to Harb
et al. techniques respectively. It can be observed that DADAC
protocol is effective in terms of reducing energy consumption
for the applications with high and low risk level, where more
energy is saved when MINSMP decreases.

4) Lifetime of sensor node: Finally, we study the influence
of the number of collected and sent readings on the PSN
lifetime. As exhibited by Figure 11, DADAC protocol gives
a longer network lifetime compared with other approaches.
Every sensor node initiated its energy to 40mJ for the whole
approaches in this comparison.
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DADAC protocol enhances the lifetime of sensor node
up to 56% and 60% comparing to the Harb et al. and PFF
techniques respectively. These results are obtained due to the
efficiency of DADAC protocol in conserving the energy of
the sensor thus increases the PSN lifetime for both high and



low risk level applications, whilst maintaining the quality of
the gathered readings.

5) Energy saving ratio: This metric exhibits the capability
of DADAC protocol to conserve energy. Figure 12 shows
the energy saving ratio at the sensor node compared with
PFF and Harb et al. approaches. Energy saving ratio = (1-
(CEt/Einit))*100. Einit refers to the initial energy of the
sensor node where Einit = 0.08 joule. CEt refers to the
total consumed energy at the sensor node.
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The results show that the DADAC protocol saves effi-
ciently energy because it reduces both gathered and trans-
mitted readings at the sensor node. As illustrated in Figure
12, the saved energy of a sensor node using DADAC protocol
is maximized from 38% to 77% whilst Harb et al. technique
saved from 22% to 45%. The saved energy at the sensor
node using PFF algorithm is incresed from 1% to 23%.
PFF algorithm shows less energy saving compared with
other approaches. However, DADAC protocol can save more
energy that leads to extend the life of the sensors batteries.

6) Algorithmic complexity: As an analytical study, every
sensor node ni constructs sequence of sensed data Si of ρ
temperature readings. The time complexity of the algorithm
1 is O(ρ). The time complexity of the algorithm 2 is O(w a),
where w is the number of segments and a is the length of
Alphabet. Algorithm 3 has O(w) as a computation complex-
ity. The time complexity of the algorithm 4 is O((w · a) +
ρ). Therefore, the time complexity of our proposed DADAC
protocol in the worst case is O((w · a) + ρ) and it will save
at most(2 × ρ ) measures at the memory of the sensor node
in each cycle. Therefore, the storage (space) complexity of
DADAC protocol is O(ρ). The time complexity of Harb et al.
algorithm takes O(ρ 2). Finally, the time complexity of PFF is
O(ρ × log2(ρ)). In addition, the complexity of the message in
DADAC protocol depends mainly on the number of collected
data (ρ) in the period, which is fixed by the application. If it
is required a large value for ρ, several solutions can be used
such as data packet division. The space complexity depends
on the sensor node memory size as well as ρ, which can be
handled in a similar way to the complexity of the message.

7) The t-test: In this section, we use the statistical anal-
ysis such as t-test to show that our results are significant.
Therefore, the t-test is applied on the comparison result of the
energy consumption between our proposed DADAC protocol

and the two existing methods (Harb et al. and PFF). The t-
test (with p-value) between DADAC and Harb et al. is equal
to 0.000106089, whilst the t-test (with p-value) between
DADAC and PFF is equal to 4.09444E-06. Hence, the t-
test (with p-value < 0.05) shows that our result is significant
and the energy consumption is significantly reduced.

V. CONCLUSION AND FUTURE WORKS

This paper presents a protocol, called distributed adap-
tive data collection protocol (DADAC), which collects pe-
riodically sensor readings and improves the PSN lifetime.
DADAC protocol works into cycles and consists of four
phases. First, collecting the data readings. Second, the sen-
sor converts the collected temperature readings into PAA
representation in order to reduce its dimensionality. Third,
the redundant collected readings are reduced using SAX
approach. Fourth, sampling resolution to adapt the rate of
sampling at the sensor node in accordance with the dy-
namic changing of observed environment. DADAC protocol
considers the risk level of an application by fixing the
minimum sampling rate that permits to sensor node to collect
readings at a minimum rate while maintaining a good quality
of the collected readings. To assess the effectiveness of
DADAC protocol, we compared it with two other methods
using several performance metrics like a number of collected
and sent readings, energy consumption, and PSN lifetime.
Simulation results show the efficiency of DADAC protocol
to conserve the energy at the sensor nodes thus prolong the
PSN lifetime.

In future, We plan to improve our work to consider the
sensing overlap among sensor nodes at the aggregator level
to optimize both the aggregated readings and lifetime while
maintaining a good accuracy.
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