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Abstract—Many studies on fuzzy modeling(learning of fuzzy
inference systems) with vector quantization(VQ) and steepest
descend method (SDM) have been made. It is known that
these methods are superior in the number of rules(parameters)
compared with other learning methods. Most of conventional
learning methods using VQ are ones that determine initial
assignment of center parameters for membership functions in
antecedent part using only input part of learning data, initial
assignment of center parameters for membership functions
in antecedent part using all learning data and the initial
assignment of all parameters in systems using VQ and the
generalized inverse matrix(GIM). These methods are ones that
determine the initial assignment of parameters in learning
process, and any learning data in learning steps of SDM is
selected randomly. On the other hand, it is known that many
fuzzy rules are needed at or near the places where output
changes rapidly in learning data. Therefore, the rate of output
change for learning data must be considered. In this paper,
we propose learning methods that any data in learning steps
of SDM are selected using the probability based on the rate
of output change for learning data. Further, the method using
GIM to determine the initial assignment of the consequent part
of fuzzy rule is also proposed. In order to demonstrate the
effectiveness of the proposed methods, numerical simulations
for function approximation and pattern classification problems
are performed.

Index Terms—Fuzzy Inference Systems, Vector Quantization,
Neural Gas Network, Steepest Descent Method, Generalized
Inverse Matrix.

I. INTRODUCTION

MANY studies on fuzzy modeling(learning of fuzzy
inference systems) have been made [1]–[4]. Their

aim is to construct automatically fuzzy inference systems
from learning data. Although most of conventional methods
are based on steepest descend method(SDM), the obvious
drawbacks of them are its large time complexity and getting
stuck in a shallow local minimum. Further, there is problems
of difficulty dealing with high dimensional spaces [5], [6]. In
order to overcome them, some novel methods have been de-
veloped, which 1) create fuzzy rules one by one starting from
any number of rules, or delete fuzzy rules one by one starting
from a sufficiently large number of rules [7], [8], 2) use GA
(Genetic Algorithm) and PSO (Particle Swarm Optimization)
to determine fuzzy systems [10], 3) use fuzzy inference
systems composed of small number of input rule modules,
such as SIRMs (Single Input Rule Modules) and DIRMs
(Double Input Rule Modules) methods [10], [11], and 4)
use a self-organization or a vector quantization technique to
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determine the initial assignment of learning parameters [8],
[12]. Further, it has been known that a learning method of
radial basis function(RBF) netrorks using VQ and GIM is
effective. Specifically, learning methods using VQ and SDM
are superior in the number of rules(parameters) compared
with other learning methods [2], [12]. Most of conventional
learning methods using VQ are ones that determine initial
assignment of parameters for membership functions in an-
tecedent part using only input part of learning data. There-
fore, we proposed some learning methods to determine initial
assignment of center parameters for membership functions
in antecedent part using all learning data. Further, we pro-
posed learning methods determining the initial assignment
of weight parameters in consequent part [14]–[16]. These
methods are ones that determine the initial assignment of
learning parameters in learning process, and any learning
data is selected randomly in learning steps of SDM [15]–
[18]. On the other hand, it is known that many rules are
needed at or near the places where output changes rapidly
in learning data. Therefore, the rate of change for output
data must be considered. Little learning methods selected
any data using the probability based on the rate of output
change for learning data have been proposed. In this paper,
we propose learning methods that any data are selected using
the probability based on the rate of output change for learning
data in learning process of SDM. Further, the method using
GIM to determine initial weights is also proposed. In order
to demonstrate the effectiveness of the proposed method,
numerical simulations for function approximation and pattern
classification problems are performed. In Section II, the
conventional learning, VQ and GIM methods are introduced.
Further, the probability based on the rate of output change
for learning data is introduced. In Section III, new learning
methods are proposed. In Section IV, numerical simulations
for function approximation and classification problems are
performed to show the performance of proposed methods.

II. PRELIMINARIES

A. The conventional fuzzy inference model

The conventional fuzzy inference model using SDM is de-
scribed [1], [2]. Let Zj = {1, · · · , j} and Z∗

j = {0, 1, · · ·, j}
for the positive integer j. Let R be the set of real numbers.
Let x = (x1, · · · , xm) and yr be input and output data,
respectively, where xi∈R for i ∈ Zm and yr∈R. Then the
rule of simplified fuzzy inference model is expressed as

Rj : if x1 is M1j and · · · and xm is Mmj then y is wj ,
(1)

where j ∈ Zn is a rule number, i ∈ Zm is a variable number,
Mij is a membership function of the antecedent part, and wj

is the weight of the consequent part.



A membership value of the antecedent part µj for input
x is expressed as

µi =

m∏
j=1

Mij(xj). (2)

If Gaussian membership function is used, then Mij is ex-
pressed as follow:

Mij(xj) = exp

(
−1

2

(
xj − cij

bij

)2
)
. (3)

, where cij and bij are the center and the width values of
Mij , respectively. The inference output y∗ is calculated by
Eq.(4).

y∗ =

∑n
i=1 µi · wi∑n

i=1 µi
. (4)

In order to construct the effective model, the conventional
learning is introduced. The objective function E is deter-
mined to evaluate the inference error between the desirable
output yr and the inference output y∗.

In this section, we describe the conventional learning
algorithm [2].

Let D = {(xp
1, · · · , xp

m, yp)|p ∈ ZP } and D∗ =
{(xp

1, · · ·, xp
m)|p∈ZP } be the set of learning data and the set

of input data of D, respectively. The objective of learning is
to minimize the following mean square error(MSE):

E =
1

P

P∑
p=1

(y∗p − yp)2. (5)

, where y∗p is the inference output for the data xp.
In order to minimize the objective function E, each

parameter α ∈ {cij , bij , wj} is updated based on SDM as
follows [1], [2]:

α(t+ 1) = α(t)−Kα
∂E

∂α
(6)

where t is iteration time and Kα is a constant. When the
Gaussian membership function is used as the membership
function, the following relation holds.

∂E

∂cij
=

µj∑n
j=1 µj

· (y∗ − yr) · (wj − y∗) · xj − cij
b2ij

(7)
∂E

∂bij
=

µj∑n
j=1 µj

· (y∗ − yr) · (wj − y∗) · (xj − cij)
2

b3ij
(8)

∂E

∂wj
=

µj∑n
j=1 µj

· (y∗ − yr) (9)

The conventional learning algorithm is shown as Fig.1 [1],
[2], where n0, θ and Tmax are the initial number of rules,
threshold and the maximum number of learning, respectively.
Remark that the method is generative one. The method is
called learning algorithm A.

Fig. 1. The flowchart of the conventional learning algorithm

B. Neural gas and K-means methods

Vector quantization techniques encode a data space, e.g., a
subspace V⊆Rm, utilizing only a finite set C = {ci|i∈Zr}
of reference vectors (also called cluster centers), where m
and r are positive integers.

Let the winner vector ci(v) be defined for any vector v∈V
as follows:

i(v) = arg min
i∈Zr

||v − ci|| (10)

, where ||a− b|| means the distance between vectors a and
b.

From the finite set C, V is partitioned as follows:

Vi = {v∈V |||v − ci||≤||v − cj || for j∈Zr} (11)

The evaluation function for the partition is defined as follows:

E =

r∑
i=1

∑
v∈Vi

||v − ci(v)||2 (12)

For neural gas method [19], the following method is used:
Given an input data vector v, we determine the

neighborhood-ranking (ci0 , · · ·, cir−1
), being the reference

vector for which there are k vectors cj with

||v − cj || < ||v − cik || (13)

If we denote the number k associated with each vector ci
by ki(v,ci), then the adaption step for adjusting the ci’s is
given by

△ci = ε·hλ(ki(v, c))·(v − ci) (14)
hλ(ki(v, c)) = exp(−ki(v, c)/λ) (15)

where ε∈[0, 1] and λ > 0. The number λ is called decay
constant.

If λ→0, Eq.(14) becomes equivalent to the K-means
method [19]. Otherwise, not only the winner ci0 but the
second, third nearest reference vector ci1 , ci2 , etc., are also
updated.



Fig. 2. Neural Gas method

Let p(v) be the probability distribution of data vectors for
V . The flowchart of the conventional neural gas algorithm
is shown as Fig.2 [19], where εint, εfin, θ and Tmax are
learning constants, threshold and the maximum number of
learning, respectively. The method is called learning algo-
rithm NG.

If the data distribution p(v) is not given in advance, a
stochastic sequence of input data v(1),v(2), · · · which is
based on p(v) is given [19].

By using Learning Algorithm NG, learning method of
fuzzy systems is shown as follows [12], [13] : In this
case, assume that the distribution of learning data is discrete
uniform one. Let n0 be the initial number of rules.
Learning Algorithm B
Step B1 : For learning data D∗, Learning Algorithm NG is
performed by using D∗ as the set V . The set D∗ is encoded
by the set C of reference vectors, where |C| = n0.
Step B2 : The set of center parameters of fuzzy rules is set
to the set C.
Let

bij =
1

mi

∑
xk∈Ci

(cij − xkj)
2, (16)

where Ci and mi are the i-th cluster for C and the number
of learning data for i∈Zn0 . Each initial weight wi is selected
randomly.
Step B3 : Learning algorithm A for initial parameters cij ,
bij and wi are performed.

C. Determination of weights using the generalized inverse
method

Let us explain fuzzy inference systems and interpolation
problem using the generalized inverse method [2]. This
problem can be stated mathematically as follws:

Given the set of learning data D = {(xp, yrp)|p∈ZP }, find
a function f : Rm→R such that the following conditions are
satisfied :

f(xp) = yrp (p∈ZP ) (17)

In the case of fuzzy inference system, this problem is
solved as follows :

yp = f(xp) =

n∑
i=1

wiϕpi(||xp − ci||) (18)

ϕpi(||xp − ci||) =
µi(x

p)∑n
l=1 µl(xp)

(19)

that is,

Φw = y (20)

, where Φ = (ϕpi) for p∈ZP and i∈Zn is a matrix and
y = (y1, · · ·, yr)T and w = (w1, · · ·, wn)

T are output and
weight vectors, respectively, and T means transportation.

Let P = n and xi = ci. The width parameters are
determined by Eq.(16). Then, if ϕ(·) is selected as Gaussian
function, then the solution of weights w is obtained as

w = Φ−1y (21)

Let us consider the case n < P . This is the case where
the number of rules is sufficiently small for the number of
learning data. The optimal solution w∗ that minimizes E =
||yr − Φw||2 can be obtained as follows :

w+ = ΦTy and Emin = ||(I −Ψ)y||2 (22)

, where Φ+≜[ΦTΦ]−1ΦT , Ψ≜ΦΦT , I is identify matrix of
P×P and y = (yr1, · · ·, yrP ).

The matrix Φ+ is called the generalized inverse matrix of
Φ. The method using Φ+ to determine the weights is called
the generalized inverse method(GIM) [2].
[Example 1]

Let us perform two-variable logical functions as shown in
Table I using fuzzy inference systems with following rules:

Ri : if x1 is Mi1 and x2 is Mi2 then y is wi (23)

, where i∈Z4.
Then, the fuzzy inference system with four fuzzy rules is

assumed to be of the form:

y =

4∑
i=1

µiwi∑4
l=1 µl

(24)

Let four binary input vectors and the corresponding output
vector be x1 = (0, 0)T , x2 = (0, 1)T , x3 = (1, 0)T ,
x4 = (1, 1)T and y = (e1, e2, e3, e4)

T for ei∈{0, 1}, re-
spectively(See Table I). Let the center and width parameters
of membership functions be c1 = x1, c2 = x2, c3 = x3,
c4 = x4 and bij = 0.5 for i∈Z4 and j∈Z2, respectively.
Then inference output are obtained as Table I.

In this case, the interpolation matrix Φ may be calculated
as

Φ =


0.778 0.105 0.105 0.012
0.105 0.778 0.012 0.105
0.105 0.012 0.778 0.105
0.012 0.105 0.105 0.778

 (25)

As a result, weight vectors w =
(w1, w2, w3, w4)

T =(0.03,−0.18,−0.18, 1.33)T ,
(−0.33, 1.18, 1.18, 0.97)T and (−0.36, 1.36, 1.36,−0.36)T
for AND, OR and EXOR operations are obtained,
respectively.



TABLE I
FOUR LOGICAL FUNCTIONS

Target output Inference output
HHHHx

y AND OR EXOR AND OR EXOR

0 0 0 0 0 0.0015 0.0027 0.0012
0 1 0 1 1 0 0.9994 0.9988
1 0 0 1 1 0 0.9994 0.9988
1 1 1 1 0 0.9973 0.9985 0.0012

D. The probability based on the rate of output change for
learning data

Learning Algorithm B is a method that determines the
initial assignment of fuzzy rules by vector quantization using
the set D∗ of input for learning data. In this case, the set
of output in learning data D is not used to determine the
initial assignment of fuzzy rules. In the previous paper, we
proposed a method considering both input and output data
to determine the initial assignment of fuzzy rules [8].

Based on the improved method of Ref. [8], the probability
distribution for D∗ is defined as follows : Let D and D∗ be
the sets of learning data defined in 2.1.
Calculation of the probability for learning data
Step 1 : Give an input data xi∈D∗, we determine the
neighborhood-ranking (xi0 ,xi1 , · · ·,xik , · · ·,xiP−1) of the
vector xi with xi0 = xi, xi1 being closest to xi and
xik (k = 0, · · ·, P − 1) being the vector xi for which there
are k vectors xj with ||xi − xj || < ||xi − xik ||.
Step 2 : Determine H(xi) which shows the rate of change
of inclination of the output around output data to input data
xi, by the following equation:

H(xi) =

M∑
l=1

|yi − yil |
||xi − xil ||

(26)

, where xil for l∈ZM means the l-th neighborhood-ranking
of xi, i∈ZP and yi and yil are output for input xi and
xil , respectively. The number M means the range of ranking
considering H(x).
Step 3 : Determine the probability pM (xi) for xi∈D∗ by
normalizing H(xi).

pM (xi) =
H(xi)∑P
j=1 H(xj)

(27)

and
∑P

i=1 pM (xi) = 1.
[Example 2]

Let us explain how to compute pM (x) using y =
sin(πx3

1)x2 as shown in Fig.4, where x1, x2, y∈[0, 1](See
Fig.4).

Assume that four learning data are given as follows :

x y
x1 = (0.2, 0.2) 0.005
x2 = (0.2, 0.8) 0.020
x3 = (0.8, 0.2) 0.200
x4 = (0.8, 0.8) 0.799

The change of the function is rapidly at the point x4 and
flat at the point x1. Therefore, it is desired to select the point
x4 with high probability so that many rules assign near this
point. Let M = 2.

Then, H(x1) is calculated as follows :

Fig. 3. The flowchart of learning algorithm D

H(x1) =
|y1 − y2|
||x1 − x2||

+
|y1 − y3|
||x1 − x3||

(28)

= 0.35

because the first and second closest vectors for x1 are x2 and
x3. Likewise, we obtained H(x2) = 1.325, H(x3) = 1.325
and H(x4) = 2.3. From the Eq.(27), each of p2(x)’s is
calculated as p2(x

1) = 0.066, p2(x
2) = 0.25, p2(x

3) =
0.25, p2(x4) = 0.434.

If M = 3, then the following results are obtained :
p3(x

1) = 0.143, p3(x2) = 0.21, p3(x3) = 0.169, p3(x4) =
0.477.

In both cases, the rate of output change for x4 = (0.8, 0.8)
is large compared to other points, so pM (x4) is large. On the
other hand, the probability of each point is 0.25 if data are
randomly selected in the case of the conventional method.

The flowchart of learning algorithm D using pM (x) and
GIM is shown in Fig.3.

Then, let us show how the assignment of fuzzy rules
changes after learning using Example 2.
[Example 3]
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Fig. 4. The figure of y = sin(πx3
1)x2

Let us consider two cases with M = 1 and 100 using y =
sin(πx3

1)x2, where Fig.5(a) and (b) are the initial assignment
of center parameters for four fuzzy rules using pM (x) with
M = 1 and 100 for the number of learning data P = 500,
respectively. Fig.5(c) and (d) are the assignment of fuzzy
rules after learning for M = 1 and 100, respectively. The
result shows that the case of M = 100 is superior in the
assignment of fuzzy rules after learning to the case of M =
1.

It is known that many rules are needed at or near palaces
where output changes quickly for learning data. The proba-
bility pM (x) is a technique to find the optimum places for
the assignment of fuzzy rules. The algorithm D is a heuristic
method to find the optimum number of M .

III. THE PROPOSED METHOD

It is shown that learning algorithms A, B and C using VQ
and SDM is effective in accuracy and the number of rules to
other methods. Further, learning algorithm D using VQ, GIM
and SDM is also shown in Ref. [15]. Most of conventional
learning methods using VQ and GIM are ones that determine
only the initial assignment of parameters in antecedent and
consequent parts for membership functions. However, little
learning methods using VQ in learning process of SDM have
been proposed.

The method using VQ in SDM means that each learning
data in SDM is not selected randomly, but selected based on
pM (x). Therefore, each data existing the place where output
rapidly changes is more likely to be selected. Let explain it
using Example 3.
[Example 4]

Let M = 2 in Example 3. Then p2(x
1) = 0.066, p2(x2) =

0.25, p2(x3) = 0.25 and p2(x
4) = 0.434, so learning data

(x1, y1), (x2, y2), (x3, y3) and (x4, y4)∈D are selected with
the probability 0.066, 0.25, 0.25 and 0.434, respectively.

In this case, output change for (x4, y4) and (x1, y1) are
rapidly and flat as shown in Fig.4, respectively. It seems to
assign a lot of fuzzy rules at or near the place (x4, y4).

In this section, we propose four algorithms using pM (x)
in learning steps of SDM corresponding to algorithms A, B,
C and D. They are called algorithms(methods) A’, B’ C’ and
D’. The algorithm D’ is only shown as follows :
Learning Algorithm D’
Step 1 : θ, T 0

max, Tmax and M are set. Initial values of cij
and bij are set randomly. n←n0.
Step 2 : Let t = 1.

Step 3 : Select a data (xp, yp) based on pM (xp) for p∈ZP .
Step 4 : Update cij by Eq.(14) : Determination of the center
parameters based on pM (x).
Step 5 : If t < T 0

max, go to Step 3 with t←t+1, otherwise
go to Step 6 with t←1.
Step 6 : Determine bij by Eq.(16).
Step 7 : Determine wi by Eq.(22) : Determination of the
initial assignment of the weight wi by GIM.
Step 8 : Let p = 1.
Step 9 : Given a data (xp, yrp)∈D based on pM (x) for
x∈D.
Step 10 : Calculate µi and y∗ by Eqs.(2) and (4).
Step 11 : Update parameters cij , bij and wij by Eqs.(7),
(8) and (9).
Step 12 : If p < P then go to Step 8 with p←p+ 1.
Step 13 : If E < θ or t > Tmax go to Step 13, otherwise
go to Step 8 with t←t+ 1, where E is computed as Eq.(5).
Step 14 : If E < θ, the algorithm terminates, otherwise go
to Step 2 with n←n+ 1 and cij and bij are set randomly.

The feature of the proposed method is that learning data
are selected from the probability pM (x) in both determining
of the initial assignment of parameters and learning steps of
SDM(See steps 3 and 9 in learning algorithm D’).

In order to compare proposed methods with conventional
ones, the following methods are introduced(See Fig.6):
(A) Method A is one based on the conventional algorithm of
Fig.1 [1], [2]. Initial parameters of the center c, the width b
for the antecedent part and the weight w for the consequent
part are set randomly and all parameters are updated by SDM
using learning data selected randomly until the inference
error becomes sufficiently small.
(B) Method B is known as a learning method of RBF
networks [2], [13]. Initial values of c are determined using
the set D∗ = {xp|p∈ZP } by VQ and b is computed using
c. Initial values of w are randomly selected. Further, all
parameters are updated by SDM until the inference error
becomes sufficiently small.
(C) Method C was introduced in Refs. [8], [18]. Initial values
of c are determined using the set D = {(xp, yp)|p∈ZP }
by VQ and b is computed using c. Weight parameters are
randomly selected. Further, all parameters are updated by
SDM until the inference error becomes sufficiently small.
(D) Method D was introduced in the chapter III. Initial
values of c are determined using the set D by VQ and b
is computed using c. Initial parameters of w are determined
using GIM. Further, all parameters are updated by SDM until
the inference error becomes sufficiently small.
(A’) Method A’ is the proposed one. Initial parameters of c,
b and w are set randomly and all parameters are updated
using SDM using learning data based on pM (x) until the
inference error becomes sufficiently small.
(B’) Method B’ is the proposed one. Initial values of c are
determined using the set D∗ by VQ and b is computed using
c. Weight parameters w are randomly selected. Further, all
parameters are updated by SDM based on pM (x) until the
inference error becomes sufficiently small.
(C’) Method C’ is the proposed one. Initial values of c
are determined using the set D by VQ and b is computed
using c. Weight parameters are randomly selected. Further,
all parameters are updated by SDM based on pM (x) until



(a)The initial assignment of rules for M = 1
(c)The assignment of rules after learning for M = 1

(b)The initial assignment of rules for M = 100
(d)The assignment of rules after learning for M = 100

Fig. 5. The figures (a) and (b) show the initial assignment for M = 1 and 100, respectively, where ◦ and • mean the places of learning data and center
parameters of fuzzy rules. The figures (c) and (d) show the assignment after learning M = 1 and 100, respectively.

the inference error becomes sufficiently small.
(D’) Method D is the proposed one. Initial values of c are
determined using the set D by VQ and b is computed using
c. Initial parameters of w are determined using GIM. Further,
all parameters are updated by SDM based on pM (x) until
the inference error becomes sufficiently small.

IV. NUMERICAL SIMULATIONS

In order to show the effectiveness of proposed algorithms,
simulations of function approximation and classification
problems are performed.

A. Function approximation
The systems are identified by fuzzy inference systems.

This simulation uses four systems specified by the following
functions with 4-dimensional input space [0, 1]4(Eqs.(29) and
(30)) and [−1, 1]4((31) and (32)), and one output with the
range [0, 1];

y =
(2x1 + 4x2

2 + 0.1)2

37.21

× (4 sin(πx3) + 2 cos(πx4) + 6)

12
(29)

y =
(sin(2πx1)× cos(x2)× sin(πx3)× x4 + 1.0)

2.0
(30)

y =
(2x1 + 4x2

2 + 0.1)2

74.42

+
(3e3x3 + 2e−4x4)−0.5 − 0.077

4.68
(31)

y =
(2x1 + 4x2

2 + 0.1)2

74.42

+
(4 sin(πx3) + 2 cos(πx4) + 6)

446.52
(32)

Fig. 6. Concept of conventional and proposed methods, where SDM and
NG mean Steepest Descent Method and Neural Gas method. The algorithm
D’ is only shown, and algorithms A’, B’ and C’ are also defined in the same
way.



TABLE II
THE RESULTS FOR FUNCTION APPROXIMATION

Eq(29) Eq(30) Eq(31) Eq(32)
the number of rules 4.2 13.6 7.2 5.1

A MSE for Learning(×10−4) 0.40 0.71 0.43 0.28
MSE of Test(×10−4) 0.52 1.09 1.00 0.49
the number of rules 5.6 14.9 5.2 3.7

B MSE of Learning(×10−4) 0.18 0.77 0.49 0.33
MSE of Test(×10−4) 0.27 1.42 1.11 0.48
the number of rules 4.8 15.6 5.5 4.0

C MSE of Learning(×10−4) 0.21 0.72 0.54 0.88
MSE of Test(×10−4) 0.34 1.33 0.69 0.53
the number of rules 3.1 6.4 4.7 3.2

D MSE of Learning(×10−4) 0.21 0.69 0.56 0.21
MSE of Test(×10−4) 0.25 0.95 0.68 0.23
the number of rules 3.3 7.8 5.5 3.7

A’ MSE for Learning(×10−4) 0.22 0.63 0.43 0.27
MSE of Test(×10−4) 0.30 1.10 0.58 0.33
the number of rules 3.1 7.0 4.9 3.4

B’ MSE of Learning(×10−4) 0.21 0.66 0.57 0.25
MSE of Test(×10−4) 0.26 2.30 0.69 0.27
the number of rules 3.2 7.1 4.7 3.1

C’ MSE of Learning(×10−4) 0.21 0.65 0.60 0.22
MSE of Test(×10−4) 0.26 0.91 0.73 0.25
the number of rules 3.0 5.9 5.0 3.1

D’ MSE of Learning(×10−4) 0.25 0.74 0.62 0.24
MSE of Test(×10−4) 0.35 0.99 0.76 0.26

TABLE III
THE DATASET FOR PATTERN CLASSIFICATION

Iris Wine BCW
The number of data 150 178 683
The number of input 4 13 9
The number of class 3 3 2

As the initial conditions of simulations, Tmax = 50000,
Kc = 0.01, Kb = 0.01, Kc = 0.1, εinit = 0.1, εfin =
0.01, λ = 0.7, θ = 1.0×10−4 and M = 200 are used.
The numbers of learning and test data are 512 and 6400,
respectively.

Table II shows the result of simulation, where the number
of rules, MSE’s for learning and test data are shown. In
Table II, the number of rules means one when the threshold
θ = 1.0×10−4 of inference error is achieved in learning. The
result of simulation is the average value from twenty trials.
As a result, proposed methods A’, B’, C’ and D’ reduce
the number of rules compared to conventional methods.
Specifically, algorithm D’ is superior in the number of rules
to other algorithms.

B. Classification problems for UCI database

Iris, Wine and BCW data from UCI database shown in
Table III are used as the second numerical simulation [20]. In
this simulation, 5-fold cross-validation is used. As the initial
conditions for classification problem, Tmax = 50000, Kc =
0.001, Kb = 0.001, Kw = 0.05, εinit = 0.1, εfin = 0.01
and λ = 0.7 are used. Further, M = 100 and θ = 1.0×10−2

for Iris and Wine and M = 200 and θ = 2.0×10−2 for BCW
are used.

Table IV shows the result of classification problem. In
Table IV, the number of rules, RM’s for learning and test data
are shown, where RM means the rate of misclassification. As
a result, it is shown that proposed methods A’, B’, C’ and
D’ reduce the number of rules in classification problem.

TABLE IV
THE RESULT FOR PATTERN CLASSIFICATION

Iris Wine BCW
the number of rules 3.4 7.8 14.4

A RM for Learning(%) 3.0 1.4 1.6
RM of Test(%) 3.3 10.3 4.3

the number of rules 2.0 20.8 26.0
B RM of Learning(%) 3.3 13.6 2.2

RM of Test(%) 3.3 16.6 3.5
the number of rules 3.4 7.4 9.6

C RM of Learning(%) 2.8 2.1 2.0
RM of Test(%) 4.7 5.1 4.6

the number of rules 2.0 2.0 2.3
D RM of Learning(%) 2.5 1.5 1.5

RM of Test(%) 4.0 8.1 4.0
the number of rules 2.2 2.2 3.7

A’ RM for Learning(%) 2.7 1.5 1.5
RM of Test(%) 3.6 7.7 4.1

the number of rules 2.2 2.6 2.5
B’ RM of Learning(%) 2.4 1.3 1.7

RM of Test(%) 3.9 7.7 4.0
the number of rules 2.2 2.5 2.6

C’ RM of Learning(%) 2.4 1.4 1.6
RM of Test(%) 3.8 8.2 4.0

the number of rules 2.0 2.0 2.3
D’ RM of Learning(%) 2.5 1.6 1.6

RM of Test(%) 3.7 8.2 4.1

Let us consider the reason why we can get the good
result by using the probability pM (x). In the conventional
learning method, parameters are updated by any data selected
randomly from the set of learning data. In the proposed
method, parameters are updated by any data selected from the
probability pM (x). The function pM (x) is determined based
on output change for the set of learning data, so many fuzzy
rules are likely to generate at or near the places where output
change is large for the set of learning data. For example, if
the number of learning time is 100 and pM (x0) = 0.5, then
learning data x0 is selected 50 times from the set of learning
data in learning. As a result, membership functions are likely
to generate at or near the places where output change is
large for the set of learning data. The probability pM (x) is
considered as a method to improve the local search of SDM.

However, there is no difference in capability between
algorithms D and D ’. This means that the effect of pM (x)
on SDM is limited. In other words, after adjusting the center
parameters of rules and the weight of the consequent part as
initial setting, even if pM (x) or randomly selection for SDM
is used, the capability may not change. This result needs to
be verified by other simulations.

V. CONCLUSION

In this paper, we propose learning methods that any data
in learning steps of SDM is selected based on a probability
based on the rate of output change for learning data. It means
that each learning data in SDM is not selected randomly,
but selected based on the probability for output change.
Therefore, each data existing the place where output rapidly
changes is more likely to be selected. In order to demonstrate
the effectiveness of the proposed method, numerical simu-
lations for function approximation and pattern classification
problems were performed.

In the future work, we will propose more effective learning
algorithm using the probability of output change for learning
data compared to other methods and consider to apply the
proposed method to learning of neural network.
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