



Abstract— Any method of counting objects and vehicles

using computerized systems in a real live environment needs to

have reliable results and flexibility of operation. The proposed

work describes a method of counting moving objects and

vehicles within a live or recorded video stream using multiple

virtual line sensors that give flexibility to the users in analyzing

any location for the number of vehicles within the given video,

as existing traffic surveillance cameras may be sited in many

positions/angles. The proposed research is an improved object

counter. The results of this method have shown a promising

accuracy of close to 100% detection in daylight and 91% at

night.

Index Terms— video analytics, virtual sensors, object and

vehicle counters, computer vision.

I. INTRODUCTION

HE needs of traffic and pedestrian information systems

are emerging. Automated precision methods for

counting pedestrian, vehicles and other moving objects are

needed that are simple enough to be implemented in real-life

environments. Previous studies showed that the underlying

needs that triggered such information systems are: to

improve pedestrian volume modeling [1], to reduce labor

costs associated with manual techniques and continuous data

collection [2], simulations of pedestrian crossings and risk

assessment [3][5], and parking management systems [4].

Other research described the use of traffic and pedestrian

information for efficient road resource usage such as

lighting [6]. The project made use of pedestrian behavior,

and distance to certain objects/traffic to enhance safety and

efficiency.

The approaches that were previously proposed to achieve

such needs could be grouped into three categories: (1) Using

manual labor (2) Using hardware support systems (3) Using

video analytic software. Both the first and second categories

will have some major drawbacks in a live traffic

implementation. These drawbacks could be in the form of

expensive labor costs to monitor traffic 24/7, human error,

and are limited only to a certain size object counter

functions. The hardware-supported system will involve a lot

of sensors to be implemented, the need to safely modify the

road infrastructure to install the hardware, and a rigid and

lengthy deployment process. The objective of the proposed

work is to be able to enhance the third category of using

video surveillance system to extract traffic information.

The proposed software will use video sources, both live

and recorded traffic videos as input and dynamically put

virtual line(s) as sensors on the videos to count moving

*Manuscript received November 10, 2016; Samuel M T is with Bina

Nusantara University, School of Information Systems, Jakarta, Indonesia

(The Joseph Wibowo Center, Jl. Hang Lekir I No. 6, Senayan, Jakarta

12270) (e-mail: smahatmaputra@binus.edu).

objects that pass or are captured by the sensors. The virtual

sensors should be able to be placed at any position on the

video and should be able to give results for each sensor

accordingly. The proposed application can be used in

conjunction with live traffic monitoring systems on both

government and private institutions' systems. The

contribution of the proposed systems will lie in two

categories: (1) Counting the number of vehicles on a certain

road, or counting the number of pedestrian or visitors, thus

assisting in building a comprehensive traffic/visitor

statistical data model, using adaptive and dynamically

placed virtual line sensors. (2) The information provided by

the proposed systems could also be used as a trigger to

certain action(s) when a moving object is detected by the

virtual sensors or if a certain threshold is exceeded. The

actions could be to open road gates, and to trigger a frame-

grabber function in capturing images of the pedestrians or

moving vehicles to be further processed in sub-functions

such as face recognition or license plate recognition

systems.

II. PREVIOUS WORK

Some earlier research on a specific pedestrian counting

domain approached this through the scene-specific learning

method [7]. The work distinguished the crowd-counting

problem in two points: (1) line-of-interest counting (2)

region-of-interest counting. Both used flow velocity field

estimation with a combination of regression (tilt angle-

learning), and with a ratio of 1:3 of training and testing data

respectively. Additionally, another researcher used what

they called the semi-supervised regression [8] method that

minimizes the frame-labeling process, with the latest

approach using privacy-preserved crowd-counting [9]. All

of these methods claimed to have close to 99% accuracy;

however, this comes with the effort of providing offline

training data to the system.

More specifically in the vehicle-counting domain, a

recent work [10] used adaptive bounding boxes combined

with blob-size fitting to search for the boundary of the road

and an adaptive background. However, special

considerations need to be taken for minimum light or night-

time conditions. It also was not tested on concave detected

blobs. Thus, conditions like junctions, or if multiple roads

are present in the video were not mentioned. With a strong

similarity to the previous work, a virtual detector in the form

of a rectangle can be used on videos of traffic flow [11]. In

addition the average accuracy is 80% and the camera's view

array should be placed rigidly in line with the road with no

discussion of how to handle a diagonal to the video frame

traffic scene. Moreover, object detection was used under

specific layouts [12] and also installed on a DSP board [13].

However, both works have no discussion on the

T

Virtual Lines Sensors for Moving Object and

Vehicle Counters

Samuel Mahatmaputra Tedjojuwono
*

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_03

(Advance online publication: 20 November 2017)

__

applications’ speed performance.

A very much closer approach to the proposed work used

only a single virtual line [14], which could reach 85%

accuracy in counting vehicles; although without further

discussion on the time elapsing for the process. However, on

a real live traffic flow video, more than one virtual line

sensor is needed. This was implemented on the latest work

[15] with what they called multiple time-spatial images. But

the camera within this system should be placed rigidly inline

with the road, and as sensors - virtual lines should be placed

perpendicular to the road lanes’ image array. It was also not

tested for headlight problems in night traffic scenarios, and

there was no further discussion on more complicated road

scenarios such as cross junctions. Finally, both works did

not test against other moving objects such as pedestrians,

cyclists or motorcycles.

III. PROPOSED METHODOLOGY

The proposed traffic information system consists of four

main modules: (1) Smoothing, (2) Detecting line placement

from the user, (3) Registering all the points inside the lines,

(4) Detecting movements of pixels' value in every registered

point. These steps (figure 1) will be followed by the display

of the detected moving objects or vehicles for each virtual

line drawn by the user on the video screen. The output of the

object counters could also be saved into text files or

databases.

Fig. 1. The main

modules of the proposed methodology start with the smoothing process,

detecting line placement, registering points within a line vector, detecting

pixel value delta on each line and displaying the results.

A. Smoothing or filtering

Smoothing (also called ‘blurring’) is a process of

reducing the extreme frequencies in an image. There are

three options in smoothing/filtering: mean, median and

Gaussian smoothing [16]. This work proposes to use mean

smoothing. Mean filtering works by averaging (mean) the

pixel value of the current and the neighboring points and

replacing the current pixel value with the mean value.

One way to implement it is by applying a matrix operator

(ideally 3x3 matrix) to take the mean value of current and

neighboring points.

As an option to the above proposed approach, median

filtering can be used instead. Median filtering basically has a

similar matrix operator with mean filtering. However, it

takes the middle value (after sorting) as the current pixel

point instead of averaging the pixel’s values.

B. Detecting line placement from the user

The aim of this work is to give the user the ability to

place or draw the lines on any location on the video to count

the number of objects passing the lines. In achieving this

flexibility of virtual line sensor placement on a video screen,

the application should be able to record the point where the

user who triggered the event clicked for the first time, and

continuously wait until the left button is released to record

the second point’s coordinates.

The algorithms of recording the line’s two point

coordinates could be described as follows:

Fig. 2. Function to detect line placement by the user on the video screen.

The algorithms takes as input two parameters of point p1(x,y), and p2(x',y').

The function will then encapsulate and return the two points into a new data

structure of Line(p1,p2)..

The detect line placement function shown in Figure 2 is

returning a line comprising two points p1 and p2. In this

algorithm, the point p1 is the Euclidean coordinate of two

integers (x,y) as the starting coordinate of the line, followed

by the p2 coordinate in a similar form of two integral

!

!

// Output: Line(p1,p2)

// Detect line placement by the user on the screen

// and return the starting point and end point of the mouse

// movement.

Function Line detect_line_placement ()

{

 //Set listener for mouse events

 call videoScreenListener_MouseDown(MouseEvent e)

 call videoScreenListener_MouseMove(MouseEvent e)

 call videoScreenListener_MouseUp(MouseEvent e)

 Return Line(p1,p2)

}

(1)

(2)

Smoothing

Detecting line placement

from the user

Registering all the points

inside the lines

Detecting movements of pixels'

value in every registered points

Display movement counter for

every line

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_03

(Advance online publication: 20 November 2017)

__

numbers (x,y) that mark the end point of the particular line

being drawn by the user. This function needs to be called or

executed every time the user triggers a mouse click. Details

of the listeners are depicted in Figure 3.

Fig. 3. The first listener registers the mouse position on the screen upon the

click as the starting point of a line about to be drawn. The second listener

draws the temporary line as it dragged on the screen. The third listener sets

the end point of the line, generates all the points within the line vector and

adds the newly-created line into a list of active virtual lines.

The proposed method fosters flexibility in placing virtual

lines to detect movement in any position within the video

screen. To obtain this flexibility, three listener functions

were implemented to capture mouse click-and-drag

movements while drawing the line. The first function of the

mouse down listener (left click) registers the mouse position

on the screen upon the click as the starting point of a line

about to be drawn. It starts by creating a new line L and

assigns the starting point of L.point1 taken from the user’s

mouse click action. To improve user experience a guiding

line gL was created along with its starting point gL.point1.

The second listener draws the temporary line gL as the

mouse pointer is dragged on the screen. While this action is

being done, the end point of gL will be recorded at gL.point2

and continuously rendered on the screen until the left mouse

button is unclicked by the user.

The last listener sets the end point of the line L, and

generates all the points within the line vector L.vector[] and

adds the newly created line into a list of active virtual lines

Li..j. Each element of Li..j has to maintain its own points

vector generated using the Bresenham[17] method of

finding integral point coordinates within a line L. This

method becomes important in order to adapt the natural

coordinates of a point within a Euclidean 2D plane - which

are represented by decimal points – into the computer screen

point (x,y) coordinates which have to be integer numbers.

Details on the process of generating all the points within a

line vector will be described in the following section.

C. Registering all the points inside the lines

The image plane in a computer screen system is a two

dimensional Euclidean plane where each point coordinate

(x,y) within the plane should be represented using non

fractional numbers. To represent an infinite number of

points inside a line to this finite coordinate, a method to

translate the real coordinate to integral number coordinates

is needed. Thus, to register all the points inside each line and

to well represent the line on the computer screen’s

coordinate system, a Bresenham's line drawing method was

used [17].

Fig. 4. Registering all the points (d1...d4) inside the lines L of p1, p2. An

example from the first octant where the slope m of a line L that is

represented using two points of p1 and p2 suffice the condition: 0 ≤ m ≤ 1.

The method divides plotter movements into eight octants

that can be used to determine every point inside a line that is

expressed by two points p1 and p2. The plotter movements

are adapted to the proposed work as it incorporates only

integral numbers within every point of next movement.

Taking an example from the first octant where the slope m

of a line L that is represented using two points of p1 and p2

suffices the following condition: 0 ≤ m ≤ 1, every integer

inside the points of d1 until d4 could be well calculated.

This process is depicted in Figure 4.

The step by step choosing of every point inside the line of

p1 and p2 are depicted in Figure 5 and Figure 6. In the first

octant, to choose the next closest integer for both x and y-

axis, a point could progress into two options of (x+1, y+1)

or (x+1, y).

// 1
st
 listener

// Input mouse event.

// create new line at current mouse

// location as starting point.

// And set mouse down flag to true.

Function

videoScreenListener_MouseDown(MouseEvent e)

{

line = new Line();

line.point1 = e.Location;

guidingLine = new Line();

guidingLine.point1 = e.Location;

mouseDown = true;

}

// 2
nd
 listener

// Input mouse event.

// Validate mouse down flag and set a

// temporary line position.

// Will set down and move/ drag flat to true.

Function

videoScreenListener_MouseMove(MouseEvent e)

{

if (mouseDown)

{

guidingLine.point2 = e.Location;

mouseDownMove = true;

}

}

// 3
rd
 listener

// Input mouse event.

// Set the point for end of line.

// Generate members (points) of the newly

// created line.

// Register the line to a list of active

// line.

// Reset mouse down and drag to false.

Function

videoScreenListener_MouseUp(MouseEvent e)

{

line.point2 = e.Location;

line.generateMembers();

lineList.Add(line);

mouseDown = false;

mouseDownMove = false;

}

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_03

(Advance online publication: 20 November 2017)

__

Fig. 5. The steps of choosing every point inside the line of p1 and p2. After

determining d1 the algorithm determines which of the next steps will be a

valid move for d2.

In choosing the options given by (x+1, y+1) or (x+, y),

the error value of Ɛ is calculated using m as the slope. If the

value of error value of Ɛ1 < Ɛ2 then (x+1, y) is taken for the

next valid point. However, if Ɛ1 > Ɛ2 then (x+1, y+1) is

taken instead. This comparison of error value Ɛ is done by

comparing Ɛ1 with 0.5 of the epsilon.

Fig. 6. The steps of choosing of every point inside the line of p1 and p2. If

the value of error Ɛ1 < Ɛ2 then (x+1, y) is taken for the next valid point.

However, if Ɛ1 > Ɛ2 then (x+1, y+1) is taken instead.

 Within Figure 6, the next valid point that is closest to the

real number of the line is (x+1,y+1) of d1 point as the error

value Ɛ1 is larger than 0.5 of the computer screen epsilon.

The work implementing the Bresenham's algorithms using

the following condition is shown in Table 1.

TABLE I

THE EIGHT OCTANTS OF BRESENHAM'S ALGORITHMS

Octant Condition 1 Condition 2

1 x1<x2 0 ≤m≤1

2 x1<x2 0 >m≥-1

3 y2<y1 -1 >m > -∞

4 y2<y1 1 <m < ∞

5 x2<x1 0<m≤1

6 x2<x1 0 ≥m≥-1

7 y1<y2 -1 >m > -∞

8 y1<y2 1 <m < ∞

D. Detecting movements in every registered points

 The last step of the proposed system is to detect any

object movement coming across every line. As all the points'

coordinates inside every line array are already acquired by

previous steps, this step is to detect any pixel value

differences on each point in all drawn lines by comparing

this value with all upcoming image frames at the same

coordinates.

Fig. 7. Algorithms for detecting the movement of counting pixel difference

pixelΔ. A certain threshold T for describing the significant level of

movement is set. For every line L, if the Σ pixelΔi..j > T then there is

significant movement on the line L. Action trigger will be executed.

To summarize our steps, Figure 7 describes the complete

algorithms in detecting the movement before the counting of

pixel difference pixelΔ. The algorithms started with the

command of establishing video stream S from input (Live IP

camera, recorded video, or live local camera). This video

stream S will produce a series of still image frames called Fi.

From a certain number of frames Fi..j the system will

construct the background Gi by averaging the pixel values of

each point from the set of frames. Every next Fi pixels'

values will compare Gi pixels' values to find out the

difference that could be translated as a movement of object

on top of Gi background. This difference of pixels' values

pixelΔ is recorded inside a list for every line L.

 The recording of pixelΔ for every line L is needed to

count the magnitude of movement captured by each virtual

line sensor. A certain threshold T for describing the

significant level of movement is set as an input parameter.

For every line L, if the Σ pixelΔi..j > T then it can be

concluded that there is significant movement on the line L.

This movement conclusion could be followed up by any

kind of trigger to other functions such as counting number

of movement – thus counting the number of objects crossing

the line L. Some other follow-up functions – outside of the

scope of this proposed work – such as triggering frame

grabber function for automatic license plate recognition

(ALPR) systems, could also be considered.

The pseudo code of the proposed algorithms can also be

found in Figure 8. The pseudo code explains the process of

detecting significant movements inside a line. This level of

difference is marked by the identifier granularity. It is the

threshold of how many pixels difference that will account

for an object. After counting the number of differences

inside the line, the system will include the findings as a

movement that should be recorded and displayed on the

screen.

 Establishing video stream S from input

(Live IP cam, recorded video, and live local cam)

Get latest frame Fi from stream S.

Construct back ground Gi from F i..j

Detect moving object position by pixelΔ

Detect every line position L0..N on the screen.

Count pixelΔ for every point pk in L0..N

Propose action trigger if Σ pixelΔi..j > T

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_03

(Advance online publication: 20 November 2017)

__

Fig. 8. Pseudo code of the process of detecting significant movement

inside a line. Movement conclusion above threshold T could be followed up

by any kind of trigger such as counting the number of objects crossing the

line. Followed by a reload of background construction function.

(a) (d)

(b) (e)

(c) (f)

Fig. 9. Original video frames (image a, d). Result of background removal

and foreground movement detection (image b, e) based on Σ pixelΔi..j.

Object movement detected overlaid on the original frames (image c, f).

The images resulting in the process of background

removal are depicted in Figure 9 (a to f). These are two sets

of images from two distinct videos a to c, and d to e. The

original frame samples could be seen at pictures a and d,

with the numbers of frame averages ranging from 14 to 20

fps.

Pictures b and e display the results of foreground

movement detection based on Σ pixelΔi..j. These are the

frames that are being processed by virtual lines to check

movement (marked with white area). The proposed work

takes a sample of the background that has undergone a

Gaussian smoothing, to minimize noise. The background

construction will be recalled after every 10 milliseconds

(T=0.01 second) to update background changes that are

mostly caused by slight movements of the camera position,

and the environment’s shadows. The proposed work

considered another novel work of dynamic object detection,

tracking and counting [18], which implemented its

background elimination process using the original image.

The work implemented median filtering later at the post-

processing stage in order to minimize the image’s noise.

This has resulted in what was called non-zero pixel values

on the background removal process. Even though these are

not the moving objects intended to be captured by the

system - zero values in RGB color schema representing

black, which is the removed background value. The

proposed work would like to improve this method by

implementing noise removal during a pre-processed stage in

order to significantly improve the accuracy of the

background construction process.

The system considered another original approach in the

process of background construction that was proposed to be

named as double background filtering [19]. It divided its

process into four stages by firstly buffering the first five

frames, accumulating optical flow information, eliminating

overlapping optical flow, and lastly updating the

background. This approach could significantly improve the

process of minimizing the size of recorded videos by

choosing only to record the movement’s delta of each

frame. However, because the nature of live traffic

information promotes fast performance and accuracy, this

method was not adopted due to its computationally

expensive method that could potentially reduce the

performance of a live object detection system.

In picture filtering, the proposed work considered the use

of advance filtering technique proposed as two-stage PCA

(Principal Component Analysis)-based filtering evaluated

by a recent work [20]. The method takes as input noise

images, applies pixel grouping, PCA filtering, and inverse

PCA. It combines the two-stage PCA with non-local

algorithms in order to produce noiseless reconstructed

images. It has a significant positive result in reconstructing

new clear images from heavily noised images. This is an

extensive approach to reconstruct images with heavy

computational process.

Furthermore, as a result of a simple Gaussian smoothing

implemented by the system, in the set of images on Figure 9

d to f we could examine that noise comes from slight

changes of the environment – or camera position - are

minimum in comparison to the previous work [18]. All the

white blobs (detected movements) are in fact the moving

vehicles, which are valid input to the virtual line sensors

later on. A result of a continuous background construction

process could as well be observed from this set. A white taxi

was stationed for a short while on the roadside in image d

(circled) is immediately considered as the background by

the background construction algorithm. This resulted in no

white blob representation for the stationary taxi in image e,

thus the area marked with black (0 values in RGB) was not

highlighted in image f as well. Both images c and f are

experimental results of overlaying the detected movements

on top of the original video frames. All moving vehicles

Establish stream of frames

For every new frame {

 clone bitmap of frame

 Record all pixel as background

 draw user-defined line

 for every line {

 draw line ID

 }

 if (motion detect > granularity){

 For every point in a line {

 record pixel value

 }

 Compare pixel value

 count Valid object

 }

 Reload background after T
}

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_03

(Advance online publication: 20 November 2017)

__

could be highlighted successfully in the pictures, while

continuously regenerating the most current background.

IV. THE USER INTERFACE

One of the aims of this work is to provide ease of use for

the user of the proposed system, such as flexibility in

operating the surveillance application. Users are expected to

easily use any video input and live video through IP camera

– or CCTV, and place as many virtual lines as necessary at

any position on the video screen using a mouse pointer.

Therefore, the expected output will be a computer

application that serves as a traffic information system with

an implementation on moving objects/vehicle counter. The

application is designed to count both pedestrians and all

types of vehicles. It also includes a graphical user interface

to put the virtual line sensors on the video screen. The

screen design can be seen from figure 10.

Fig. 10. The design of a graphical user interface to put virtual line sensors

on the video screen. Each line will work independently as a sensor and will

provide different counting and triggers. The virtual lines will be created

using a user's mouse click and drag.

There are no restrictions on the position and the amount

of these virtual lines placed on video screen, with each line

working independently as an individual sensor and

providing different counting result and trigger. The virtual

lines are placed by the user with a simple mouse click and

drag (depicted by L1…L3 in Figure 10). These lines can be

set, reset, and hidden/shown using the menu. The

application is designed to be a multi-window application.

Thus, several video screens can be shown at one time and

each of them work independently, having a distinct set of

virtual lines and triggers. The result of vehicle/object

counting could be saved in the format of a text file or

connected to a database server. The application is also

equipped with standard windows viewing facilities such as

new windows, cascading, and tile views.

The result of implementing the system’s user interface

can be seen from Figure 11. This implementation of virtual

line sensors has given every line the ability to count object

movement independently. The lines could be placed

anywhere in the video screen (using click and drag of the

computer's mouse events), at any length, and without

limitation of lines that could be drawn on the video screen.

Furthermore, to be able to monitor the performance

(speed) of the systems, the information of the video’s frame

per second rate will be displayed as well. This information

could serve as the indicator of how efficient the algorithm is

working behind the frame rate and the speed of video being

transferred from a remote camera – if one will be used in the

future.

Fig. 11. Working application of moving object counters implementation on

traffic flow. The shading overlaying every moving object (cars) on the

screen is the marking created by the algorithms to show significant

difference of the object pixels values and the background values. If the

value of this pixel differences is larger than a certain value of granularity

(threshold T) then the count for that line is increased (marked with

message: “Count: [numbers]”).

This could give users of the system more flexibility in

placing the sensors as a mean of counters - that is mainly

one of the goals of the proposed work. The shading

overlaying every moving object (cars) on the screen is the

marking created by the algorithms to show significant

differences of the object pixels values and the background

values in RGB (red/green/blue) channels. On every point

within the virtual sensors line-1...line-n, the difference of

pixel value (highlighted) will be counted. If the value of this

count is larger than a certain value of granularity (threshold

T) then the count for that line is increased and is marked

with the message: “Count: [numbers]” that accompanies

each virtual line. Users could direct this result to a database

or simple text file as a result. This could, in a more detailed

and flexible manner collect data from every position and

corner of the video, and place much less restriction on the

placement of CCTV camera that monitor the roads and

parking areas. The camera result can be taken from any

camera angle, as long as it clearly shows the moving objects

and is not significantly blocked or shadowed.

V. EXPERIMENTAL RESULTS

The system was tested in real traffic flow environments,

at both daylight and night-time. Some of these traffic

environments were well-managed using road lanes.

However, some are not. In both cases the system could

perform very well. A calibration is needed for conditions

with minimum light such as during the night. As the image

of the object is not obvious to the camera during night-time,

the object movement is detected by using the headlight of

cars or motorbikes. However, these vehicles also have rear

lights that could mistakenly be marked as another

object/vehicle. Thus, to avoid double counting, the

granularity (or threshold T) parameter needs to be adjusted

Traffic Information System

I.

Reset

Hide

Save

Frame/second: 25

1 Line1 = 3 cars

Line2 = 2 cars

(Mouse pointer)

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_03

(Advance online publication: 20 November 2017)

__

such that the system will only counts a larger/wider array of

light such as head lights of the vehicles, and neglect their

rear lights. The experiment was carried out using the

following system specification: 2.4 GHz Intel Core i5 with

memory of 4GB 1333 MHz DDR3, along with a 2MP

camera to record the video.

Fig. 12. Experimental result's screen capture of the object counting

processes in daylight – no lane. The system could also record movement of

motorcycles, cyclists and pedestrians that passed.

Fig. 13. Experimental result's screen capture of the object counting

processes in day light – with lanes. Accuracy above 99%. The placement of

virtual sensors (lines and their counters) could be freely placed on every

position of the video.

Figure 12 until 13 depict the result's screen capture of the

object counting processes in daylight. The condition of a no

lane road can be found from Figure 12. The system could

perform very well. However, there was double counting if

an object or vehicle crossed two line sensors by moving

sideways. The system could also record movement of

motorcycles, cyclists and pedestrians that passed. Moreover,

on a road with lanes the result was perfectly carried out.

This can be seen from Figure 13 where the placement of

virtual sensors (marked by lines and their counters) could be

freely placed on every position of the video. Having said

that, if the object's image is too small, thus it is smaller than

the intended threshold, then the system will neglect its

movement. The experimental result was carried out with the

following parameters: granularity 0.02f.

The result of this work is that the camera angle could be

placed anywhere, as long as it is looking toward the

monitored area; whereas previously it had to conform to

certain positioning conditions. This in contrast is an

improvement to some of the earlier work [21][22] where the

camera had to be positioned on top of the monitored area

and was looking down perpendicularly to the objects.

The proposed research uses many lines in comparison to

previous work [23][24] that was using only one virtual line

sensor. By using an unlimited number of virtual line sensors

the accuracy of every line to count the object passing

through could be increased close to 100%. Users could

freely place as many sensors as needed, anywhere on the

image.

The angle of the line could range from 0 degree and goes

back to 360 degree. There is no limitation on the virtual

lines' angle. The proposed work has improved the earlier

research that also used multiple lines [25], however with

less flexibility, as the line could only be placed in a perfectly

horizontal position (180 degree) within a rectangular ROI

(region of interest) area.

(a)

(b)

(c)

Fig. 14. Experimental result tested on a minimum lighting condition at

night. The result was on average lower than daylight conditions at 91%.

This resulted from detecting the cars’ headlight that were understood as a

moving object by the system. In Figure (a) and (c), the light reflections on

the road surface created by the cars’ headlights (marked by the encircled

areas) were understood as moving objects. Figure (b) camera orientation to

record traffic from the back, resulting in the minimum quantity of reflection

of a vehicle’s headlight on the road surface.

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_03

(Advance online publication: 20 November 2017)

__

The proposed work was also tested in minimum lighting

conditions at night. The validity result was on average lower

than the daylight result - at 91% as a consequence of

detecting the cars’ headlight reflections together with the

moving cars as two different objects. As depicted in Figure

14(a) and Figure 14(c), the light reflections on the road

surface created by the cars’ headlights (marked by the

encircled areas) were understood by the system as moving

objects. These light reflections on the road surface give

significant value variance on the pixel value delta

calculation to be detected as object movements.

Nevertheless, the problem came when there existed a gap

between the light’s reflection and the car. The gap could be

understood as a gap between two distinct objects that

resulted in double counting of moving cars at night.

However, when there was no gap in between a car and its

headlight’s reflection on the road surface, then it was

correctly assumed to be one moving car. The root of this

setback is the position of the camera that was directly facing

the incoming traffic where the headlight reflections on the

road surface were significantly visible to the system. On the

contrary, when the camera was oriented to record the traffic

from the back, the problem was significantly reduced. This

is confirmed and depicted in Figure 14(b), where the

reflection of a vehicle’s headlight on the road surface is

minimal - thus not counted as a moving object.

Furthermore, none of the cyclists with no lights and

pedestrians could be detected during minimum light

conditions. None of the previous research that was

mentioned above was tested in dark conditions.

Although it was tested under minimum light conditions,

this work mainly focused on the accuracy and reasonable

performance for the counting of object movement during

daylight without significantly degrading the speed of

performance carried out by the proposed system. To provide

detailed results, the test was done on two videos that were

taken on different types of roads and environments during

daylight with the duration of two minutes each. The position

of the camera was placed on top of the road angle at about

45 degrees to the road surface. Both videos have the same

number of virtual lines applied (4 virtual lines) to count

number of objects (vehicles and pedestrian) crossing any of

these lines.

Fig. 15. Experimental result's screen capture of the object counting

processes in daylight – four virtual lines on a road without lanes.

Fig. 16. Accuracy level at daylight using four virtual lines on road without

lanes. Accuracy = 93.55%.

TABLE II

FOUR VIRTUAL LINES ON A ROAD WITHOUT LANES

LINE# TRUE FALSE Double Count TOTAL

1 25 0 1 26

2 35 1 2 38

3 33 1 2 36

4 23 0 1 24

Fig. 17. Experimental result's screen capture of the object counting

processes in daylight – on a road with lanes.

Fig. 18. Accuracy level in daylight using four virtual lines on a road with

lanes. Accuracy = 99.27%.

0

10

20

30

40

50

1 2 3 4

N
u

m
b

e
r

o
f

ve
h

ic
le

s

Virtual lines ID

Double Count

FALSE

TRUE

0

10

20

30

40

50

1 2 3 4

N
u

m
b

e
r

o
f

ve
h

ic
le

s

Virtual lines ID

Double Count

FALSE

TRUE

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_03

(Advance online publication: 20 November 2017)

__

TABLE III

FOUR VIRTUAL LINES ON ROAD WITH LANES

LINE# TRUE FALSE Double Count TOTAL

1 17 0 1 18

2 38 0 0 38

3 41 0 0 41

4 40 0 0 40

Details of the experimental results to compare the

proposed method’s result on road with lanes and without

lanes are depicted in Figure 15 until Figure 18. They are

supported by graphs and tables (Table II and Table III)

representing experimental results, both using the same

number of virtual lines (4 lines). Both cases used two

minutes input videos of daylight traffic. In the first result of

a road without lanes (Figure 15), the virtual lines were

placed on the screen as such to cover the road width with

length approximately fit to the width of a car. Within Figure

16 and Table II, the TRUE result representing correctly

detected vehicles. The FALSE result happened when two

vehicles crossed the same line at the same time resulting in

only one of them recorded. The double count result is when

one vehicle recorded by two neighboring virtual lines or one

vehicle is recognized by the system as two vehicles. The

later case could potentially happen for long separate body of

vehicles such as: carts and containers.

For instance, line-1 in Figure 16 and Table II was crossed

by 26 vehicles with one vehicle. It has one double count

vehicle as a result of crossing both line-1 and line-2 which is

its neighboring line. However, no false result was recorded

by the line during the sample video. Moreover, on average

roads without lanes resulted in further false and double

count results. Line-2 and line-3 have two double count

results and one falsely detected vehicle for each line. This

result would be the consequence of the nature of traffic

within a road without lanes, whereby vehicles could move

diagonally or zigzag on the road vector. On the contrary,

road with lanes had an improved result where only one

double count vehicle was found on line-1 (Figure 18 and

Table III) during the given two minutes sample video with

the same daylight condition. This is majorly caused by the

nature of ordered traffic within a well-managed road with

lanes. The accuracy level could be enhanced at around 5.7%

from 93.55% up to 99.27%.

 The results of experimenting with the system at night is

relatively lower in accuracy. The double count problem

contributes the most to the error rate of the statistics. Firstly,

this problem is caused by counting a car twice as a result of

the gap between it and its headlight reflection. The gap

separating them will be translated as two different objects.

Secondly, two different virtual lines captured the same

vehicle as the result of it driving between the two virtual

lines. This problem commonly happens in the context of

roads without lanes.

Fig. 19. Object counting processes at night using four virtual lines on road

with lanes.

TABLE IV

FOUR VIRTUAL LINES ON A ROAD WITH LANES AT NIGHT

LINE# TRUE FALSE Double Count TOTAL

1 8 0 0 8

2 12 0 0 12

3 6 0 2 8

4 14 0 2 16

Fig. 20. Accuracy level at night using four virtual lines on road with lanes.

Accuracy = 90.91%.

 Figure 19 depicts the experimental result at night on the

road with lanes. Two out of four virtual lines indicated more

double counts than the rest. Table IV details the double

count occurred at the last two lines which are placed directly

facing the incoming traffic. The accuracy level could reach

up to 91% as described in Figure 20.

Fig. 21. Object counting processes at night using four virtual lines on a road

without lanes.

0

5

10

15

20

1 2 3 4

N
u

m
b

e
r

o
f

v
e

h
ic

le
s

Virtual lines ID

Double Count

FALSE

TRUE

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_03

(Advance online publication: 20 November 2017)

__

TABLE V

FOUR VIRTUAL LINES ON ROAD WITH LANES AT NIGHT

LINE# TRUE FALSE Double Count TOTAL

1 8 0 1 9

2 34 1 6 41

3 41 1 8 50

4 26 0 2 28

A better-positioned camera was also tested during night-

time. The camera was oriented to capture the traffic from the

back in order to avoid headlight exposure (Figure 21).

However this was implemented on a road without lanes. The

double count could well have occurred during the

experiment as a result of vehicles driving in between two

lines, or changing lanes that crossed two virtual lines (Table

V).

Fig. 22. Accuracy level at night using four virtual lines on a road without

lanes. Accuracy = 85.16%.

The result of this was 85.16%, which is about 5% lower than

the experiment on roads with lanes.

VI. CONCLUSION

In conclusion, the proposed system of using multiple

virtual lines as sensors to count moving objects and live

traffic flow proved to be effective, with a high accuracy

within sufficient lighting conditions such as daylight. The

accuracy of detecting the moving objects could be close to

100% as a result of having individual line monitoring

specific areas on the screen. As the proposed system is able

to accommodate multiple line sensors placement on the

screen, the user could have unlimited locations to be

monitored while still considering the size of the object being

monitored kept above a certain threshold.

Moreover, as the placement of the virtual lines does not

have to follow certain positioning restrictions or rules the

proposed application works excellently for counting objects

in various angles of traffic surveillance cameras. This could

efficiently work for any existing surveillance system with

many cameras already in place, without the need to adjust

their positions.

Implementation of the proposed system could be

prolonged for detecting the number of people in a certain

area, such as counting visitors in grocery store isles and as a

trigger to a frame-grabber for automatic license plate

recognition.

Future development of the work could be extended to

measure a number of points that have significant delta pixels

value (movement) and classify the values into different

groups such as trucks, cars, motorbikes/bicycle, or

pedestrians. This would assist in a more precise counting

system.

ACKNOWLEDGMENT

The author would like to extend his gratitude to the

Research Department of JWC campus (Joseph Wibowo

Center), Bina Nusantara University, Jakarta, Indonesia, in

the support of this research.

REFERENCES

[1] R. Greene, M. C. Diogenes, D. R. Ragland, and L. A. Lindau,

“Effectiveness of a Commercially Available Automated Pedestrian

Counting Device in Urban Environments: Comparison with Manual

Counts”, TRB Annual Meeting, UCB ITS TSC, 2008.
[2] B. Fanping, R. Greene, D. Ryan, C. Mara, and R. David, “Estimating

Pedestrian Accident Exposure: Automated Pedestrian Counting

Devices”, Safe Transportation Research & Education Center, Institute

of Transportation Studies, UCBerkeley, 2007.
[3] R. Hughes, N. RouphaiL, and C. Kosok, “Exploratory simulation of

pedestrian crossings at roundabouts”, Journal of Transportation

Engineering American Society of Civil Engineers, 2003.
[4] M. W. John, and E. W. Robert, “Vehicle counting system for a

vehicle parking lot”, US Patent, number: US 5389921 A, 1995.
[5] P. T. Blythe, “Video-based vehicle and pedestrian tracking and

motion modeling”, Eleventh International Conference on Road

Transport Information and Control, pp. 35 – 40, 2002.
[6] S. Nambisan, S. Pulugurtha, V. Vasudevan, M. Dangeti, and V.

Virupaksha, “Effectiveness of Automatic Pedestrian Detection Device

and Smart Lighting for Pedestrian Safety”, Journal of the

Transportation Research Board of the National Academies, ISSN

0361-1981, vol. 2140 / 2009, pp. 27-34, 2009.
[7] C. Yang, G. Haifeng, Z. S. Chun, and T. Yandong, “Flow

Mosaicking: Real-time Pedestrian Counting without Scene-specific

Learning”, Computer Vision and Pattern Recognition, CVPR 2009,

IEEE. 978-1-4244-3992-8, 2009.
[8] T. Ben, Z. Junping, and W. Liang, “Semi-supervised Elastic net for

pedestrian counting”, Pattern Recognition, vol. 44, no. 10–11, pp.

2297–2304, 2011.
[9] B. Antoni, Z. Chan, and L. John, “Privacy Preserving Crowd

Monitoring: Counting People without People Models or Tracking”,

Computer Vision and Pattern Recognition, CVPR 2008, IEEE 978-1-

4244-2243-2/08, 2008.
[10] B. Erhan, and T. Murat, “Automatic Vehicle Counting from Video for

Traffic Flow Analysis”, Intelligent Vehicles Symposium, 2007.
[11] L, Manchun, L. Damien, G. Pierre, and M. Kadder, “A Video-based

Real-time Vehicle Counting System Using Adaptive Background

Method”, IEEE International Conference on Signal Image

Technology and Internet Based Systems, 2008.
[12] C. Pornpanomchai, T. Liamsanguan, and V. Vannakosit. Vehicle,

“Detection And Counting From A Video Frame”, Wavelet Analysis

and Pattern Recognition, ICWAPR, vol. 1, pp. 356 – 361, 2008.
[13] W. Kunfeng, L. Zhenjiang, Y. Qingming, and H. Wuling, “An

Automated Vehicle Counting System For Traffic Surveillance”,

Vehicular Electronics and Safety ICVES, IEEE International

Conference, 2007.
[14] Y. Yonghong, “A Traffic-Flow Parameters Evaluation Approach

Based on Urban Road Video”, International Journal of Intelligent

Engineering & Systems, 2nd conference, 2009.
[15] C. M. Niluthpol, U. R. Nafi, and R. Mahbubur, “Detection and

Classification of Vehicles From Video Using Multiple Time-Spatial

Images”, IEEE Transaction on Intelligent Transportation Systems,

vol. 13, no. 3, pp. 1215, 2012.
[16] L. Jong-Sen, “Digital image smoothing and the sigma filter”,

Computer Vision, Graphics, and Image Processing, vol. 24, no. 2, pp.

255–269, 1983.
[17] J. E. Bresenham, “Algorithm for computer control of a digital

plotter”, IBM Systems Journal, vol. 4, no. 1, ISSN: 0018-8670, DOI:

10.1147/sj.41.0025, pp. 25 – 30, 1965.
[18] L. Vibha, H. Chetana, P. D. Shenoy, K. R. Venugopal, and L. M.

Patnaik, "Dynamic Object Detection, Tracking and Counting in Video

Streams for Multimedia Mining,” IAENG International Journal of

Computer Science, vol. 35, no. 3, pp 382-391, 2008.

0

10

20

30

40

50

1 2 3 4

N
u

m
b

e
r

o
f

v
e

h
ic

le
s

Virtual lines ID

Double Count

FALSE

TRUE

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_03

(Advance online publication: 20 November 2017)

__

[19] L. Nan, W. Jihong, Q.H. Wu, and Y. Li, "An Improved Motion

Detection Method for Real-Time Surveillance," IAENG International

Journal of Computer Science, vol. 35, no. 1, pp 119 -128, 2008.
[20] P. Andrey, T. Kirill, V. Vladimir, S. Evgeny, and M. Ivan,

"Applications of Image Filtration Based on Principal Component

Analysis and Nonlocal Image Processing," IAENG International

Journal of Computer Science, vol. 40, no. 2, pp 62-80, 2013.
[21] K. Jae-Won, Kang-Sun Choi, Byeong-Doo Choi, and Sung-Jea Ko,

“Real-time Vision-based People Counting System for the Security

Door”, Intelligent Systems Design and Applications, ISDA '08, 8th

International Conference on, vol. 3, Print ISBN: 978-0-7695-3382-7,

pp. 565 – 569, 2008.
[22] J. Barandiaran, B. Murguia and F. Boto, “Real-Time People Counting

Using Multiple Lines”, Image Analysis for Multimedia Interactive

Services, 2008. WIAMIS '08. Ninth International , E-ISBN: 978-0-

7695-3130-4, Print ISBN: 978-0-7695-3344-5, pp. 159 – 162, 2008.
[23] X. Liu, P. H. Tu, J. Rittscher, A. Perera, and N. Krahnstoever,

“Detecting and Counting People in Surveillance Applications”, IEEE

Conference on: Advanced Video and Signal Based Surveillance,

AVSS 2005, Print ISBN: 0-7803-9385-62005, pp. 306 – 311, 2005.
[24] Y. Kin-Yi, S. Wan-Chi, L. Ngai-Fong, and C. Chok-Ki, “Effective bi-

directional people flow counting for real time surveillance system”,

Consumer Electronics (ICCE), IEEE International Conference, ISSN :

2158-3994, Print ISBN: 978-1-4244-8711-0, pp. 863 – 864, 2011.
[25] S. H. Kim, S. Junyuan, A. Alfarrarjeh, D. Xu, Y. Tan, and C. Shahabi,

“Real-Time Traffic Video Analysis Using Intel Viewmont

Coprocessor”, Databases in Networked Information Systems, vol.

7813, Lecture Notes in Computer Science DNIS 2013, LNCS 7813,

Springer-Verlag Berlin Heidelberg, pp. 150–160, 2013.

S. M. Tedjojuwono. Born in Surabaya, Indonesia 15th

February 1978. He acquired his bachelor degree in

Information Systems at Bina Nusantara University,

Jakarta, Indonesia in 2000; and completed his Master’s

degree in Information Technology at Adelaide

University, Adelaide, Australia in 2005.

 He was Head of the Software Laboratory, Bina

Nusantara University (Anggrek Campus) until 2003.

After completing his Master’s degree, he worked as Subject Content

Coordinator (programming and artificial intelligence) for the same

institution until 2012. He is currently the Head of Program (Information

Systems – International program) for Bina Nusantara University, Indonesia.

His latest paper in 2015, “Fast Performance Indonesian Automated License

Plate Recognition Algorithm Using Interconnected Image Segmentation”,

was published at the International Conference on Soft Computing,

Intelligent System and Information Technology - ICSIIT 2015, Springer

and CCIS, indexed by Scopus, ISSN: 1865-0929, ISBN: 9783-662-46741-

1, http://www.springer.com/gp/book/9783662467411 was awarded the best

paper during the conference. His current research is in traffic information

systems and automatic license plate recognition using video analytics to be

implemented specifically for Indonesian vehicles' plate system.

 Mr. Tedjojuwono was also the Vice President for the Post Graduate

Student Association (AUPGSA) at Adelaide University Australia in 2004,

was awarded with a teaching excellence award from Bina Nusantara

University Indonesia in 2015, and received his IAENG membership in

December 2015.

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_03

(Advance online publication: 20 November 2017)

__

http://www.springer.com/gp/book/9783662467411

