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Abstract—A Hamiltonian path (cycle) of a graph is a simple
path (cycle) in which each vertex of the graph is visited exactly
once. The Hamiltonian path (cycle) problem is to determine
whether a graph contains a Hamiltonian path (cycle). A graph
is called Hamiltonian if it contains a Hamiltonian cycle, and it is
said to be Hamiltonian connected if there exists a Hamiltonian
path between any two distinct vertices. Supergrid graphs were
first introduced by us and include grid graphs and triangular
grid graphs as their subgraphs. These problems on supergrid
graphs can be applied to compute the stitching traces of
computerized sewing machines. In the past, we have proved the
Hamiltonian path (cycle) problem on supergrid graphs to be
NP-complete. Recently, we showed that rectangular supergrid
graphs are Hamiltonian connected except one trivial forbidden
condition. In this paper, we will verify the Hamiltonicity and
Hamiltonian connectivity of some shaped supergrid graphs,
including triangular, parallelogram, and trapezoid. The results
can be used to solve the Hamiltonian problems on some special
classes of supergrid graphs in the future.

Index Terms—Hamiltonicity, Hamiltonian connectivity, su-
pergrid graphs, triangular supergrid graphs, parallelogram
supergrid graphs, trapezoid supergrid graphs, computer sewing
machines.

I. I NTRODUCTION

A Hamiltonian path of a graph is a simple path in
which each vertex of the graph appears exactly once.

A Hamiltonian cyclein a graph is a simple cycle with the
same property. TheHamiltonian path(resp.,cycle) problem
involves deciding whether or not a graph contains a Hamilto-
nian path (resp., cycle). A graph is called to beHamiltonian
if it contains a Hamiltonian cycle. A graphG is said to be
Hamiltonian connectedif for each pair of distinct verticesu
andv of G, there exists a Hamiltonian path betweenu andv
in G. If (u, v) is an edge of a Hamiltonian connected graph,
then a Hamiltonian cycle containing(u, v) does exist. Thus,
a Hamiltonian connected graph contains many Hamiltonian
cycles, and, hence, the sufficient conditions of Hamiltonian
connectivity are stronger than those of Hamiltonicity. It is
well known that the Hamiltonian path and cycle problems
are NP-complete for general graphs [10], [24]. The same
holds true for bipartite graphs [25], split graphs [11], circle
graphs [8], undirected path graphs [2], grid graphs [23],
triangular grid graphs [12], and supergrid graphs [15]. In
the literature, there are many studies for the Hamiltonian
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connectivity of interconnection networks. Liet al. [26]
proved the Hamiltonian connectivity of the recursive dual-
net. The hypercomplete network [6] and the arrangement
graph [29] were known to be Hamiltonian connected. The
popular hypercubes are Hamiltonian but are not Hamiltonian
connected. However, many variants of hypercubes, including
augment hypercubes [14], generalized base-b hypercube [20],
twisted cubes [22], crossed cubes [21], Möbius cubes [7], and
enhanced hypercubes [28], have been shown to be Hamilto-
nian connected. For more related works and applications, we
refer readers to [1], [4], [5], [9], [13], [17], [18], [27], [30],
[31], [32], [33], [34].

The two-dimensional integer gridG∞ is an infinite graph
whose vertex set consists of all points of the Euclidean
plane with integer coordinates and in which two vertices
are adjacent if the (Euclidean) distance between them is
equal to 1. Thetwo-dimensional triangular gridT∞ is an
infinite graph obtained fromG∞ by adding all edges on
the lines traced from up-left to down-right. Agrid graph
is a finite, vertex-induced subgraph ofG∞. For a nodev
in the plane with integer coordinates, letvx and vy be the
x and y coordinatesof node v, respectively, denoted by
v = (vx, vy). If v is a vertex in a grid graph, then its
possible neighbor vertices include(vx, vy +1), (vx − 1, vy),
(vx +1, vy), and(vx, vy − 1). For example, Fig. 1(a) shows
a grid graph. Atriangular grid graph is a finite, vertex-
induced subgraph ofT∞. If v is a vertex in a triangular grid
graph, then its possible neighbor vertices include(vx, vy+1),
(vx − 1, vy), (vx +1, vy), (vx, vy − 1), (vx − 1, vy +1), and
(vx + 1, vy − 1). For instance, Fig. 1(b) depicts a triangular
grid graph. Thus, triangular grid graphs contain grid graphs
as subgraphs. Note that triangular grid graphs defined above
are isomorphic to the original triangular grid graphs studied
in the literature [12] but these graphs are different when
considered as geometric graphs. By the same construction of
triangular grid graphs from grid graphs, we have proposed a
new class of graphs, namelysupergrid graphs, in [15]. The
two-dimensional supergridS∞ is an infinite graph obtained
from T∞ by adding all edges on the lines traced from up-
right to down-left. A supergrid graphis a finite, vertex-
induced subgraph ofS∞. The possible adjacent vertices of a
vertexv = (vx, vy) in a supergrid graph include(vx, vy+1),
(vx − 1, vy), (vx + 1, vy), (vx, vy − 1), (vx − 1, vy + 1),
(vx + 1, vy − 1), (vx + 1, vy + 1), and (vx − 1, vy − 1).
Then, supergrid graphs contain grid graphs and triangular
grid graphs as subgraphs. For example, Fig. 1(c) shows a
supergrid graph. Notice that grid and triangular grid graphs
are not subclasses of supergrid graphs, and the converse is
also true: these classes of graphs have common elements
(points) but in general they are distinct since the edge sets
of these graphs are different. Obviously, all grid graphs are
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bipartite [23] but triangular grid graphs and supergrid graphs
are not bipartite.

The Hamiltonian problems on supergrid graphs can be
applied to control the stitching trace of a computerized
sewing machine as stated in [15]. We also proved that the
Hamiltonian cycle and path problems are NP-complete for
supergrid graphs [15]. Thus, an important line of investi-
gation is to discover the complexities of the Hamiltonian
related problems when the input is restricted to be in special
subclasses of supergrid graphs. In [17], we showed that
the Hamiltonian cycle problem for linear-convex supergrid
graphs is linear solvable. Recently, we proved that rectan-
gular supergrid graphs are always Hamiltonian connected
except one trivial forbidden condition [18]. In this paper,
we will show that some shaped supergrid graphs, including
triangular, parallelogram, and trapezoid, are always Hamilto-
nian and Hamiltonian connected except few trivial forbidden
conditions. The results can be applied to the Hamiltonian
problems on some special subcalsses of supergrid graphs,
such as solid and alphabet supergrid graphs.

The rest of the paper is organized as follows. Section
II gives some notations and background results. In Section
III, we propose constructive proofs to show that triangular
and parallelogram supergrid graphs are Hamiltonian and
Hamiltonian connected except two or three trivial condi-
tions. Section IV verifies the Hamiltonicity and Hamiltonian
connectivity of trapezoid supergrid graphs by using the
Hamiltonicity and Hamiltonian connectivity of rectangular,
triangular, and parallelogram supergrid graphs. Finally, we
make some concluding remarks in Section V.

II. N OTATIONS AND BACKGROUND RESULTS

In this section, we will introduce some notations. Some
observations and previously established results for the Hamil-
tonian problems on rectangular supergrid graphs are also
presented. For graph-theoretic terminology not defined in this
paper, the reader is referred to [3].

A. Notations

Let G = (V,E) be a graph with vertex setV (G) and edge
setE(G). Let S be a subset of vertices inG, and letu andv
be two distinct vertices inG. We writeG[S] for the subgraph
of G inducedby S, G−S for the subgraphG[V −S], i.e., the
subgraph induced byV−S. In general, we writeG−v instead
of G−{v}. If (u, v) is an edge inG, we say thatu is adjacent
to v. A neighborof v in G is any vertex that is adjacent tov.
We useNG(v) to denote the set of neighbors ofv in G. The
subscript ‘G’ of NG(v) can be removed from the notation
if it has no ambiguity. Thedegreeof vertex v, denoted by
deg(v), is the number of vertices adjacent to vertexv. The
notationu ∼ v (resp.,u ≁ v) means that verticesu and v

are adjacent (resp., non-adjacent). Two edgese1 = (u1, v1)
and e2 = (u2, v2) are said to beincident if u1 ∼ v1 and
u2 ∼ v2, denote this bye1 ≈ e2. A pathP of length|P | in G,
denoted byv1 → v2 → · · · → v|P |−1 → v|P |, is a sequence
(v1, v2, · · · , v|P |−1, v|P |) of vertices such that(vi, vi+1) ∈ E

for 1 6 i < |P |. The first and last vertices visited byP are
denoted bystart(P ) andend(P ), respectively. We will use
vi ∈ P to denote “P visits vertexvi” and use(vi, vi+1) ∈ P

to denote “P visits edge(vi, vi+1)”. A path from v1 to vk is

denoted by(v1, vk)-path. In addition, we useP to refer to the
set of vertices visited by pathP if it is understood without
ambiguity. On the other hand, a path is called thereversed
path, denoted by rev(P ), of pathP if it visits the vertices
of P from end(P ) to start(P ) in proper sequence; that is,
the reversed path rev(P ) of pathP = v1 → v2 → · · · →
v|P |−1 → v|P | is v|P | → v|P |−1 → · · · → v2 → v1. A path
P is a cycle if |V (P )| > 3 and end(P ) ∼ start(P ). Two
paths (or cycles)P1 andP2 of graphG are called vertex-
disjoint if V (P1)∩V (P2) = ∅. Two vertex-disjoint pathsP1

andP2 can be concatenated into a path, denoted byP1 ⇒ P2,
if end(P1) ∼ start(P2).

Let S∞ be the infinite graph whose vertex set consists
of all points of the plane with integer coordinates and in
which two vertices are adjacent if the difference of theirx

or y coordinates is not larger than 1. Asupergrid graph
is a finite, vertex-induced subgraph ofS∞. For a vertexv
in a supergrid graph, letvx andvy be respectivelyx andy

coordinates ofv. We color vertexv to bewhite if vx+vy ≡ 0
(mod 2); otherwise,v is colored to beblack. Then there are
eight possible neighbors of vertexv including four white
vertices and four black vertices. Obviously, all grid graphs
are bipartite [23] but supergrid graphs are not bipartite. The
edge(u, v) in S∞ is said to behorizontal(resp.,vertical) if
uy = vy andux 6= vx (resp.,ux = vx anduy 6= vy), and is
calledskewedif it is neither a horizontal nor a vertical edge.
In the figures, we assume that(1, 1) are coordinates of the
up-left vertex, i.e., the leftmost vertex of the first row, in a
supergrid graph.

Rectangular supergrid graphs first appeared in [15],
in which the Hamiltonian cycle problem was solved.
Let R(m,n) be the supergrid graph with vertex set
V (R(m,n)) = {v = (vx, vy) | 1 6 vx 6 m and
1 6 vy 6 n}. That is,R(m,n) containsm columns and
n rows of vertices inS∞. A rectangular supergrid graphis
a supergrid graph which is isomorphic toR(m,n). Thenm
andn, thedimensions, specify a rectangular supergrid graph
up to isomorphism. The size ofR(m,n) is defined to be
mn, andR(m,n) is calledn-rectangle. Letv = (vx, vy) be
a vertex inR(m,n). The vertexv is called theup-left (resp.,
up-right, down-left, down-right) corner of R(m,n) if for
any vertexw = (wx, wy) ∈ R(m,n), wx > vx andwy > vy
(resp.,wx 6 vx and wy > vy, wx > vx and wy 6 vy ,
wx 6 vx andwy 6 vy). There are four boundaries (borders)
in a rectangular supergrid graphR(m,n) with m,n > 2.
The edge in the boundary ofR(m,n) is called boundary
edge. For example, Fig. 2(a) shows a rectangular supergrid
graphR(10, 10) which is called 10-rectangle and contains
4 × 9 = 36 boundary edges. Fig. 2(a) also indicates the
types of corners.

The triangular supergrid graphs are subgraphs of rectan-
gular supergrid graphs and are defined as follows.

Definition 1. Let ℓ be a diagonal line ofR(n, n) with
n > 2 from the up-left corner to the down-right corner. Let
∆(n, n) be the supergrid graph obtained fromR(n, n) by
removing all vertices underℓ. A triangular supergrid graph
is a supergrid graph which is isomorphic to∆(n, n).

For example, Fig. 2(b) shows a triangular supergrid graph
∆(10, 10). Each triangular supergrid graph contains three
boundaries, namelyhorizontal, vertical, and skewed, and
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Fig. 1. (a) A grid graph, (b) a triangular grid graph, and (c) a supergrid graph, where circles represent the vertices and solid lines indicate the edges in
the graphs.
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Fig. 2. (a) A rectangular supergrid graphR(10, 10), (b) a triangular
supergrid graph∆(10, 10), (c) two types of parallelogram supergrid graph
P (5, 4), and (d) two types of trapezoid supergrid graphsT1(6, 4) and
T2(9, 4), where solid arrow lines in (a) indicate a flat path onR(10, 10)
and dashed line in (c) indicates a vertical cut.

these boundaries form a triangle, as illustrated in Fig. 2(b).
The triangular supergrid graph∆(n, n) is calledn-triangle,
and the vertexv in ∆(n, n) is called triangular corner
if deg(v) = 2 and it is the intersection of horizontal (or
vertical) and skewed boundaries.

Parallelogram supergrid graphs are defined similar to rect-
angular supergrid graphs as follows.

Definition 2. Let P (m,n) be the supergrid graph withm >

n and vertex setV (P (m,n)) = {v = (vx, vy) | 1 6 vy 6 n

andvy 6 vx 6 vy +m− 1} or {v = (vx, vy) | 1 6 vy 6 n

and −vy + 2 6 vx 6 m − (vy − 1)}. A parallelogram
supergrid graphis a supergrid graph which is isomorphic to
P (m,n).

In the above definition, there are two types of parallelo-
gram supergrid graphs. We can see that they are isomorphic
although they are different when considered as geometric
graphs. In this paper, we can only consider the parallelo-
gram supergrid graphP (m,n) with V (P (m,n)) = {v =
(vx, vy) | 1 6 vy 6 n and vy 6 vx 6 vy + m − 1}. Each

parallelogram supergrid graph contains four boundaries, two
horizontalboundaries and twoskewedboundaries, and these
boundaries form a parallelogram, as depicted in Fig. 2(c).
The size ofP (m,n) is defined to bemn, andP (m,n) is
called n-parallelogram. The vertexw of P (m,n) is called
parallel corner if deg(w) = 2. We can see from definition
that a parallelogram supergrid graph contains two parallel
corners and it can be decomposed into two disjoint triangular
supergrid subgraphs. For instance, Fig. 2(c) depicts a paral-
lelogram supergrid graphP (5, 4) which can be partitioned
into two triangular supergrid graphs∆(4, 4).

Next, we introduce trapezoid supergrid graphs. Let
R(m,n) be a rectangular supergrid graph withm > n > 2.
A trapezoid supergrid graphT1(m,n) or T2(m,n) is ob-
tained fromR(m,n) by removing one or two triangular
supergrid graphs∆(n − 1, n − 1). The trapezoid supergrid
graphsT1(m,n) andT2(m,n) are defined as follows.

Definition 3. Let R(m,n) be a rectangular supergrid graph
with m > n > 2. A trapezoid supergrid graphT1(m,n)
with m > n + 1 is obtained fromR(m,n) by removing
a triangular supergrid graph∆(n − 1, n − 1) from the
corner ofR(m,n). A trapezoid supergrid graphT2(m,n)
is constructed fromR(m,n) with m > 2n by removing two
triangular supergrid graphs∆(n− 1, n− 1) from the up-left
and up-right corners ofR(m,n). Fig. 2(d) shows these two
types of trapezoid graphs.

In a trapezoid supergrid graph, a vertexv is calledtrape-
zoid cornerif deg(v) = 2. We can see thatT1(m,n) contains
a trapezoid corner,T2(m,n) contains two trapezoid corners,
T1(m,n) contains two horizontal, one vertical and one
skewed boundaries, andT2(m,n) contains two horizontal
and two skewed boundaries. By definition, each boundary
of T1(m,n) and T2(m,n) contains at least two vertices.
On the other hand,T1(m,n) andT2(m,n) are callednT1

-
trapezoid andnT2

-trapezoid, respectively. For instance, Fig.
2(d) depictsT1(6, 4) andT2(9, 4).

Let G be a rectangular, triangular, parallelogram, or trape-
zoid supergrid graph. A path on one boundary ofG is called
flat if its vertices are in the boundary and it contains all
boundary edges in the boundary. For example, the solid arrow
lines in the down boundary of Fig. 2(a) indicate a flat path
of R(10, 10).

In proving our results, we need to partition a shaped
supergrid graph into two disjoint parts. The decomposition
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is defined as follows.

Definition 4. Let S(m,n) be a triangular, parallelogram, or
trapezoid supergrid graph. Acut operation onS(m,n) is a
line partition through a setZ of edges so that the removal of
Z from S(m,n) results in two disjoint supergrid subgraphs
S1 andS2. A cut is calledvertical (resp.,horizontal) if it is
a vertical (resp., horizontal) line to separateS(m,n) into S1

andS2 such thatS1 is to the left (resp., upper) ofS2, i.e.,
Z is a set of horizontal (resp., vertical) edges.

For instance, the bold dashed line in Fig. 2(c) depicts
a vertical cut onP (5, 4) to partition it into two disjoint
triangular supergrid subgraphs∆(4, 4).

In proving our result, we will construct a canonical Hamil-
tonian cycle and a canonical Hamiltonian path of a triangu-
lar, parallelogram, or trapezoid supergrid graph defined as
follows.

Definition 5. Let S(m,n) be a triangular, parallelogram, or
trapezoid supergrid graph withκ boundaries, and lets andt
be its two distinct vertices. A Hamiltonian cycle ofS(m,n)
is calledcanonical if it containsκ − 1 flat paths onκ − 1
boundaries, and it contains at least one boundary edge in
the other boundary. A Hamiltonian(s, t)-path ofS(m,n) is
calledcanonicalif it contains at least one boundary edge of
each boundary inS(m,n).

B. Background results

In [15], we have showed that rectangular supergrid graphs
always contain Hamiltonian cycles except 1-rectangles. Let
R(m,n) be a rectangular supergrid graph withm > n, C be
a cycle ofR(m,n), and letH be a boundary ofR(m,n),
whereH is a subgraph ofR(m,n). The restriction ofC to H

is denoted byC|H . If |C|H | = 1, i.e.C|H is a boundary path
on H , thenC|H is calledflat faceon H . If |C|H | > 1 and
C|H contains at least one boundary edge ofH , thenC|H is
calledconcave faceon H . A Hamiltonian cycle ofR(m, 3)
is called canonical if it contains three flat faces on two
shorter boundaries and one longer boundary, and it contains
one concave face on the other boundary, where the shorter
boundary consists of three vertices. And, a Hamiltonian cycle
of R(m,n) with n = 2 or n > 4 is said to becanonicalif it
contains three flat faces on three boundaries, and it contains
one concave face on the other boundary. The following
lemma states the result in [15] concerning the Hamiltonicity
of rectangular supergrid graphs.

Lemma 1. (See [15].) LetR(m,n) be a rectangular super-
grid graph withm > n > 2. Then, the following statements
hold true:
(1) if n = 3, thenR(m, 3) contains a canonical Hamiltonian
cycle;
(2) if n = 2 or n > 4, thenR(m,n) contains four distinct
canonical Hamiltonian cycles with concave faces being on
different boundaries.

Let (G, s, t) denote the supergrid graphG with two given
distinct verticess and t. Without loss of generality, we
will assume thatsx 6 tx, i.e., s is to the left of t, in
the rest of the paper. The notationL(G, s, t) indicates the
length of longest path betweens and t in G, where the
length of a path is defined to be the number of vertices

(a)

u1

v1

u2

v2

(b)

xC1 C2 C1

P1

u2

v2

u1

v1

C1

u1

v1

(c)

Fig. 3. A schematic diagram for (a) Proposition 3, (b) Proposition 4, and
(c) Proposition 5, where bold dashed lines indicate the cycles (paths) and
⊗ represents the destruction of an edge while constructing a cycle or path.

visited by the path. We denote a Hamiltonian path between
s and t in G by HP (G, s, t). We say thatHP (G, s, t)
exists if there exists a Hamiltonian(s, t)-path of G. By
the definition,L(G, s, t) = |V (G)| if HP (G, s, t) does
exist. The Hamiltonian cycle ofR(m,n) is calledcanonical
if it satisfies Lemma 1. From Lemma 1, we know that
HP (R(m,n), s, t) does exist whenm,n > 2 and (s, t) is
an edge in the canonical Hamiltonian cycle ofR(m,n). In
[18], we have proved thatHP (R(m,n), s, t) always exists
for m,n > 3. For (R(m,n), s, t) with m > n > 3, a
Hamiltonian(s, t)-path ofR(m,n) is calledcanonicalif it
contains at least one boundary edge of each side (boundary)
in R(m,n). The following lemma is to show the Hamiltonian
connectivity of rectangular supergrid graphs.

Lemma 2. (See [18].) For(R(m,n), s, t) with m > n > 3,
R(m,n) contains a canonical Hamiltonian(s, t)-path, and,
hence,HP (R(m,n), s, t) does exist.

For the 1-rectangle,HP (R(m, 1), s, t) does not exist ifs
or t is not a corner. On the other hand,HP (R(m, 2), s, t)
does not exist if(s, t) is a vertical and nonboundary edge
of R(m, 2). For n = 1 or 2, HP (R(m,n), s, t) does exist
except the above one trivial forbidden condition [18].

We next give some observations on the relations among
cycle, path, and vertex. These propositions are presented in
[18] and will be used in proving our results. LetC1 andC2

be two vertex-disjoint cycles of a graphG. If there exist two
edgese1 ∈ C1 ande2 ∈ C2 such thate1 ≈ e2, thenC1 and
C2 can be combined into a cycle ofG. Then the following
proposition holds true.

Proposition 3. (See [18].) LetC1 and C2 be two vertex-
disjoint cycles of a graphG. If there exist two edgese1 ∈ C1

and e2 ∈ C2 such thate1 ≈ e2, thenC1 and C2 can be
combined into a cycle ofG. (see Fig.3(a))

Let C1 be a cycle and letP1 be a path in a graphG such
that V (C1) ∩ V (P1) = ∅. If there exist two edgese1 ∈ C1

and e2 ∈ P1 such thate1 ≈ e2, then C1 and P1 can be
combined into a pathP of G with start(P ) = start(P1) and
end(P ) = end(P1). Fig. 3(b) depicts such a construction,
and, hence, the following proposition holds true.

Proposition 4. (See [18].) LetC1 andP1 be a cycle and a
path, respectively, of a graphG such thatV (C1)∩V (P1) =
∅. If there exist two edgese1 ∈ C1 and e2 ∈ P1 such that
e1 ≈ e2, thenC1 andP1 can be combined into a path ofG.
(see Fig.3(b))

The above observation can be extended to a vertexx,
whereP1 = x, as shown in Fig. 3(c), and we then have
the following proposition.
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Proposition 5. (See [17]) Let C1 be a cycle (path) of a
graphG and letx be a vertex inG− V (C1). If there exists
an edge(u1, v1) in C1 such thatu1 ∼ x and v1 ∼ x, then
C1 and x can be combined into a cycle (path) ofG. (see
Fig. 3(c))

III. T HE HAMILTONICITY AND HAMILTONIAN

CONNECTIVITY OF TRIANGULAR AND PARALLELOGRAM

SUPERGRID GRAPHS

A. The Hamiltonicity and Hamiltonian connectivity of trian-
gular supergrid graphs

In this subsection, we will verify the Hamiltonicity and
Hamiltonian connectivity (except two trivial conditions) of
triangular supergrid graphs. For a triangular supergrid graph,
we will construct a canonical Hamiltonian cycle and a
canonical Hamiltonian path. Let∆(n, n) be a triangular
supergrid graph withn > 2, and lets, t ∈ ∆(n, n). Recall
that a Hamiltonian cycle of∆(n, n) is calledcanonicalif it
contains two flat faces on vertical and horizontal boundaries,
and it contains at least one boundary edge in skewed bound-
ary. A Hamiltonian(s, t)-path of∆(n, n) is calledcanonical
if it contains at least one boundary edge in each boundary.
The following lemma proves the Hamiltonicity of triangular
supergrid graphs.

Lemma 6. Let∆(n, n) be a triangular supergrid graph with
n > 2. Then,∆(n, n) contains a canonical Hamiltonian
cycle.

Proof: We prove this lemma by induction onn. Initially,
let n = 2 or 3. By inspection,∆(2, 2) and∆(3, 3) contain
Hamiltonian cycles which contain all boundary edges of each
boundary. Thus, the lemma holds true forn = 2 and 3.
Assume that lemma holds true whenn = k > 3. Then,
∆(k − 1, k− 1) and∆(k, k) contain canonical Hamiltonian
cycles. Now, assume thatn = k+1. We first make a vertical
cut on ∆(k + 1, k + 1) to obtain two disjoint subgraphs
∆(k − 1, k − 1) andT ′, whereT ′ is a 2-rectangle attached
by a 2-triangle, and the vertical boundary of∆(k− 1, k− 1)
is faced to one boundary ofT ′. By induction hypothesis,
∆(k − 1, k − 1) contains a canonical Hamiltonian cycle
HCk−1 which contains two flat faces of vertical and hor-
izontal boundaries. By visiting all boundary edges ofT ′, we
can construct a Hamiltonian cycleHC ′ of T ′. Then, there
exist two edgese1 ∈ HCk−1 and e2 ∈ HC ′ such thate1
is a vertical boundary edge and contains the nontriangular
corner of∆(k− 1, k− 1), e2 is a vertical boundary edge of
T ′, ande1 ≈ e2. By Proposition 3,HCk−1 andHC ′ can be
combined into a Hamiltonian cycleHC of ∆(k + 1, k + 1)
such thatHC contains all boundary edges of vertical and
horizontal boundaries, and it contains at least one boundary
edge of skewed boundary. Thus,∆(k + 1, k + 1) contains
a canonical Hamiltonian cycle and the lemma holds true
whenn = k+1. By induction,∆(n, n) contains a canonical
Hamiltonian cycle forn > 2.

Next, we will study the Hamiltonian connectivity of
triangular supergrid graphs. We first observe two conditions
for that HP (∆(n, n), s, t) does not exist. These two
forbidden conditions are described as follows:

(a) (b)

s

t

s

t

w

Fig. 4. Triangular supergrid graph in which there exists no Hamiltonian
(s, t)-path for (a) condition (F1), and (b) condition (F2), where dotted lines
indicate the forbidden edges(s, t).

(F1) ∆(n, n) is a 3-triangle, and(s, t) is a nonboundary
edge of∆(n, n) (see Fig. 4(a)).

(F2) ∆(n, n) satisfiesn > 3, and (s, t) is an edge of
∆(n, n) such thats andt are adjacent to a triangular corner
w of ∆(n, n) (see Fig. 4(b)).

The conditions of (F1) and (F2) are calledforbidden for
HP (∆(n, n), s, t). Note that|V (∆(n, n))| = n(n+1)

2 . The
following lemma computes the longest(s, t)-path with length
L(∆(n, n), s, t) when(∆(n, n), s, t) satisfies condition (F1)
or (F2).

Lemma 7. Let ∆(n, n) be a triangular supergrid graph
with n > 3, and let s and t be two distinct vertices of
∆(n, n). If (∆(n, n), s, t) satisfies condition(F1) or (F2),
thenL(∆(n, n), s, t) = n(n+1)

2 − 1.

Proof: By inspection, the lemma holds true whenn = 3.
In the following, assume thatn > 4. Then, (∆(n, n), s, t)
satisfies condition (F2), and, hence,(s, t) is an edge of
∆(n, n) such that s and t are adjacent to a triangular
corner w of ∆(n, n). By Lemma 6,∆(n, n) contains a
canonical Hamiltonian cycleHC. Sincedeg(w) = 2, edges
(s, w) and (w, t) are in HC. By removingw from HC,
we obtain a(s, t)-pathP with length n(n+1)

2 − 1. Clearly,
HP (∆(n, n), s, t) does not exist, and, hence, the length
of any (s, t)-path is less thann(n+1)

2 . Thus, P is the
longest (s, t)-path. In addition,P contains all boundary
edges (except(s, w) or (w, t)) of vertical and horizontal
boundaries, and it contains at least one boundary edge
of skewed boundary in∆(n, n). Then,L(∆(n, n), s, t) =

|V (∆(n, n))|−1 = n(n+1)
2 −1, and, hence, the lemma holds

true.
We have computed the longest(s, t)-path of∆(n, n) when

(∆(n, n), s, t) satisfies forbidden condition (F1) or (F2).
When (∆(n, n), s, t) does not satisfy conditions (F1) and
(F2), we will construct a canonical Hamiltonian(s, t)-path
of ∆(n, n) as follows.

Lemma 8. Let∆(n, n) be a triangular supergrid graph with
n > 3, and lets and t be two distinct vertices of∆(n, n).
If (∆(n, n), s, t) does not satisfy conditions(F1) and (F2),
then∆(n, n) contains a canonical Hamiltonian(s, t)-path,
and, hence,HP (∆(n, n), s, t) does exist.

Proof: We will prove this lemma by induction onn,
n > 3. Initially, let n = 3 or 4. By inspecting every case, we
can verify the lemma whenn = 3 and4. Fig. 5(a) and Fig.
5(b) depict the possible constructed canonical Hamiltonian
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s t

(a)

s t

(b)

Fig. 5. The possible canonical Hamiltonian(s, t)-path of (a)∆(3, 3) and (b)∆(4, 4) when forbidden conditions (F1) and (F2) are not satisfied, where
solid lines indicate the edges in the Hamiltonian(s, t)-path.

(s, t)-path of∆(3, 3) and∆(4, 4), respectively.
Now, assume that the lemma holds true whenn = k > 4.

Then, there exists a canonical Hamiltonian(s∗, t∗)-pathP ∗

of ∆(k−1, k−1) if (∆(k−1, k−1), s∗, t∗) does not satisfy
conditions (F1) and (F2). Consider thatn = k+1. Letw and
w′ be two triangular corners of∆(k+1, k+1) such thatw′

is in vertical boundary. Lets and t be two distinct vertices
of ∆(k+1, k+1) such that(∆(k+1, k+1), s, t) does not
satisfy forbidden condition (F2). We then make a vertical cut
on ∆(k+1, k+1) to partition it into two disjoint subgraphs
∆(k − 1, k − 1) andT ′ = R(2, k) ∪ {w′}, whereT ′ is a 2-
rectangle attached by a 2-triangle. Then,w ∈ ∆(k−1, k−1)
andw′ ∈ T ′. Letw∗ be a triangular corner of∆(k−1, k−1)
different fromw. Consider the following three cases:

Case1: s, t ∈ ∆(k − 1, k − 1). By visiting all boundary
edges ofT ′, we can obtain a Hamiltonian cycleHC ′ of T ′.
There are two subcases:

Case1.1: (∆(k−1, k−1), s, t) satisfies condition (F1)
or (F2). Since(∆(k+1, k+1), s, t) does not satisfy condition
(F2), s ≁ w or t ≁ w. Suppose that(∆(k − 1, k − 1), s, t)
satisfies condition (F1). Then,k − 1 = 3. By inspecting
every case, we can construct a Hamiltonian(s, t)-pathP of
∆(k − 1, k − 1)− w∗ such that there is a vertical boundary
edgee in P . Since there exists a boundary edge(u, v) in HC ′

such thatu ∼ w∗ andv ∼ w∗, by Proposition 5,HC ′ andw∗

can be merged into a Hamiltonian cycleHC∗ of T ′∪{w∗}.
Then, there exists an edgee∗ in HC∗ such thate∗ ≈ e. By
Proposition 4,P andHC∗ can be combined into a canonical
Hamiltonian(s, t)-path of∆(k+1, k+1). On the other hand,
suppose that(∆(k − 1, k − 1), s, t) satisfies condition (F2).
Then, s ∼ w∗, t ∼ w∗, and there exists a boundary edge
(u, v) in HC ′ such thatu ∼ w∗ andv ∼ w∗. By Proposition
5, HC ′ andw∗ can be combined into a Hamiltonian cycle
HC∗ of T ′ ∪ {w∗}. By the proof of Lemma 7, there exists
a Hamiltonian(s, t)-pathP of ∆(k − 1, k − 1) − w∗ such
that P visits all boundary edges of vertical and horizontal
boundaries, andP contains at least one boundary edge of
skewed boundary in∆(k− 1, k− 1)−w∗. Then, there exist
two edgese ∈ P and e∗ ∈ HC∗ such thate ≈ e∗. By

Proposition 4,P andHC∗ can be combined into a canonical
Hamiltonian(s, t)-path of∆(k + 1, k + 1).

Case1.2: (∆(k − 1, k − 1), s, t) does not satisfy con-
ditions (F1) and (F2). By induction hypothesis, there exists
a canonical Hamiltonian(s, t)-pathP of ∆(k − 1, k − 1).
Then, there exist two edgese ∈ P and e′ ∈ HC ′ such that
e ≈ e′. By Proposition 4,P andHC ′ can be combined into
a canonical Hamiltonian(s, t)-path of∆(k + 1, k + 1).

Case2: s ∈ ∆(k − 1, k − 1) and t ∈ T ′. Let p be a
vertex in ∆(k − 1, k − 1) such thatp = w∗ if s 6= w∗,
and (p, w∗) is a vertical boundary edge of∆(k − 1, k −
1) otherwise. Then,(∆(k − 1, k − 1), s, p) does not satisfy
conditions (F1) and (F2). Letq be a vertex inT ′ such that
q ∼ p and (q, t) is not a horizontal edge ofT ′. SinceT ′

is a 2-rectangle attached by a triangle, such a vertexq can
be easily found. Then,HP (T ′, q, t) does exist (see [18]).
Let P ′ be the canonical Hamiltonian(q, t)-path of T ′. By
induction hypothesis, there exists a canonical Hamiltonian
(s, p)-pathP ∗ of ∆(k − 1, k − 1). Then,P ∗ ⇒ P ′ forms a
canonical Hamiltonian(s, t)-path of∆(k + 1, k + 1).

Case 3: s, t ∈ T ′. Let T ′ = R′ ∪ {w′}, whereR′ =
R(2, k). Then,R′ is a 2-rectangle. Since(∆(k+1, k+1), s, t)
does not satisfy condition (F2),s ≁ w′ or t ≁ w′. Suppose
thats ≁ t or (s, t) is not a horizontal and nonboundary edge
in R′. In [18], there exists a canonical Hamiltonian(s, t)-path
P ′ of R′. By Proposition 5,w′ can be merged intoP ′ to form
a canonical Hamiltonian(s, t)-pathP ∗ of T ′. By Lemma 6,
∆(k−1, k−1) contains a canonical Hamiltonian cycleHC.
Then, there exist two edgese ∈ HC ande∗ ∈ P ∗ such that
e ≈ e∗. By Propsoition 4,P ∗ and HC can be combined
into a canonical Hamiltonian(s, t)-path of∆(k + 1, k+ 1).
On the other hand, suppose that(s, t) is a horizontal and
nonboundary edge inR′. Without loss of generality, assume
that sx < tx. Let p1, p2 ∈ R′ and q1, q2 ∈ ∆(k − 1, k − 1)
such that(s, p1) and (s, p2) are two vertical and boundary
edges inR′, p1 is to the upper ofs, p1 ∼ q1, andp2 ∼ q2.
Then, we can easily construct two disjoint(s, p1)-path P1

and(p2, t)-pathP2 of T ′ so thatP1∪P2 visits all vertices of
T ′ and contains at least one boundary edge in each boundary
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Fig. 6. The canonical Hamiltonian cycle of (a)P (3, 3), (b) P (5, 4), and
(c) P (5, 5), where arrow lines indicate the edges in the Hamiltonian cycle.

of T ′. We can see that(∆(k − 1, k − 1), q1, q2) does not
satisfy conditions (F1) and (F2). By induction hypothesis,
there exists a canonical Hamiltonian(q1, q2)-path P ∗ of
∆(k − 1, k − 1). Then,P1 ⇒ P ∗ ⇒ P2 forms a canonical
Hamiltonian(s, t)-path of∆(k + 1, k + 1).

It immediately follows from the above cases that∆(k +
1, k+1) contains a canonical Hamiltonian(s, t)-path. Thus,
the lemma holds true whenn = k+1. By induction,∆(n, n)
contains a canonical Hamiltonian(s, t)-path forn > 3, and
henceHP (∆(n, n), s, t) does exist. This completes the proof
of the lemma.

B. The Hamiltonicity and Hamiltonian connectivity of par-
allelogram supergrid graphs

In this subsection, we will prove the Hamiltonicity and
Hamiltonian connectivity of parallelogram supergrid graphs.
In a parallelogram supergrid graphP (m,n), we only con-
sider thatV (P (m,n)) = {v = (vx, vy) | 1 6 vy 6 n and
vy 6 vx 6 vy +m − 1}. The other type of parallelograms
can be verified by the same arguments. Note that there
are two horizontal and two skewed boundaries inP (m,n).
We first provide a constructive proof to show that any
parallelogram supergrid graphP (m,n) with m > n > 2
contains a Hamiltonian cycle. We then prove thatP (m,n)
always contains a Hamiltonian(s, t)-path except three trivial
conditions. The following lemma first appears in [15] and
shows the Hamiltonicity of parallelogram supergrid graphs.

Lemma 9. LetP (m,n) be a parallelogram supergrid graph
with m > n > 2. Then,P (m,n) contains a canonical
Hamiltonian cycle.

Proof: By inspection, the lemma can be easily verified
when 3 > m. For example, Fig. 6(a) shows a canonical
Hamiltonian cycle ofP (3, 3). In the following, assume that
m > n > 4. Note thatP (m,n) consists ofm columns andn
rows of vertices. Letaij be the vertex located ati-th row and
j-th column ofP (m,n), wheren > i > 1 andm > j > 1.
Consider the following two cases:

Case 1: n is even. LetP1 = a11 → a12 → · · · →
a1(m−1) → a1m, Pı = aı2 → aı3 → · · · → aı(m−1) → aım
for n > ı > 2, and letPn+1 = a21 → a31 → · · · →
a(n−1)1 → an1. Let HC = P1 ⇒ rev(P2) ⇒ P3 ⇒
rev(P4) ⇒ · · · ⇒ P ⇒ rev(P+1) ⇒ · · · ⇒ Pn−1 ⇒
rev(Pn) ⇒ rev(Pn+1), where is an odd andn−1 >  > 1.
Then,HC is a canonical Hamiltonian cycle ofP (m,n). For
instance, Fig. 6(b) depicts a canonical Hamiltonian cycle of
P (5, 4).

Case 2: n is odd. In this case,n > 5. Let P1 =
a11 → a12 → · · · → a1(m−1) → a1m, Pı = aı2 →
aı3 → · · · → aı(m−1) → aım for n − 3 > ı > 2,

(a)

s t

(b)

s

t

w
s

t

(c)

parallel
corner

Fig. 7. Parallelogram supergrid graph in which there exists noHamiltonian
(s, t)-path for (a) condition (F3), (b) condition (F4), and (c) condition (F5),
where the solid lines indicate the longest(s, t)-path.

Pn−2 = a(n−2)2 → a(n−1)2 → a(n−2)3 → a(n−1)3 →
· · · → a(n−2)̂ → a(n−1)̂ → · · · → a(n−2)m → a(n−1)m,
wherem > ̂ > 2, Pn−1 = an2 → an3 → · · · → anm,
and letPn = a21 → a31 → · · · → a(n−1)1 → an1. Let
HC∗ = P1 ⇒ rev(P2) ⇒ P3 ⇒ rev(P4) ⇒ · · · ⇒ P ⇒
rev(P+1) ⇒ · · · ⇒ Pn−2 ⇒ rev(Pn−1) ⇒ rev(Pn), where
 is an odd andn − 2 >  > 1. Then,HC∗ is a canonical
Hamiltonian cycle ofP (m,n). For example, Fig. 6(c) depicts
a canonical Hamiltonian cycle ofP (5, 5).

It immediately follows from the above cases that the
lemma holds true.

Now, we will investigate the Hamiltonian connectivity
of parallelogram supergrid graphs. We first observe three
forbidden conditions forHP (P (m,n), s, t). Then, we prove
that HP (P (m,n), s, t) does exist except the forbidden
conditions. We first consider 1-parallelogram(P (m, 1), s, t).
The following condition impliesHP (P (m, 1), s, t) does
not exist.

(F3) P (m,n) is a 1-parallelogram, buts or t is not a corner
vertex (see Fig. 7(a)).

Since the possible path betweens and t in P (m, 1) is
unique, the longest(s, t)-path in (P (m, 1), s, t) is unique
and its length equalstx − sx + 1. Note thatsx < tx, i.e.,
s is to the left of t. Then,HP (P (m, 1), s, t) does exist if
(P (m, 1), s, t) does not satisfy condition (F3).

Next, we consider(P (m, 2), s, t) with m > 2. By
inspection, the following condition implies thatP (m, 2)
contains no Hamiltonian(s, t)-path.

(F4) P (m,n) is a 2-parallelogram withm > 2, and(s, t) is
a vertical edge ofP (m,n) (see Fig. 7(b)).

Consider that(R(m, 2), s, t) satisfies condition (F4). In
this case,sx = tx. Note that the left parallel corner is
coordinated as(1, 1). Without loss of generality, assume
that sy 6 ty. We can easily see that the longest(s, t)-path
L(P (m, 2), s, t) is either 2sx − 1 or 2(m − sx + 1) + 1.
Then, L(P (m, 2), s, t) = max{2sx − 1, 2m − 2sx + 3}.
When(P (m, 2), s, t) does not satisfy condition (F4), it is not
difficult to verify thatHP (P (m, 2), s, t) does exist. Thus, we
have the following lemma.

Lemma 10. Let P (m, 2) be a 2-parallelogram withm >

2, and let s and t be its two distinct vertices with
sx 6 tx. Then,L(P (m, 2), s, t) = max{2sx − 1, 2m −
2sx + 3} if (P (m, 2), s, t) satisfies condition(F4); and
L(P (m, 2), s, t) = 2m, i.e., HP (P (m, 2), s, t) does exist,
otherwise.

The third forbidden condition forHP (P (m,n), s, t) is as
follows:
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(F5) P (m,n) satisfiesm > n > 2, and(s, t) is an edge of
P (m,n) such thats ∼ w and t ∼ w for any parallel corner
w of P (m,n), wheres 6= w, t 6= w, anddeg(w) = 2 (see
Fig. 7(c)).

When(P (m,n), s, t) satisfies condition (F5), we can com-
pute the longest(s, t)-path by removing the vertexw from
the canonical Hamiltonian cycle ofP (m,n) constructed in
Lemma 9. Thus, we have the following lemma.

Lemma 11. Let P (m,n) be a parallelogram supergrid
graph with m > n > 2, and let s and t be its two
distinct vertices. If(P (m,n), s, t) satisfies condition(F5),
thenL(P (m,n), s, t) = mn− 1, and the longest(s, t)-path
contains at least one boundary edge of each boundary in
P (m,n) whenn > 3.

In the following, we consider that(P (m,n), s, t) does
not satisfy conditions (F3)–(F5). Then, we will construct
a canonical Hamiltonian(s, t)-path of P (m,n). We first
consider 3-parallelogramP (m, 3) as follows.

Lemma 12. Let P (m,n) be a3-parallelogram withn = 3
and m > 3, and let s and t be two distinct vertices of
P (m,n) with sx 6 tx. If (P (m,n), s, t) does not satisfy
condition(F5), thenP (m,n) contains a canonical Hamilto-
nian (s, t)-path, and, hence,HP (P (m, 3), s, t) does exist.

Proof: Let w andw′ be two parallel corners ofP (m, 3).
Since(P (m, 3), s, t) does not satisfy condition (F5), we get
thats ≁ w̃ or t ≁ w̃ for w̃ = w orw′. Consider the following
cases:

Case 1: m = n = 3. We first make a vertical cut on
P (3, 3) to obtain two disjoint triangular supergrid subgraphs
∆1 = ∆(3, 3) and∆2 = ∆(2, 2), as depicted in Fig. 8(a).
Without loss of generality, assume thatw ∈ ∆1 andw′ ∈ ∆2.
Let w1 andw2 be respectively parallel corners of∆1 and∆2

different fromw andw′. There are three subcases:
Case1.1: s, t ∈ ∆1. By visiting all boundary edges

of ∆2, we obtain a Hamiltonian cycleHC2 of ∆2. Suppose
that (∆1, s, t) does not satisfy condition (F1). By Lemma 8,
∆1 contains a canonical Hamiltonian(s, t)-pathP1 (see Fig.
5(a)). Then, there exist two edgese1 ∈ P1 and e2 ∈ HC2

such thate1 ≈ e2. By Proposition 4,P1 andHC2 can be
combined into a canonical Hamiltonian(s, t)-path ofP (3, 3).
On the other hand, suppose that(∆1, s, t) satisfies condition
(F1). Then,(s, t) is a nonboundary edge of∆1, ands ≁ w

or t ≁ w (see Fig. 4(a)). By inspecting every case, we can
construct a Hamiltonian(s, t)-pathP ∗

1 of ∆1−w1 such that
it contains a vertical boundary edgee1 of ∆1. Let w∗ be
the vertex of∆2 − {w′, w2}. Then,HC2 contains vertical
boundary edge(w∗, w2) of ∆2 such thatw1 ∼ w∗ andw1 ∼

w2. By Proposition 5,w1 can be merged intoHC2 to form
a Hamiltonian cycleHC∗

2 of ∆2 ∪ {w1}. Then, there exists
an edgee2 ∈ HC∗

2 such thate1 ≈ e2. By Proposition 4,
P ∗
1 andHC∗

2 can be combined into a canonical Hamiltonian
(s, t)-path of P (3, 3). Fig. 8(a) depicts such a constructed
Hamiltonian(s, t)-path.

Case 1.2: s, t ∈ ∆2. By Lemma 6,∆1 contains a
canonical Hamiltonian cycleHC1. Since(P (3, 3), s, t) does
not satisfy condition (F5),s ≁ w′ or t ≁ w′. Thus,w′ = s or
t. Sincesx 6 tx, w′ = t. Then,∆2 contains a Hamiltonian
(s, t)-pathP2 such that it contains the vertical boundary edge

e2 of ∆2. Thus, there exist two edgese1 ∈ HC1 ande2 ∈ P2

with e1 ≈ e2. By Proposition 4, we can combineP2 and
HC1 into a canonical Hamiltonian(s, t)-path ofP (3, 3).

Case1.3: s ∈ ∆1 and t ∈ ∆2. Let p be a vertex in
∆1 such thatp = w1 if s 6= w1, and (p, w1) is a vertical
boundary edge of∆1 otherwise. Letq ∈ ∆2 such thatq 6=
t, q ∼ p, and (q, t) is not a skewed edge of∆2. Then,
(∆1, s, p) does not satisfy condition (F1), and∆2 contains a
Hamiltonian(q, t)-pathP2 which visits the skewed edge of
∆2. By Lemma 8,∆1 contains canonical Hamiltonian(s, p)-
path P1. Then,P1 ⇒ P2 forms a canonical Hamiltonian
(s, t)-path ofP (3, 3).

Case2: m = n + 1 = 4. In this case, we first make a
vertical cut onP (4, 3) to get two disjoint triangular supergrid
subgraphs∆1 = ∆(3, 3) and∆2 = ∆(3, 3), as depicted in
Fig. 8(b). There are the following two subcases:

Case2.1: s, t ∈ ∆1 or ∆2. By symmetry, we can only
consider thats, t ∈ ∆1. By similar arguments in proving
Case 1.1, a canonical Hamiltonian(s, t)-path ofP (4, 3) can
be constructed.

Case2.2: s ∈ ∆1 andt ∈ ∆2. Let p ∈ ∆1 andq ∈ ∆2

such thatp 6= s, q 6= t, (∆1, s, p) and(∆2, q, t) do not satisfy
condition (F1), andp ∼ q. Consider thatp andq do exist. By
Lemma 8,∆1 and∆2 contain canonical Hamiltonian(s, p)-
path P1 and (q, t)-path P2, respectively. Then,P1 ⇒ P2

forms a canonical Hamiltonian(s, t)-path ofP (4, 3). On the
other hand, consider thatp or q does not exist. By inspecting
every case for the locations ofs andt, only one case occurs
about thatp and q do not exist. The location ofs and t is
shown in Fig. 8(b). Then, a canonical Hamiltonian(s, t)-path
of P (4, 3) can be easily constructed, as depicted in Fig. 8(b).

Case3: m = n + 2 = 5. We first perform two vertical
cuts onP (5, 3) to partition it into three disjoint supergrid
subgraphs,∆1 = ∆(3, 3), ∆2 = ∆(2, 2), andR = R(2, 3),
as depicted in Fig. 8(c). Letw1 and w2 be respectively
parallel corners of∆1 and ∆2 different from w and w′.
There are four subcases:

Case3.1: s, t ∈ ∆1 or ∆2. Consider thats, t ∈ ∆1.
By visiting all boundary edges ofR = R(2, 3), we get
a Hamiltonian cycleHCR of R such that it contains four
flat paths ofR. By visiting all boundary edges of∆2, we
obtain a canonical Hamiltonian cycleHC2 of ∆2. Then,
there exist two edgeseR ∈ HCR and e2 ∈ HC2 such that
eR ≈ e2. By Proposition 3,HCR andHC2 can be combined
into a Hamiltonian cycleHC∗ of R ∪ ∆2 such thatHC∗

contains one flat face ofR that is placed to face∆1. Suppose
that (∆1, s, t) does not satisfy condition (F1). By Lemma 8,
∆1 contains a canonical Hamiltonian(s, t)-pathP1. Then,
there exist two edgese1 ∈ P1 and e∗ ∈ HC∗ such that
e1 ≈ e∗. By Proposition 4,P1 andHC∗ can be combined
into a canonical Hamiltonian(s, t)-path ofP (m,n). On the
other hand, suppose that(∆1, s, t) satisfies condition (F1).
Then, (s, t) is a nonboundary edge of∆1, and s ≁ w or
t ≁ w (see Fig. 4(a)). By inspecting every case, we can
construct a Hamiltonian(s, t)-pathP ∗

1 of ∆1−w1 such that
it contains a vertical boundary edgee1 of ∆1. Let w∗ be
the down-left corner ofR and let (w∗, p) be the vertical
edge inR. Then,w1 ∼ w∗ andw1 ∼ p. By Proposition 5,
w1 can be merged intoHC∗ to form a Hamiltonian cycle
HC ′ of ∆2 ∪R∪ {w1}. By Lemma 7,∆1 −{w1} contains
a canonical Hamiltonian(s, t)-path P ∗

1 . Then, there exist
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two edgese∗1 ∈ P ∗
1 and e′ ∈ HC ′ such thate∗1 ≈ e′. By

Proposition 4,P ∗
1 andHC ′ can be combined into a canonical

Hamiltonian(s, t)-path ofP (5, 3). The subcase ofs, t ∈ ∆2

can be proved similarly.
Case 3.2: s, t ∈ R. By Lemma 6,∆1 contains a

canonical Hamiltonian cycleHC1. By visiting all boundary
edges of∆2, ∆2 has a Hamiltonian cycleHC2 which con-
tains all boundary edges. Suppose that(s, t) is a horizontal
and nonboundary edge ofR. Then,HP (R, s, t) does not
exist. We then perform a horizontal cut onR to obtain two
disjoint subgraphsR1 andR2, as illustrated in Fig. 8(c). By
visiting all boundary edges ofR1 except(s, t), we obtain a
Hamiltonian(s, t)-pathPR of R1. For every vertexv ∈ R2,
v is incident to one edge ofHC1 or HC2. By Proposition
5, the vertices ofR2 can be merged intoHC1 or HC2. Let
the merged cycles ofR2 into HC1 andHC2 be HC ′

1 and
HC ′

2, respectively. Then, there exist four edgese′1 ∈ HC ′
1,

e′2 ∈ HC ′
2, ande∗1, e

∗
2 ∈ PR such thate′1 ≈ e∗1 ande′2 ≈ e∗2.

By Proposition 4,PR, HC ′
1, andHC ′

2 can be combined into
a canonical Hamiltonian(s, t)-path ofP (5, 3). For example,
Fig. 8(c) shows a such canonical Hamiltonian(s, t)-path of
P (5, 3). On the other hand, suppose thats ≁ t or (s, t) is not
a horizontal and nonboundary edge ofR. Then,R contains
a canonical Hamiltonian(s, t)-pathPR constructed in [18].
Thus, there exist four edgese1 ∈ HC1, e2 ∈ HC2, and
e∗1, e

∗
2 ∈ PR such thate1 ≈ e∗1 ande2 ≈ e∗2. By Proposition

4, PR, HC1, andHC2 can be combined into a canonical
Hamiltonian(s, t)-path ofP (5, 3).

Case 3.3: s and t are in the different partitioned
subgraphs. Note thatsx 6 tx. We have the following
subcases:

Case3.3.1: (s ∈ ∆1 and t ∈ R) or (s ∈ R and
t ∈ ∆2). Consider thats ∈ ∆1 andt ∈ R. Let p be a vertex
in ∆1 such thatp = w1 if s 6= w1, and(p, w1) is a vertical
boundary edge of∆1 otherwise. Letq ∈ R such thatq 6= t,
q ∼ p, and (q, t) is not a horizontal nonboundary edge of
R. Then, (∆1, s, p) does not satisfy condition (F1), andR
contains a canonical Hamiltonian(q, t)-pathPR constructed
in [18]. By visiting all boundary edges of∆2, we get a
Hamiltonian cycleHC2 of ∆2 which contains all boundary
edges. Then, there exist two edgeseR ∈ PR ande2 ∈ HC2

such thateR ≈ e2. By Proposition 4,PR andHC2 can be
combined into a Hamiltonian(q, t)-pathP ′

R of R ∪∆2. By
Lemma 8,∆1 contains a canonical Hamiltonian(s, p)-path
P1. Then,P1 ⇒ P ′

R forms a canonical Hamiltonian(s, t)-
path ofP (5, 3). The subcase ofs ∈ R and t ∈ ∆2 can be
verified by the same arguments.

Case 3.3.2: s ∈ ∆1 and t ∈ ∆2. Let p be a
vertex in ∆1 such thatp = w1 if s 6= w1, and (p, w1)
is a vertical boundary edge of∆1 otherwise. Letq be a
vertex in ∆2 such thatq = w2 if t 6= w2, and (q, w2) is
a vertical boundary edge of∆2 otherwise. Letr1, r2 ∈ R

such thatr1 ∼ p, r2 ∼ q, and (r1, r2) is not a horizontal
nonboundary edge ofR. By inspecting any case,p, q, and
r1, r2 do exist. Then,(∆1, s, p) does not satisfy condition
(F1),HP (∆2, q, t) does exist, andHP (R, r1, r2) does exist.
By Lemma 8,∆1 contains a canonical Hamiltonian(s, p)-
pathP1. Let PR be the canonical Hamiltonian(r1, r2)-path
of R constructed in [18], and letP2 be the Hamiltonian
(q, t)-path of∆2. Then,P1 ⇒ PR ⇒ P2 forms a canonical
Hamiltonian(s, t)-path ofP (5, 3).
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Fig. 8. The constructed canonical Hamiltonian(s, t)-path ofP (m, 3) for
(a) m = 3, s, t ∈ ∆1, and(∆1, s, t) satisfies condition (F1), (b)m = 4,
and s ∈ ∆1, t ∈ ∆2, (c) m = 5, s, t ∈ R = R(2, 3), and (s, t) is
a horizontal and nonboundary edge ofR, and (d)m > 6, and s ∈ ∆1,
t ∈ ∆2, where bold dashed lines represent the cut operations onP (m, 3),
solid lines indicate the constructed Hamiltonian(s, t)-path, and⊗ represents
the destruction of an edge while constructing the Hamiltonian(s, t)-path.

Case4: m > n+3 = 6. We first make two vertical cuts on
P (m, 3) to partition it into three disjoint supergrid subgraphs,
∆1 = ∆(3, 3), R = R(m − 3, 3), and∆2 = ∆(3, 3), as
depicted in Fig. 8(d). By Lemma 2,R is Hamiltonian con-
nected. Then, a canonical Hamiltonian(s, t)-path ofP (m, 3)
can be constructed by similar arguments in proving Case 3.
For instance, Fig. 8(d) depicts a canonical Hamiltonian(s, t)-
path ofP (m, 3) whens ∈ ∆1 and t ∈ ∆2.

We have considered any case to construct a canonical
Hamiltonian (s, t)-path of P (m, 3) for m > 3. This com-
pletes the proof of the lemma.

By similar arguments in proving Lemma 12, we can
prove the Hamiltonian connectivity of parallelogram super-
grid graphP (m,n) with m > n > 4 as follows.

Lemma 13. Let P (m,n) be a parallelogram supergrid
graph with m > n > 4, and let s and t be two distinct
vertices ofP (m,n) with sx 6 tx. If (P (m,n), s, t) does not
satisfy condition(F5), then P (m,n) contains a canonical
Hamiltonian(s, t)-path, and, hence,HP (P (m,n), s, t) does
exist.

Proof: We will prove this lemma by constructing a
canonical Hamiltonian(s, t)-path ofP (m,n). Let w andw′

be the two parallel corners ofP (m,n). Since(P (m,n), s, t)
does not satisfy condition (F5),s ≁ w̃ or t ≁ w̃ for w̃ = w

or w′. Sincen > 4, n− 1 > 3. The considered cases are the
same as Lemma 12 and are discussed as follows:

Case1: m = n. We first make a vertical cut onP (m,n)
to get two disjoint triangular supergrid subgraphs∆1 =
∆(n, n) and ∆2 = ∆(n − 1, n − 1), as depicted in Fig.
9(a). Without loss of generality, assume thatw ∈ ∆1 and
w′ ∈ ∆2. Let w1 andw2 be respectively corners of∆1 and
∆2 different fromw andw′. There are three subcases::

Case 1.1: s, t ∈ ∆1 or ∆2. By Lemma 6,∆1 and
∆2 contain canonical Hamiltonian cycles. Then, a canonical
Hamiltonian (s, t)-path of P (m,n) can be constructed by
similar arguments in proving Case 1.1 of Lemma 12.

Case1.2: s ∈ ∆1 and t ∈ ∆2. Let q be a vertex in
∆2 such thatq = w2 if t 6= w2, and (q, w2) is a vertical
boundary edge of∆2 otherwise. Then,(∆2, q, t) does not
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Fig. 9. The constructed canonical Hamiltonian(s, t)-path of P (m,n)
with m > n > 4 for (a) m = n, ands ∈ ∆1, t ∈ ∆2, (b) m = n + 1,
ands, t ∈ ∆1, (c) m = n+ 2, s, t ∈ R(2, n), andHP (R, s, t) does not
exist, and (d)m > n+ 3, ands ∈ ∆1, t ∈ ∆2, where bold dashed lines
represent the cut operations onP (m,n), solid lines indicate the constructed
Hamiltonian(s, t)-path, and⊗ represents the destruction of an edge while
constructing a Hamiltonian(s, t)-path.

satisfy conditions (F1) and (F2). Letp ∈ ∆1 such that
p 6= s, p ∼ q, and (∆1, s, p) does not satisfy condition
(F2). Sincen > 4, p andq do exist. By Lemma 8,∆1 and
∆2 contain canonical Hamiltonian(s, p)-pathP1 and(q, t)-
path P2, respectively. Then,P1 ⇒ P2 forms a canonical
Hamiltonian(s, t)-path ofP (m,n). Fig. 9(a) depicts a such
canonical Hamiltonian(s, t)-path.

Case2: m = n+1. In this case, we first perform a vertical
cut on P (m,n) to partition it into two disjoint triangular
supergrid subgraphs∆1 = ∆(n, n) and∆2 = ∆(n, n), as
depicted in Fig. 9(b). By similar arguments in proving Case
1, we can construct a canonical Hamiltonian(s, t)-path of
P (m,n). For instance, Fig. 9(b) shows a constructed canon-
ical Hamiltonian(s, t)-path whens, t ∈ ∆1 and (∆1, s, t)
does not satisfy condition (F2).

Case 3: m = n + 2. We first make two vertical cuts
on P (m,n) to partition it into three disjoint supergrid
subgraphs,∆1 = ∆(n, n), R = R(2, n), and ∆2 =
∆(n − 1, n − 1), as depicted in Fig. 9(c). There are the
following three subcases:

Case3.1: s, t ∈ ∆1 or ∆2. By Lemma 6,∆1 and∆2

contain canonical Hamiltonian cycles. By similar arguments
in proving Case 3.1 of Lemma 12, a canonical Hamiltonian
(s, t)-path ofP (m,n) can be constructed.

Case3.2: s, t ∈ R. By similar arguments in proving
Case 3.2 of Lemma 12, we can construct a canonical Hamil-
tonian(s, t)-path ofP (m,n). For instance, Fig. 9(c) depicts
a constructed canonical Hamiltonian(s, t)-path ofP (m,n)
whenHP (R, s, t) does not exist.

Case 3.3: s and t are not in the same partitioned
subgraph. This subcase can be verified by similar arguments
in proving Case 3.3 of Lemma 12.

Case4: m > n+3. We first perform two vertical cuts on
P (m,n) to partition it into two disjoint supergrid subgraphs,
∆1 = ∆(n, n), R = R(m − n, n), and∆2 = ∆(n, n), as
depicted in Fig. 9(d). Then, a canonical Hamiltonian(s, t)-
path of P (m,n) can be constructed by similar arguments
in proving Case 3.3 of Lemma 12. For instance, Fig. 9(d)
shows a canonical Hamiltonian(s, t)-path ofP (m,n) when
s ∈ ∆1 and t ∈ ∆2.

(b)

a11 a12 a13 a14 a15

(d)

a21 a22 a23 a24 a25 a26

a31 a33 a34 a35 a36 a37a32

a41 a42 a43 a44 a45 a46 a47 a48

(a)

(c)

Fig. 10. The canonical Hamiltonian cycle of (a)T1(8, 4), (b) T1(9, 5),
(c) T2(11, 4), andT2(13, 5), where arrow lines indicate the edges in the
Hamiltonian cycle.

It follows from the above cases that a canonical Hamil-
tonian (s, t)-path of P (m,n) with m > n > 4 can be
constructed, and, hence,HP (P (m,n), s, t) does exist.

It immediately follows from Lemmas 12 and 13 that we
conclude the following theorem.

Theorem 14. Let P (m,n) be a parallelogram supergrid
graph with m > n > 1, and let s and t be two dis-
tinct vertices ofP (m,n). If (P (m,n), s, t) does not satisfy
conditions (F3)–(F5), then P (m,n) contains a canonical
Hamiltonian(s, t)-path, and, hence,HP (P (m,n), s, t) does
exist.

IV. T HE HAMILTONICITY AND HAMILTONIAN

CONNECTIVITY OF TRAPEZOID SUPERGRID GRAPHS

In this section, we will prove the Hamiltonicity and
Hamiltonian connectivity (except two trivial conditions) of
trapezoid supergrid graphs. There are two types of trapezoid
supergrid graphsT1(m,n) and T2(m,n). By similar argu-
ments in proving Lemma 9, we can verify the Hamiltonicity
of trapezoid supergrid graphs as follows.

Lemma 15. Let T (m,n) be a trapezoid supergrid graph.
Then,T (m,n) contains a canonical Hamiltonian cycle.

Proof: ConsiderT (m,n) = T1(m,n), i.e., T (m,n) is
a nT1

-trapezoid. By inspection, the lemma can be easily
verified when3 > n. In the following, assume thatn > 4. By
definition ofT1(m,n), m > n+ 1 > 5. Note thatT1(m,n)
consists ofm columns andn rows of vertices. Letaij be
the vertex located ati-th row andj-th column ofT1(m,n),
where1 6 i 6 n and 1 6 j 6 m − i + 1. Consider the
following two cases:

Case 1: n is even. LetP1 = a11 → a12 → · · · →
a1(m−n) → a1(m−n+1), Pι = aı2 → aι3 → · · · →
aι(m−n+ι−1) → aι(m−n+ι) for n > ι > 2, and let
Pn+1 = a21 → a31 → · · · → a(n−1)1 → an1. Let
HC = P1 ⇒ rev(P2) ⇒ P3 ⇒ rev(P4) ⇒ · · · ⇒ P ⇒
rev(P+1) ⇒ · · · ⇒ Pn−1 ⇒ rev(Pn) ⇒ rev(Pn+1),
where  is an odd andn − 1 >  > 1. Then,HC is a
canonical Hamiltonian cycle ofT1(m,n). For example, Fig.
10(a) depicts a canonical Hamiltonian cycle ofT1(8, 4).

Case 2: n is odd. In this case,n > 5. Let P1 =
a11 → a12 → · · · → a1(m−n) → a1(m−n+1), Pι =
aι2 → aι3 → · · · → aι(m−n+ι−1) → aι(m−n+ι) for
n − 3 > ι > 2, Pn−2 = a(n−2)2 → a(n−1)2 →
a(n−2)3 → a(n−1)3 → · · · → a(n−2)̂ → a(n−1)̂ →
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Fig. 11. Trapezoid supergrid graph in which there exists no Hamiltonian
(s, t)-path for (a) condition (F6), and (b) condition (F7), where the solid
lines indicate the longest(s, t)-path.

· · · → a(n−2)(m−2) → a(n−1)(m−2)m → a(n−1)(m−1),
wherem − 2 > ̂ > 2, Pn−1 = an2 → an3 → · · · → anm,
and let Pn = a21 → a31 → · · · → a(n−1)1 → an1.
Let HC∗ = P1 ⇒ rev(P2) ⇒ P3 ⇒ rev(P4) ⇒ · · · ⇒
P ⇒ rev(P+1) ⇒ · · · ⇒ Pn−2 ⇒ rev(Pn−1) ⇒ rev(Pn),
where  is an odd andn − 2 >  > 1. Then,HC∗ is a
canonical Hamiltonian cycle ofT1(m,n). For example, Fig.
10(b) shows a canonical Hamiltonian cycle ofT1(9, 5).

We have proved the lemma holds true forT (m,n) =
T1(m,n). For the type of trapezoid supergrid graphs
T2(m,n), we can verify their Hamiltonicity by the same
construction. For instance, Fig. 10(c) and Fig. 10(d) depict
the canonical Hamiltonian cycles ofT2(11, 4) andT2(13, 5),
respectively. Thus, the lemma holds true.

Next, we will study the Hamiltonian connectivity
of trapezoid supergrid graphs. LetT (m,n) be a
trapezoid supergrid graph, whereT (m,n) = T1(m,n)
or T (m,n) = T2(m,n). We first observe the conditions so
that HP (T (m,n), s, t) does not exist. For a2T1

-trapezoid
or 2T2

-trapezoid, the following condition implies that
HP (T (m, 2), s, t) does not exist.

(F6)T (m,n) is a2T1
-trapezoid or2T2

-trapezoid, and(s, t) is
a vertical and nonboundary edge ofT (m,n) (see Fig. 11(a)).

For a trapezoid cornerw of T (m,n), we can easily
see thatHP (T (m,n), s, t) does not exist whens, t 6= w,
s ∼ w, andt ∼ w.

(F7) T (m,n) is a trapezoid supergrid graph forn > 2, w is
a trapezoid corner ofT (m,n), s, t 6= w, s ∼ w, andt ∼ w

(see Fig. 11(b)).

By similar arguments in proving Lemma 7, the following
lemma can be verified.

Lemma 16. Let T (m,n) be a trapezoid supergrid graph
with n > 2, and let s and t be two distinct vertices of
T (m,n). Then, the following statements hold true:
(1) if (T (m,n), s, t) satisfies condition (F6), then
L(T1(m,n), s, t) = max{2(m − sx + 1) − 1, 2sx}
andL(T2(m,n), s, t) = max{2(m− sx + 1)− 1, 2sx + 1}.
(2) if (T (m,n), s, t) satisfies condition (F7), then
L(T (m,n), s, t) = |V (T (m,n))| − 1.

In the following, we will assume that(T (m,n), s, t) does
not satisfy conditions (F6) and (F7). Then, we will construct
a canonical Hamiltonian(s, t)-path of T (m,n). We first

proveT1(m,n) to be Hamiltonian connected as follows.

Lemma 17. Let T1(m,n) be a trapezoid supergrid graph
with m− 1 > n > 2, and lets and t be two distinct vertices
of T1(m,n). If (T1(m,n), s, t) does not satisfy conditions
(F6)–(F7), thenT1(m,n) contains a canonical Hamiltonian
(s, t)-path, and, hence,HP (T1(m,n), s, t) does exist.

Proof: Whenn = 2, i.e., T1(m,n) is a 2T1
-trapezoid,

HP (R1, s, t) does exist [18] and henceHP (T1(m,n), s, t)
can be easily constructed. In the following, assume thatn >

3. By definition of T1(m,n), m > n + 1 > 4 and, hence,
m − n + 1 > 2. We first make a vertical cut onT1(m,n)
to obtain two disjoint subgraphsR1 = R(m−n+1, n) and
∆1 = ∆(n − 1, n− 1), as shown in Fig. 12(a). Depending
on the locations ofs andt, we consider the following three
cases:

Case1: s, t ∈ R1. In this case, we consider whetherR1

is a 2-rectangle as follows:
Case 1.1: m − n + 1 = 2. In this subcase,R1 is

a 2-rectangle. Suppose that(s, t) is not a horizontal and
nonboundary edge ofR1. In [18], R1 contains a canonical
Hamiltonian (s, t)-path P1. By Lemma 6,∆1 contains a
canonical Hamiltonian cycleC1. Then, there exist two edges
e1 ∈ P1 and e2 ∈ C1 such thate1 ≈ e2. By Proposition
4, P1 and C1 can be merged into a Hamiltonian(s, t)-
path of T1(m,n). On the other hand, suppose that(s, t)
is a horizontal and nonboundary edge ofR1. Then, R1

contains no Hamiltonian(s, t)-path. We next preform two
horizontal cuts onR1 to get three disjoint rectangular su-
pergrid subgraphsR11, R12 andR13 so thatR12 contains
only s and t, as depicted in Fig. 12(b). Letp1, q1 ∈ R11,
p2, q2 ∈ R13, r1, r2 ∈ ∆1 such that(s, p1) and (s, p2)
are vertical edges,(t, q1) and (t, q2) are vertical edges, and
(q1, r1) and (q2, r2) are horizontal edges inT1(m,n), as
shown in Fig. 12(b). We can easily construct a Hamiltonian
(p1, q1)-path P1 of R11 and a Hamiltonian(q2, p2)-path
P2 of R13 such thatP1 (resp., P2) visits all boundary
edges ofR11 (resp. R13) except (p1, q1) (resp., (q2, p2))
if |V (R11)| > 2 (resp., |V (R13)| > 2). We can see that
(∆1, r1, r2) does not satisfy conditions (F1) and (F2). By
Lemma 8,∆1 contains a canonical Hamiltonian(r1, r2)-path
P3. Then, s ⇒ P1 ⇒ P3 ⇒ P2 ⇒ t forms a canonical
Hamiltonian(s, t)-path ofT1(m,n).

Case1.2: m− n+ 1 > 2. By Lemma 2,R1 contains
a canonical Hamiltonian(s, t)-path P1. By Lemma 6,∆1

contains a canonical Hamiltonian cycleC1. Then, there exist
two edgese1 ∈ P1 and e2 ∈ C1 such thate1 ≈ e2. By
Proposition 4,P1 andC1 can be combined into a canonical
Hamiltonian(s, t)-path ofT1(m,n).

Case 2: s, t ∈ ∆1. Let w be the trapezoid corner of
T1(m,n), and letw′ be a trapezoid corner of∆1 different
from w. Since (T1(m,n), s, t) does not satisfy conditions
(F6)–(F7), we get thats ≁ w or t ≁ w. Suppose that
(∆1, s, t) satisfies condition (F1) or (F2). Let∆′

1 = ∆1 −
{w′} and letR′

1 = R1 ∪ {w′}. By Lemma 7,∆′
1 contains

a canonical Hamiltonian(s, t)-path P ′
1. By Lemma 1,R1

contains a canonical Hamiltonian cycleC1. Then, there exists
an edge(u, v) in C1 such thatu ∼ w′ and v ∼ w′. By
Proposition 5,C1 andw′ can be merged into a Hamiltonian
cycle C′

1 of R′
1. We can easily find two edgese1 ∈ C′

1

and e2 ∈ P ′
1 such thate1 ≈ e2. By Proposition 4,P ′

1 and

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_04

(Advance online publication: 20 November 2017)

 
______________________________________________________________________________________ 



(a)

R1

D
=
D

-

-

1

(
1,

1)

n

n

m

n

m n- +1

(b)

R11

m

n

2

s tR12

R13 p2 q2

p1 q1

r2

r1

w

(c)

m n-2 +2

m

n

T m n n1 ( +1, )-

D
=
D

-

-

2

(
1,

1)

n

n

w

w1

(d)

m n-2 +2

m

n

T m n n1 ( +1, )-

D
=
D

-

-

2

(
1,

1)

n

n
s

t

w’

w

Fig. 12. (a) A vertical cut onT1(m,n) to get disjoint subgraphsR1 =
R(m− n+ 1, n) and∆1 = ∆(n− 1, n− 1), (b) two horizontal cuts on
R1 for (s, t) is a horizontal and nonboundary edge ofR1, (c) a vertical
cut onT2(m,n) to obtain disjoint subgraphsT1(m−n+1, n) and∆2 =
∆(n − 1, n − 1), and (d) the Hamiltonian(s, t)-path of T2(m, n) for
s, t ∈ T1(m−n+1, n), where bold dashed lines indicate the cut operations
on T1(m,n) or T2(m, n), solid lines indicate the constructed Hamiltonian
(s, t)-path, and⊗ represents the destruction of an edge while constructing
the Hamiltonian(s, t)-path.

C′
1 can be combined into a canonical Hamiltonian(s, t)-

path ofT1(m,n). On the other hand, suppose that(∆1, s, t)
does not satisfy conditions (F1) and (F2). By Lemma 8,∆1

contains a canonical Hamiltonian(s, t)-path forn − 1 > 3.
When n − 1 = 2, it is easy to construct a canonical
Hamiltonian(s, t)-path of∆1. Thus,∆1 contains a canonical
Hamiltonian (s, t)-path P1. By Lemma 1,R1 contains a
canonical Hamiltonian cycleC1. Then, there exist two edges
e1 ∈ P1 and e2 ∈ C1 such thate1 ≈ e2. By Proposition 4,
P1 andC1 can be combined into a canonical Hamiltonian
(s, t)-path ofT1(m,n).

Case3: s ∈ R1 andt ∈ ∆1. In this case, we first find two
verticesp ∈ R1 and q ∈ ∆1 to satisfy thatHP (R1, s, p)
andHP (∆1, q, t) do exist, andp ∼ q. The verticesp and
q can be easily computed. LetP1 = HP (R1, s, p) and
Q1 = HP (∆1, q, t) be canonical Hamiltonian(s, p)-path
and (q, t)-path ofR1 and∆1, respectively. Then,P1 ⇒ Q1

forms a canonical Hamiltonian(s, t)-path ofT1(m,n).
We have considered any case to construct a canonical

Hamiltonian (s, t)-path of T1(m,n). This completes the
proof of the lemma.

Next, we consider the other type of trapezoid supergrid
graphT2(m,n) as follows.

Lemma 18. Let T2(m,n) be a trapezoid supergrid graph
with m

2 > n > 2, and let s and t be two distinct vertices
of T2(m,n). If (T2(m,n), s, t) does not satisfy conditions
(F6)–(F7), thenT2(m,n) contains a canonical Hamiltonian
(s, t)-path, and, hence,HP (T2(m,n), s, t) does exist.

Proof: By inspection,HP (T2(m, 2), s, t) does exist
when(T2(m,n), s, t) does not satisfy condition (F6). In the
following, assume thatn > 3. We first perform a vertical
cut on T2(m,n) to partition it into two disjoint subgraphs
∆2 = ∆(n− 1, n− 1) andT1(m− n+1, n), as depicted in
Fig. 12(c). Letw andw′ be the trapezoid corners ofT2(m,n)
such thatw ∈ ∆2 andw′ ∈ T1(m − n + 1, n). Depending

on the locations ofs and t, there are three cases:
Case1: s, t ∈ ∆2. Let w1 be a triangular corner of∆2

different fromw. Suppose that(∆2, s, t) satisfies condition
(F1) or (F2). Since(T2(m,n), s, t) does not satisfy condition
(F7), we get thats ∼ w1 andt ∼ w1. Let ∆′

2 = ∆2−{w1},
and letT ′

1 = T1(m − n + 1, n) ∪ {w1}. By Lemma 7,∆′
2

contains a canonical Hamiltonian(s, t)-pathP ′. By Lemma
15,T1(m−n+1, n) contains a canonical Hamiltonian cycle
C1. Then, there exists an edge(u, v) in C1 such thatu ∼

w1 and v ∼ w1. By Proposition 5,w1 can be combined
into C1 to form a canonical Hamiltonian cycleC′

1 of T ′
1.

Then, there exist two edgese′ ∈ P ′ and e1 ∈ C′
1 such that

e′ ≈ e1. By Proposition 4,P ′ andC′
1 can be combined into a

canonical Hamiltonian(s, t)-path ofT2(m,n). On the other
hand, suppose that(∆2, s, t) does not satisfy conditions (F1)
and (F2). By Lemma 8,∆2 contains a canonical Hamiltonian
(s, t)-pathP . By Lemma 15,T1(m − n + 1, n) contains a
canonical Hamiltonian cycleC1. Then, there exist two edges
e ∈ P and e1 ∈ C1 such thate ≈ e1. By Proposition 4,P
andC1 can be combined into a canonical Hamiltonian(s, t)-
path ofT2(m,n).

Case2: s ∈ ∆2 and t ∈ T1(m − n + 1, n). Let p ∈ ∆2

and q ∈ T1(m − n + 1, n) such thatHP (∆2, s, p) and
HP (T1(m−n+1, n), q, t) do exist, andp ∼ q. The vertices
p and q can be easy to compute. LetP and Q be the
constructed canonical Hamiltonian(s, p)-path and Hamilto-
nian (q, t)-path of∆2 and T1(m − n + 1, n), respectively.
Then,P ⇒ Q forms a canonical Hamiltonian(s, t)-path of
T2(m,n).

Case 3: s, t ∈ T1(m − n + 1, n). By Lemma 17,
T1(m−n+1, n) contains a canonical Hamiltonian(s, t)-path
P . By Lemma 6,∆2 contains a canonical Hamiltonian cycle
C. Then, there exist two edgese ∈ P ande1 ∈ C such that
e ≈ e1. By Proposition 4,P andC can be combined into a
canonical Hamiltonian(s, t)-path ofT2(m,n). For instance,
Fig. 12(d) depicts the construction of such a canonical
Hamiltonian(s, t)-path.

It follows from the above cases that a canonical Hamilto-
nian (s, t)-path ofT2(m,n) is constructed. Thus, the lemma
holds true.

It immediately follows from Lemmas 17–18 that the
following theorem holds true.

Theorem 19. Let T (m,n) be a trapezoid supergrid graph
with n > 2, and let s and t be two distinct vertices
of T (m,n), where T (m,n) = T1(m,n) or T2(m,n). If
(T (m,n), s, t) does not satisfy conditions(F6)–(F7), then
T (m,n) contains a canonical Hamiltonian(s, t)-path, and,
hence,HP (T (m,n), s, t) does exist.

V. CONCLUDING REMARKS

In this paper, we provide constructive proofs to show that
some shaped supergrid graphs, including triangular, paral-
lelogram, and trapezoid, are Hamiltonian and Hamiltonian
connected except few trivial conditions. These constructive
proofs give linear time algorithms to construct the longest
paths or Hamiltonian paths between any two distinct vertices
of shaped supergrid graphs. A supergrid graph is called
alphabet if its boundaries form an alphabet. There are 26
types of alphabet supergrid graphs. We can see from the
structures of alphabet supergrid graphs that they can be
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decomposed into triangular, parallelogram, and trapezoid
supergrid subgraphs. In the future, we would like to apply
our results to study the Hamiltonian connectivity of alphabet
supergrid graphs.
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