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The Hamiltonicity and Hamiltonian Connectivity
of Some Shaped Supergrid Graphs

Ruo-Wei Hung*, Horng-Dar Cheh, and Sian-Cing Zeng

Abstract—A Hamiltonian path (cycle) of a graph is a simple connectivity of interconnection networks. lét al. [26]
path (cycle) in which each vertex of the graph is visited exactly proved the Hamiltonian connectivity of the recursive dual-
once. The Hamiltonian path (cycle) problem is to determine net. The hypercomplete network [6] and the arrangement

whether a graph contains a Hamiltonian path (cycle). A graph : -
is called Hamiltonian if it contains a Hamiltonian cycle, and it is graph [29] were known to be Hamiltonian connected. The

said to be Hamiltonian connected if there exists a Hamiltonian Popular hypercubes are Hamiltonian but are not Hamiltonian
path between any two distinct vertices. Supergrid graphs were connected. However, many variants of hypercubes, including
first introduced by us and include grid graphs and triangular  augment hypercubes [14], generalized biabgpercube [20],
grid graphs as their subgraphs. These problems on supergrid yisteq cubes [22], crossed cubes [21], Mobius cubes [7], and
graphs can be applied to compute the stitching traces of h dh b 281 h b h to be Hamilto-
computerized sewing machines. In the past, we have proved thee_n anced hypercubes [28], have been shown 0. e_ amifto
Hamiltonian path (cycle) problem on supergrid graphs to be hian connected. For more related works and applications, we
NP-complete. Recently, we showed that rectangular supergrid refer readers to [1], [4], [5], [9], [13], [17], [18], [27], [30],
graphs are Hamiltonian connegted except one tr.iviall fprbidden [31], [32], [33], [34].

cond_ltlon_. In this paper, we will verify the Hamlltonl_uty and The two-dimensional integer grid=>° is an infinite graph
Hamiltonian connectivity of some shaped supergrid graphs, whose vertex set consists of all points of the Euclidean
including triangular, parallelogram, and trapezoid. The results o ) p . s X
can be used to solve the Hamiltonian problems on some specialPlane with integer coordinates and in which two vertices

classes of supergrid graphs in the future. are adjacent if the (Euclidean) distance between them is

Index Terms—Hamiltonicity, Hamiltonian connectivity, su- gq_ugl to 1. TheIwo.—dimensionaI triangulf':lr gridr™ is an
pergrid graphs, triangular supergrid graphs, parallelogram infinite graph obtained fronG> by adding all edges on
supergrid graphs, trapezoid supergrid graphs, computer sewing the lines traced from up-left to down-right. grid graph
machines. is a finite, vertex-induced subgraph 6f°. For a nodev

in the plane with integer coordinates, let and v, be the
|. INTRODUCTION « and y coordinatesof node v, respectively, denoted by

Hamiltonian pathof a graph is a simple path invos:sib(::hﬁghgo:vlesrti?:e\éeigslﬁtégmav gidl)gr(zipfl, 1th§n) "
which each vertex of the graph appears exactly onc%}. +1,v,), and(v,, v, — 1). For ex;irrzple I’:ig 11(8)78?10’WS
A Hamiltonian cyclein a graph is a simple cycle with the ™ . = Y” oy - Co e i
same property. Thelamiltonian path(resp.,cycle problem a grid graph. Atriangular grid graphis a finite, vertex

involves deciding whether or not a graph contains a HamiltirldUClEd subgraph a™. If v is a vertex in a triangular grid
nian path (resp., cycle). A graph is called to lBamiltonian Braph, then its possible neighbor vertices includg v, +1),

- . o . . ve — 1,0y), (vp +1,0y), (vz,v, — 1), (v —1,v,+ 1), and

if it contains a Hamiltonian cycle. A grapf is said to be EU 1 vz)—(l) For i?])sta(mce yFig )1((b) depictys a t)riangular

Hamiltonian connected for each pair of distinct vertices P o L L

andv of G, there exists a HamiItoFr)ﬂan path betwaeandv grid graph. Thus, trlangula}r grid graphs contain gr_|d graphs

in G If L d f 2 Hamiltoni red as subgraphs. Note that triangular grid graphs defined above

Itrr: ' l_(|“’ U.)Itls ane g? ° at am oma(r; conne.cte Tﬁrapt&re isomorphic to the original triangular grid graphs studied
en a Hamiltonian cycle containing, v) does exist. Thus, in the literature [12] but these graphs are different when

a Hamiltonian connected grf'iph contains many Ham_'lton_'%%nsidered as geometric graphs. By the same construction of
cycles, and, hence, the sufficient conditions of Hamlltonlq

ﬂangular grid graphs from grid graphs, we have proposed a

connectivity are stronger than those of Hamiltonicity. It i‘?lew class of . ;
o graphs, namedypergrid graphsin [15]. The
well known that the Hamiltonian path and cycle proble o-dimensional supergrid* is an infinite graph obtained

are NP-complete for general graphs [10], [24]. The SaMm 7> by adding all edges on the lines traced from up-
holds true for bipartite graphs [25], split graphs [11], circl ight to doz//vn-left.gA supe?grid graphis a finite, vertex- P

g_raphs (8], _undirected path graphs [2],_grid graphs [23 duced subgraph o#°°. The possible adjacent vertices of a
triangular grid graphs [12], and supergrid graphs [15]. I\r]erter = (v, v,) in a supergrid graph include.., v, +1)
the literature, there are many studies for the Hamiltonia(g “ 1wy ”“(’vy+ 1,0y), (0as 0y — 1), (v — 1o y+ 1)’

x y Yy ) x YY) xrs Yy 1 x VY ’
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bipartite [23] but triangular grid graphs and supergrid geaplienoted by v, , vx)-path. In addition, we us® to refer to the
are not bipartite. set of vertices visited by patPR if it is understood without
The Hamiltonian problems on supergrid graphs can leenbiguity. On the other hand, a path is called theersed
applied to control the stitching trace of a computerizeglath, denoted by ref?), of path P if it visits the vertices
sewing machine as stated in [15]. We also proved that thé P from end(P) to start(P) in proper sequence; that is,
Hamiltonian cycle and path problems are NP-complete ftte reversed path réf) of pathP = v; — vg — -+ —
supergrid graphs [15]. Thus, an important line of investisp|_1 — v|p| iS v p| = v|pj—=1 — -+~ — v2 — v1. A path
gation is to discover the complexities of the Hamiltonia® is a cycle if |V (P)| > 3 andend(P) ~ start(P). Two
related problems when the input is restricted to be in specgaths (or cycles)P?, and P, of graphG are called vertex-
subclasses of supergrid graphs. In [17], we showed trdisjoint if V(P;) NV (P) = 0. Two vertex-disjoint path$’
the Hamiltonian cycle problem for linear-convex supergridnd P, can be concatenated into a path, denoteéby:- P,
graphs is linear solvable. Recently, we proved that rectafi-end(P;) ~ start(P).
gular supergrid graphs are always Hamiltonian connectedLet S be the infinite graph whose vertex set consists
except one trivial forbidden condition [18]. In this paperof all points of the plane with integer coordinates and in
we will show that some shaped supergrid graphs, includimghich two vertices are adjacent if the difference of their
triangular, parallelogram, and trapezoid, are always Hamiltor y coordinates is not larger than 1. gupergrid graph
nian and Hamiltonian connected except few trivial forbiddes a finite, vertex-induced subgraph §°. For a vertexv
conditions. The results can be applied to the Hamiltonian a supergrid graph, let, andv, be respectively: andy
problems on some special subcalsses of supergrid grapttsrdinates ofi. We color vertex to bewhiteif v, +v, =0
such as solid and alphabet supergrid graphs. (mod 2); otherwisey is colored to beéblack Then there are
The rest of the paper is organized as follows. Sectigight possible neighbors of vertex including four white
Il gives some notations and background results. In Sectigartices and four black vertices. Obviously, all grid graphs
[ll, we propose constructive proofs to show that triangulare bipartite [23] but supergrid graphs are not bipartite. The
and parallelogram supergrid graphs are Hamiltonian aedge(u,v) in S is said to behorizontal(resp.,vertical) if
Hamiltonian connected except two or three trivial condiz, = v, andu, # v, (resp.,u, = v, andu, # v,), and is
tions. Section IV verifies the Hamiltonicity and Hamiltoniarcalled skewedf it is neither a horizontal nor a vertical edge.
connectivity of trapezoid supergrid graphs by using thia the figures, we assume th@t, 1) are coordinates of the
Hamiltonicity and Hamiltonian connectivity of rectangularup-left vertex, i.e., the leftmost vertex of the first row, in a
triangular, and parallelogram supergrid graphs. Finally, vaeipergrid graph.
make some concluding remarks in Section V. Rectangular supergrid graphs first appeared in [15],
in which the Hamiltonian cycle problem was solved.

1. NOTATIONS AND BACKGROUND RESULTS Let R(m,n) be the supergrid graph with vertex set

In this section, we will introduce some notations. Sor:f(R(m’n)) =_{v - (g, 0) | 1 _< v, < m and
observations and previously established results for the Hamiil-S v S n}. That 'S;;R(m’n) containsm columns and
tonian problems on rectangular supergrid graphs are als¢oWs of_vert|ces mSl A r.ectangula_\r supergrid grapiis
presented. For graph-theoretic terminology not defined in tkﬁsSUperg”d. graph which IS isomorphic R(m, n). Thgnm
paper, the reader is referred to [3]. andn, Fhedmensmnsspemf_y a rectangulgr supergrld graph
up to isomorphism. The size aR(m,n) is defined to be

_ mn, andR(m,n) is calledn-rectangle. Lety = (v,, v,) be
A. Notations a vertex inR(m, n). The vertexv is called theup-left (resp.,

Let G = (V, E) be a graph with vertex séf(G) and edge up-right down-left down-righ) corner of R(m,n) if for
setF(G). Let S be a subset of vertices i, and letu andv ~ any vertexw = (w,, w,) € R(m,n), w, = v, andw, > v,
be two distinct vertices i6/. We write G[S] for the subgraph (resp.,w, < v, andw, > v,, w, > v, andw, < vy,
of G inducedby S, G— S for the subgraplé[V —S], i.e., the w. < v, andw, < v,). There are four boundaries (borders)
subgraph induced by —S. In general, we writ&; —v instead in a rectangular supergrid grapR(m,n) with m,n > 2.
of G—{v}. If (u,v) is an edge irG, we say that: is adjacent The edge in the boundary ak(m,n) is called boundary
to v. A neighborof v in G is any vertex that is adjacentto edge For example, Fig. 2(a) shows a rectangular supergrid
We useNg(v) to denote the set of neighborsoin G. The graph R(10,10) which is called 10-rectangle and contains
subscript G” of Ng(v) can be removed from the notatiord x 9 = 36 boundary edges. Fig. 2(a) also indicates the
if it has no ambiguity. Thelegreeof vertexv, denoted by types of corners.
deg(v), is the number of vertices adjacent to vertexThe The triangular supergrid graphs are subgraphs of rectan-
notationu ~ v (resp.,u ~ v) means that vertices andv gular supergrid graphs and are defined as follows.
are adjacent (resp., non-adjacent). Two edges (u1,v;)
andes = (ug,v9) are said to bencidentif u; ~ v; and
ug ~ vy, denote this by, =~ e;. A path P of length|P|in G,
denoted byv; — v2 — -+ — v p|_1 — v|p|, IS @ SEQUENCE
(v1,v2,- -+ ,vp|—1,v p|) Of vertices such thay;, vi1) € E
for 1 < i < |P|. The first and last vertices visited by are
denoted bystart(P) andend(P), respectively. We will use  For example, Fig. 2(b) shows a triangular supergrid graph
v; € P to denote P visits vertexv;” and use(v;, v;+1) € P A(10,10). Each triangular supergrid graph contains three
to denote P visits edge(v;, v;+1)”". A path fromwv; to v, is  boundaries, namelyhorizontal vertical, and skewed and

Definition 1. Let ¢ be a diagonal line ofR(n,n) with

n > 2 from the up-left corner to the down-right corner. Let
A(n,n) be the supergrid graph obtained froR{n,n) by
removing all vertices undet. A triangular supergrid graph
is a supergrid graph which is isomorphic &o(n, n).

(Advance online publication: 20 November 2017)



TAENG International Journal of Computer Science, 44:4, IJCS 44 4 04

(v, v, =)

vl ) Ly

(a) (b) (©

Fig. 1. (a) A grid graph, (b) a triangular grid graph, and (c) a supergrid graph, where circles represent the vertices and solid lines indicate the edges in
the graphs.

horizontal
" boundary

parallelogram supergrid graph contains four boundaries, two
horizontalboundaries and twekewedboundaries, and these
boundaries form a parallelogram, as depicted in Fig. 2(c).
The size of P(m,n) is defined to benn, and P(m,n) is
called n-parallelogram. The vertew of P(m,n) is called
parallel cornerif deg(w) = 2. We can see from definition
that a parallelogram supergrid graph contains two parallel
corners and it can be decomposed into two disjoint triangular
supergrid subgraphs. For instance, Fig. 2(c) depicts a paral-
lelogram supergrid grap?(5,4) which can be partitioned
into two triangular supergrid graphs(4, 4).

Next, we introduce trapezoid supergrid graphs. Let
R(m,n) be a rectangular supergrid graph with> n > 2.

horizontal

_boundary
/ skewed
~boundary

parallel

COMMET ool

m="9 A trapezoid supergrid grapfy(m,n) or To(m,n) is ob-

tained from R(m,n) by removing one or two triangular
supergrid graph&\(n — 1,n — 1). The trapezoid supergrid
graphsTy(m,n) andT>(m,n) are defined as follows.

f
TS T R —

corner (d)

Definition 3. Let R(m,n) be a rectangular supergrid graph
Fig. 2. d @ ?ArelcotaTgular supergrid grfadh(ll(lhllo), (b) a tfiaﬁgulaf with m > n > 2. A trapezoid supergrid grapf (m,n)
Supergid TR0, 10). ) o peo of prslelogram supergtc SeBNyi 1, = 1 £ 1 s obtained from(m, ) by removing
T5(9, 4), where solid arrow lines in (a) indicate a flat path &410,10) & triangular supergrid grapi\(n — 1,n — 1) from the
and dashed line in (c) indicates a vertical cut. corner OfR(m, n) A trapezoid supergrid grapih, (m, n)

is constructed fromR(m, n) with m > 2n by removing two

triangular supergrid graph&(n — 1,n — 1) from the up-left
nd up-right corners oR(m, n). Fig. 2(d) shows these two

these boundaries form a triangle, as illustrated in Fig. 2(1? pes of trapezoid graphs

The triangular supergrid graph(n,n) is calledn-triangle,
and the vertexv in A(n,n) is called triangular corner In a trapezoid supergrid graph, a vertess calledtrape-
if deg(v) = 2 and it is the intersection of horizontal (orzoid cornerif deg(v) = 2. We can see thaf; (m, n) contains
vertical) and skewed boundaries. a trapezoid cornefl,(m, n) contains two trapezoid corners,
Parallelogram supergrid graphs are defined similar to re@:(m,n) contains two horizontal, one vertical and one
angular supergrid graphs as follows. skewed boundaries, anfh(m,n) contains two horizontal
and two skewed boundaries. By definition, each boundary
of T1(m,n) and Tx(m,n) contains at least two vertices.
n and vertex seV (P(m,n)) = {v = (v, vy) | L vy <7 O the other handl’i (m,n) and T>(m,n) are callednr,-
andvy, < vy Svy+m =1} or{v = (vz,0y) [ 1 S0 <7 yrapezoid andir, -trapezoid, respectively. For instance, Fig.
and —y + 2 g_ vy < m - (vy — 1)} _A pa_rallelogram 2(d) depictsT’ (6,4) andT5(9, 4).
supergrid graphis a supergrid graph which is isomorphic to Let G be a rectangular, triangular, parallelogram, or trape-

P(m, n). zoid supergrid graph. A path on one boundarybis called

In the above definition, there are two types of paralleldlat if its vertices are in the boundary and it contains all
gram supergrid graphs. We can see that they are isomorpp@$indary edges in the boundary. For example, the solid arrow
although they are different when considered as geometfiges in the down boundary of Fig. 2(a) indicate a flat path
graphs. In this paper, we can only consider the parallelof 2(10,10).
gram supergrid grap®(m,n) with V(P(m,n)) = {v = In proving our results, we need to partition a shaped
(vg,vy) | 1 < vy < mandv, < v, < vy, +m — 1}, Each supergrid graph into two disjoint parts. The decomposition

Definition 2. Let P(m,n) be the supergrid graph with >

(Advance online publication: 20 November 2017)
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is defined as follows. SN TN TN TN

{ n u NS wd—su, | u,
Definition 4. Let S(m,n) be a triangular, parallelogram, or ‘\ G . G /} {\ G Vig—3v, {\ G V.@‘Y
trapezoid supergrid graph. éut operation onS(m,n) isa N\ AN SN A N
line partition through a set of edges so that the removal of
Z from S(m,n) results in two disjoint supergrid subgraphs (@) ®) ©

S anpl Sz. A cutis C_a”edvert_lcal (resp.,horlzonta). ifitis Fig. 3. A schematic diagram for (a) Proposition 3, (b) Proposition 4, and
a vertical (resp., horizontal) line to separatén,n) into .S;  (c) Proposition 5, where bold dashed lines indicate the cycles (paths) and
and S5 such thatS; is to the left (resp., upper) ofs, ie., ®© represents the destruction of an edge while constructing a cycle or path.
Z is a set of horizontal (resp., vertical) edges.

For instance, the bold dashed line in Fig. 2(c) depicts._. I
a vertical cut onP(5,4) to partition it into two disjoint visited by the path. We denote a Hamiltonian path between

. ; s andt¢ in G by HP(G,s,t). We say thatHP(G, s,t)
triangular supergrid subgrapis(4, 4). ) . . I
. . . . exists if there exists a Hamiltoniafs, t)-path of G. By
In proving our result, we will construct a canonical Hamil- - .
. . L . __the definition, L(G, s,t) = |V(G)| if HP(G,s,t) does
tonian cycle and a canonical Hamiltonian path of a triangu- ; S . )
lar, parallelogram, or trapezoid supergrid graph defined e>s<|st. The Hamiltonian cycle af(m,n) is calledcanonical
foliows ' If7it satisfies Lemma 1. From Lemma 1, we know that
' HP(R(m,n),s,t) does exist whenmn,n > 2 and (s,t) is
Definition 5. Let S(m,n) be a triangular, parallelogram, oran edge in the canonical Hamiltonian cycle Bfm,n). In
trapezoid supergrid graph with boundaries, and letand¢ [18], we have proved thall P(R(m,n), s,t) always exists
be its two distinct vertices. A Hamiltonian cycle §{m,n) for m,n > 3. For (R(m,n), s, t) with m > n > 3, a
is called canonicalif it containsx — 1 flat paths onk —1 Hamiltonian(s, t)-path of R(m,n) is calledcanonicalif it
boundaries, and it contains at least one boundary edgecontains at least one boundary edge of each side (boundary)
the other boundary. A Hamiltonia(s, ¢)-path of S(m,n) is in R(m,n). The following lemma is to show the Hamiltonian

calledcanonicalif it contains at least one boundary edge ofonnectivity of rectangular supergrid graphs.

each boundary irf(m, n). Lemma 2. (See [18].) For(R(m,n), s, t) withm > n > 3,
R(m,n) contains a canonical Hamiltoniafs, ¢)-path, and,
B. Background results hence,H P(R(m,n), s,t) does exist.

In [15], we have showed that rectangular supergrid graphsq, e 1-rectanglelf P(R(m, 1), s, t) does not exist ifs
always contain Hamiltonian cycles except 1-rectangles. Lgt, is not a corner. On the o'Eher hanH,P(R(m, ?2), s, 1)
R(m,n) be a rectangular supergrid graph with> n, C'be 565 not exist if(s, ) is a vertical and nonboundary edge
a cycle QfR(m,n), and letH be a bound_ar_y of2(m,n), o R(m,2). Forn = 1 or 2, HP(R(m,n),s,t) does exist
whereH is a subgraph ofi(m, n). The restriction o' t0 I o cent the above one trivial forbidden condition [18].
is denoted bwlfz" If |G| =1, i..Cjpr is aboundary path " \ye ey give some observations on the relations among
on H, thenC)y is calledflat faceon H. If |Cy| > 1 and ycje path, and vertex. These propositions are presented in
Cjm contains at least one boundary edgerfthenCy iS 116 and will be used in proving our results. Lé% and Cs

_called concave face_)n_H. A Hz_imlltoman cycle ofR(1m,3) e o vertex-disjoint cycles of a gragh If there exist two
is called canonical if it contains three flat faces on tWOedgeSel € Oy ande, € C, such thate; ~ ey, thenCy and
shorter boundaries and one longer boundary, and it conta&sCan be combined into a cycle 6. Then the following
one concave face on the other boundary, where the Sho'ﬁ%position holds true.

boundary consists of three vertices. And, a Hamiltonian cycle

of R(m,n) with n = 2 orn > 4 is said to becanonicalif it ~Proposition 3. (See [18].) LetC; and C> be two vertex-
contains three flat faces on three boundaries, and it contatigioint cycles of a grapld. If there exist two edges € C4
one concave face on the other boundary. The followirdid e2 € C2 such thate; ~ ez, thenC; and C; can be
lemma states the result in [15] concerning the Hamiltonici§ombined into a cycle ofr. (see Fig.3(a))

of rectangular supergrid graphs. Let C; be a cycle and leP; be a path in a grapt¥ such

Lemma 1. (See [15].) LetR(m,n) be a rectangular super- thatV(C1) N V(P1) = 0. If there exist two edges; € C4
grid graph withm > n > 2. Then, the following statementsand ez € Py such thate; ~ e,, thenCy, and P, can be

hold true: combined into a pati® of G with start(P) = start(P;) and
(1) if n = 3, thenR(m, 3) contains a canonical Hamiltonian end(FP) = end(P1). Fig. 3(b) depicts such a construction,
cycle; and, hence, the following proposition holds true.

(2) if n=20rn >4, thenR(m,n) contains four distinct pqyosition 4. (See [18].) LetC; and P, be a cycle and a

canonical Hamiltonian cycles with concave faces being Phth, respectively, of a grapi¥ such thatl (C1) NV (Py) =

different boundaries. 0. If there exist two edges, € C; and e, € P; such that
Let (G, s, t) denote the supergrid gragh with two given €1 = €2, thenC and Py can be combined into a path 6f.

distinct verticess and ¢. Without loss of generality, we (see Fig.3(b))

will assume thats, < ., i.e., s is to the left of¢, in The above observation can be extended to a vertex

the rest of the paper. The notatidnG, s, t) indicates the where P, = z, as shown in Fig. 3(c), and we then have
length of longest path betweenandt in G, where the 4 following proposition.

length of a path is defined to be the number of vertices

(Advance online publication: 20 November 2017)



TAENG International Journal of Computer Science, 44:4, IJCS 44 4 04

Proposition 5. (See [17]) Let C; be a cycle (path) of a
graph G and letz be a vertex inG — V(C4). If there exists
an edge(uy,v1) in Cy such thatu; ~ 2 and vy ~ z, then

C, and z can be combined into a cycle (path) 6f (see

Fig. 3(c))

(a) (b)

I11. THE HAMILTONICITY AND HAMILTONIAN
Fig. 4. Triangular supergrid graph in which there exists no Htaman
CONNECTIVITY OF TRIANGULAR AND PARALLELOGRAM (s, t)-path for (a) condition (F1), and (b) condition (F2), where dotted lines

SUPERGRID GRAPHS indicate the forbidden edgds, ).

A. The Hamiltonicity and Hamiltonian connectivity of trian-
gular supergrid graphs
d(Fl) A(n,n) is a 3-triangle, ands,t) is a nonboundary

In this subsection, we will verify the Hamiltonicity an fedge of A(n,n) (see Fig. 4(a)).

Hamiltonian connectivity (except two trivial conditions) o

triangular supergrid graphs. For a triangular supergrid graph - .
we will construct a canonical Hamiltonian cycle and %:’2) A(n,n) satisfiesn > 3, and (s, ) is an edge of

canonical Hamiltonian path. Lef\(n,n) be a triangular (n,n) such thats apdt are adjacent to a triangular corner
supergrid graph witth, > 2, and lets,t € A(n,n). Recall of A(n,n) (see Fig. 4(b)).

that a Hamiltonian cycle ofA(n, n) is calledcanonicalif it - )

contains two flat faces on vertical and horizontal boundaries, "€ conditions of (F1) and (F2) are calléﬁgfgenfor
and it contains at least one boundary edge in skewed bou%E(A.(”’ n),s,t). Note that|V(A(n, n))| = =5—=. The
ary. A Hamiltonian(s, ¢)-path of A(n, n) is calledcanonical following lemma computes the longest ¢)-path with length

if it contains at least one boundary edge in each boundaff2(7:7), s,t) when(A(n,n), s, ) satisfies condition (F1)
The following lemma proves the Hamiltonicity of triangula®’ (F2).

supergrid graphs. Lemma 7. Let A(n,n) be a triangular supergrid graph
Lemma 6. Let A(n, ) be a triangular supergrid graph with with n > 3, and lets and ¢ be two distinct vertices of

n > 2. Then, A(n,n) contains a canonical Hamiltonian 2 (7% 7)- If (A(n,n),s,1) satisfies conditior(F1) or (F2),
cycle. thenL(A(n,n), s, t) = 2t 1,

2
Proof: We prove this lemma by induction on Initially, Proof: By inspection, the lemma holds true when= 3.
let n = 2 or 3. By inspection,A(2,2) and A(3,3) contain N the following, assume that > 4. Then, (A(n,n), s, )
Hamiltonian cycles which contain all boundary edges of eagRtisfies condition (F2), and, hence,t) is an edge of
boundary. Thus, the lemma holds true for= 2 and 3. A(n,n) such thats and ¢ are adjacent to a triangular
Assume that lemma holds true when= k > 3. Then, comerw of A(n,n). By Lemma 6,A(n,n) contains a
A(k—1,k—1) andA(k, k) contain canonical Hamiltonian c@nonical Hamiltonian cyclé/C. Sincedeg(w) = 2, edges
cycles. Now, assume that= -+ 1. We first make a vertical (s;w) and (w.t) are in HC. By removingw from HC,
cut on A(k + 1,k + 1) to obtain two disjoint subgraphsWe obtain a(s,?)-path P with length neth — 1. Clearly,
A(k—1,k—1) andT’, whereT” is a 2-rectangle attached P(A(n,n),s,t) does not exist, and, hence, the length
by a 2-triangle, and the vertical boundaryafk —1,k—1) 0f any (s,?)-path is less than™ %t Thus, P is the
is faced to one boundary Gf’. By induction hypothesis, longest (s, ¢)-path. In addition,” contains all boundary
A(k — 1,k — 1) contains a canonical Hamiltonian cycleedges (excepts,w) or (w,t)) of vertical and horizontal
HC_; which contains two flat faces of vertical and horboundaries, and it contains at least one boundary edge
izontal boundaries. By visiting all boundary edgesiéfwe Of skewed boundary im\(n,n). Then, L(A(n,n),s,t) =
can construct a Hamiltonian cyclEC’ of T". Then, there [V(A(n,n))|—1 ="t 1 and, hence, the lemma holds
exist two edges; € HCy_1 andey, € HC’ such thate; true. n
is a vertical boundary edge and contains the nontriangulatVe have computed the longést ¢)-path of A(n, n) when
corner of A(k — 1,k — 1), es is a vertical boundary edge of (A(n,n), s,t) satisfies forbidden condition (F1) or (F2).
T’, ande; ~ ey. By Proposition 3,HC)_; and HC' can be When (A(n,n),s,t) does not satisfy conditions (F1) and
combined into a Hamiltonian cycl&C of A(k +1,k+1) (F2), we will construct a canonical Hamiltonigs, ¢)-path
such thatHC' contains all boundary edges of vertical an@f A(n,n) as follows.
horizontal boundaries, and it contains at least one boundiré/mma 8. LetA
edge of skewed boundary. ThuA(k + 1,k + 1) contains :
a canonical Hamiltonian cycle and the lemma holds tr
whenn = k+ 1. By induction,A(n,n) contains a canonical
Hamiltonian cycle forn > 2.
Next, we will study the Hamiltonian connectivity of
triangular supergrid graphs. We first observe two conditions Proof: We will prove this lemma by induction on,
for that HP(A(n,n),s,t) does not exist. These twon > 3. Initially, let n = 3 or 4. By inspecting every case, we
forbidden conditions are described as follows: can verify the lemma when = 3 and4. Fig. 5(a) and Fig.
5(b) depict the possible constructed canonical Hamiltonian

(n,n) be a triangular supergrid graph with
n > 3, and lets and ¢ be two distinct vertices af\(n,n).
i (A(n,n),s,t) does not satisfy condition$1) and (F2),
then A(n,n) contains a canonical Hamiltoniafs, t)-path,
and, henceH P(A(n,n), s, t) does exist.
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Fig. 5. The possible canonical Hamiltonigs, ¢)-path of (a)A(3,3) and (b)A(4, 4) when forbidden conditions (F1) and (F2) are not satisfied, where
solid lines indicate the edges in the Hamiltoni@n t)-path.

(b)

(s,t)-path of A(3,3) and A(4,4), respectively. Proposition 4,P and HC* can be combined into a canonical
Now, assume that the lemma holds true whes k£ > 4. Hamiltonian(s, ¢)-path of A(k + 1,k + 1).
Then, there exists a canonical Hamiltonigsi, t*)-path P* Casel.2: (A(k — 1,k —1),s,t) does not satisfy con-

of A(k—1,k—1)if (A(k—1,k—1),s* ¢*) does not satisfy ditions (F1) and (F2). By induction hypothesis, there exists
conditions (F1) and (F2). Consider that= k+1. Letw and a canonical Hamiltoniars, t)-path P of A(k — 1,k — 1).
w’ be two triangular corners ak(k+ 1, k+ 1) such thate’ Then, there exist two edgesc P ande’ € HC' such that
is in vertical boundary. Let andt be two distinct vertices e ~ ¢’. By Proposition 4,P and HC’ can be combined into
of A(k+1,k+1) such that A(k + 1,k +1),s,t) does not a canonical Hamiltoniais, ¢)-path of A(k + 1,k + 1).
satisfy forbidden condition (F2). We then make a vertical cut Case2: s € A(k — 1,k — 1) and¢ € T'. Let p be a
on A(k+1,k+1) to partition it into two disjoint subgraphsvertex in A(k — 1,k — 1) such thatp = w* if s # w*,
A(k—1,k—1)andT’ = R(2,k) U{w'}, whereT" is a 2- and (p,w*) is a vertical boundary edge ak(k — 1,k —
rectangle attached by a 2-triangle. Thengc A(k—1,k—1) 1) otherwise. Then(A(k — 1,k — 1), s, p) does not satisfy
andw’ € T’. Letw™* be a triangular corner ak(k—1,k—1) conditions (F1) and (F2). Lef be a vertex inI” such that
different fromw. Consider the following three cases: g ~ p and (q,t) is not a horizontal edge df”. SinceT”’
Casel: s,t € A(k— 1,k — 1). By visiting all boundary is a 2-rectangle attached by a triangle, such a vejtean
edges ofl”, we can obtain a Hamiltonian cyclEC”’ of T7’. be easily found. Thenf/ P(T", ¢,t) does exist (see [18]).
There are two subcases: Let P’ be the canonical Hamiltoniafy, t)-path of 7”. By
Casel.l: (A(k—1,k—1),s,t) satisfies condition (F1) induction hypothesis, there exists a canonical Hamiltonian
or (F2). Sincg A(k+1, k+1), s, t) does not satisfy condition (s, p)-path P* of A(k — 1,k —1). Then,P* = P’ forms a
(F2), s » w or t = w. Suppose thatA(k — 1,k — 1),s,t) canonical Hamiltoniar{s, t)-path of A(k + 1,k + 1).
satisfies condition (F1). Therk — 1 = 3. By inspecting Case3: s,t € T'. Let 7" = R’ U {w'}, where R’ =
every case, we can construct a Hamilton{ant)-path P of R(2,k). Then,R’ is a 2-rectangle. Sinde\ (k+1, k+1), s, t)
A(k — 1,k — 1) — w* such that there is a vertical boundaryoes not satisfy condition (F2},~ w’ or t = w'. Suppose
edgee in P. Since there exists a boundary edgev) in HC’  thats ~ ¢ or (s, t) is not a horizontal and nonboundary edge
such that: ~ w* andv ~ w*, by Proposition 5HC" andw* in R'. In[18], there exists a canonical Hamiltonign ¢)-path
can be merged into a Hamiltonian cydieC* of T"U{w*}. P’ of R’. By Proposition 5 can be merged int®’ to form
Then, there exists an edgé in HC* such thate* = e. By a canonical Hamiltoniafs, ¢t)-path P* of 7’. By Lemma 6,
Proposition 4,P and HC* can be combined into a canonicalA(k — 1, k— 1) contains a canonical Hamiltonian cydigC.
Hamiltonian(s, t)-path of A(k+1, k+1). On the other hand, Then, there exist two edgesc HC ande* € P* such that
suppose thatA(k — 1,k — 1), s,t) satisfies condition (F2). e = e*. By Propsoition 4,P* and HC can be combined
Then,s ~ w*, t ~ w*, and there exists a boundary edgto a canonical Hamiltoniags, ¢)-path of A(k + 1,k +1).
(u,v) in HC' such thatu ~ w* andv ~ w*. By Proposition On the other hand, suppose thatt¢) is a horizontal and
5, HC' andw* can be combined into a Hamiltonian cyclenonboundary edge i®’. Without loss of generality, assume
HC* of T" U {w*}. By the proof of Lemma 7, there existsthat s, < t,. Letp1,ps € R andqi,q2 € A(k — 1,k —1)
a Hamiltonian(s, t)-path P of A(k — 1,k — 1) — w* such such that(s,p;) and (s,p2) are two vertical and boundary
that P visits all boundary edges of vertical and horizontatdges inR’, p; is to the upper ofs, p; ~ ¢q1, andps ~ ¢o.
boundaries, and® contains at least one boundary edge ofhen, we can easily construct two disjoify, p;)-path P,
skewed boundary i\ (k — 1,k — 1) — w*. Then, there exist and(p», t)-path P, of T’ so thatP; U P, visits all vertices of
two edgese € P ande* € HC* such thate =~ e¢*. By T’ and contains at least one boundary edge in each boundary
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(a) (b) Fig. 7. Parallelogram supergrid graph in which there existslamiltonian

(s, t)-path for (a) condition (F3), (b) condition (F4), and (c) condition (F5),
Fig. 6. The canonical Hamiltonian cycle of (&(3,3), (b) P(5,4), and where the solid lines indicate the longést t)-path.
(c) P(5,5), where arrow lines indicate the edges in the Hamiltonian cycle.

P2 = am-22 = am-12 = Qn-23 = An-1)3 —
of 7. We can see thatA(k — 1,k — 1),q1,¢2) does not ... — Un-2)] = Gn-1); = *** = Gn-2)m = A(n—1)m:
satisfy conditions (F1) and (F2). By induction hypothesisyvherem > 7 > 2, Po_1 = an2 — Gnz — -+ — Gpm,
there exists a canonical Hamiltonigig,, ¢2)-path P* of and letP, = as; — as;y — -+ — U(n-1)1 — an1. Let
A(k — 1,k —1). Then, P, = P* = P, forms a canonical HC* = P, = rev(P,) = P; = re\(P;) = --- = P, =
Hamiltonian(s, t)-path of A(k + 1,k + 1). revV(Pyi1) = -+ = P9 = rev(P,_1) = rev(P,), where

It immediately follows from the above cases thatk + ; is an odd anch —22> 7> 1. Then, HC* is a canonical
1,k + 1) contains a canonical Hamiltonigr, ¢)-path. Thus, Hamiltonian cycle ofP(m, n). For example, Fig. 6(c) depicts
the lemma holds true when= k+1. By induction,A(n,n) a canonical Hamiltonian cycle aP(5,5).

contains a canonical Hamiltonigm, ¢)-path forn > 3, and It immediately follows from the above cases that the
henceH P(A(n,n), s, t) does exist. This completes the proofemma holds true. ]
of the lemma. ] Now, we will investigate the Hamiltonian connectivity

of parallelogram supergrid graphs. We first observe three
forbidden conditions foff P(P(m,n), s, t). Then, we prove
that HP(P(m,n),s,t) does eX|st except the forbidden
conditions. We first consider 1-parallelogrdi(m, 1), s, t).

In this subsection, we will prove the Hamiltonicity andThe following condition impliesHP(P(m,1),s,t) does
Hamiltonian connectivity of parallelogram supergrid graphsiot exist.

In a parallelogram supergrid graph(m,n), we only con-

sider thatV (P(m,n)) = {v = (vz,vy) | 1 < vy, <nand (F3) P(m,n) is a 1-parallelogram, but or ¢ is not a corner
vy < vy < vy +m — 1}. The other type of parallelogramsyertex (see Fig. 7(a)).

can be verified by the same arguments. Note that there

are two horizontal and two skewed boundariediin, n). Since the possible path betwesnandt in P(m, 1) is
We first provide a constructive proof to show that anynique, the longests, t)-path in (P(m, 1),s,t) is unique
parallelogram supergrid grapR(m,n) with m > n > 2 and its length equals, — s, + 1. Note thats, < t,, i.e.,
contains a Hamiltonian cycle. We then prove ti#&{tm,n) s is to the left oft. Then, HP(P(m,1),s,t) does exist if
always contains a Hamiltonia, ¢)-path except three trivial (P(m,1),s,t) does not satisfy condition (F3).
conditions. The following lemma first appears in [15] and Next, we consider(P(m,2),s,t) with m > 2. By
shows the Hamiltonicity of parallelogram supergrid graphsaspection, the following condition implies thaP(m,2)
h contains no Hamiltoniais, ¢)-path.

B. The Hamiltonicity and Hamiltonian connectivity of par-
allelogram supergrid graphs

Lemma 9. Let P(m,n) be a parallelogram supergrid grap
with m > n > 2. Then, P(m,n) contains a canonical

Hamiltonian cycle (F4) P(m,n) is a 2-parallelogram withn > 2, and(s, t) is

a vertical edge of?(m,n) (see Fig. 7(b)).
Proof: By inspection, the lemma can be easily verified
when 3 > m. For example, Fig. 6(a) shows a canonical Consider that(R(m,2),s,t) satisfies condition (F4). In
Hamiltonian cycle ofP(3,3). In the following, assume that this case,s, = t,. Note that the left parallel corner is
m > n > 4. Note thatP(m, n) consists ofn columns anch  coordinated as(1,1). Without loss of generality, assume
rows of vertices. Let;; be the vertex located atth row and  that s, < ¢,. We can easily see that the longéstt)-path
Jj-th column of P(m,n), wheren >i>1andm > j > 1. L(P(m,2),s,t) is either2s, — 1 or 2(m — s, + 1) + 1.

Consider the following two cases: Then, L(P(m,2),s,t) = max{2s, — 1,2m — 2s, + 3}.
Casel: n is even. LetP, = a;; — a2 — --- = When(P(m,?2),s,t) does not satisfy condition (F4), it is not

A1(m—1) = @ms P, = @2 — a3 = =+ = Qym—1) = an  difficult to verify that H P(P(m, 2), s, t) does exist. Thus, we

forn >+ > 2, and letP,41 = a21 — a3 — --- — have the following lemma.

Un—1)1 — an1. Lt HC = P, = re\(2) = P; =

Lemma 10. Let P(m,2) be a2-parallelogram withm >

(UPy) = -0 = Py = 1evPy) = -0 = Py = 2, and let s and ¢ be its two distinct vertices with

rev(P,) = rev(P,,1), whereyis an odd anch —1 > 5 > 1. s < ty. Then, L(P(m,2),5,t) — max{2s, — 1,2m —
Then,HC is a canonical Hamiltonian cycle @(m,n). For ¢ ?:”} i (P’(m 2) S’ t)7 s7atisfies condition(Féi)' and
instance, Fig. 6(b) depicts a canonical Hamiltonian cycle %fs(”jp(m 2),5,1) = 72m’ i,e HP(P(m,2),s,1) does' exist

P(5,4). otherwise

Case 2: n is odd. In this casep > 5. Let P, = ’
ail — @2 = = Aym—1) — Gm, P = an — The third forbidden condition foff P(P(m,n), s,t) is as
W3 — = Gym—1) > G fOrm —3 > 2 > 2, follows:
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(F5) P(m,n) satisfiesm > n > 2, and(s,t) is an edge of e of As. Thus, there exist two edges € HC; ande; € P,
P(m,n) such thats ~ w andt ~ w for any parallel corner with e; =~ es. By Proposition 4, we can combing, and
w of P(m,n), wheres # w, t # w, anddeg(w) = 2 (see HC} into a canonical Hamiltoniafs, ¢)-path of P(3, 3).
Fig. 7(c)). Casel.3:s € A; andt € As. Let p be a vertex in
A such thatp = w, if s # wy, and (p,w;) is a vertical
When(P(m,n), s, t) satisfies condition (F5), we can com-boundary edge of\, otherwise. Lety € A, such thatg #
pute the longests, t)-path by removing the vertew from ¢, ¢ ~ p, and (¢,t) is not a skewed edge ah,. Then,
the canonical Hamiltonian cycle dP(m,n) constructed in (Aq, s, p) does not satisfy condition (F1), ads, contains a
Lemma 9. Thus, we have the following lemma. Hamiltonian(q, t)-path P, which visits the skewed edge of
A,. By Lemma 8,A; contains canonical Hamiltonigs, p)-
path P;. Then, P, = P, forms a canonical Hamiltonian
(s,t)-path of P(3,3).

Lemma 11. Let P(m,n) be a parallelogram supergrid
graph withm > n > 2, and lets and ¢ be its two

distinct vertices. If(P(m,n), s, t) satisfies condition(F5), Case2 m — n+ 1 — 4. In this case, we first make a

then L(P(m, n), 5,¢) = mn — 1, and the longests, ¢)-path oo/ oy onP(4, 3) to get two disjoint triangular supergrid
contains at least one boundary edge of each boundary In . :
P(m,n) whenn > 3. sgbgraphsal = A(3,3) and AQ_ = A(3,3), as de.p|cted in
’ Fig. 8(b). There are the following two subcases:

In the following, we consider thatP(m,n),s,t) does Case2.1:s,t € Ay or Ay. By symmetry, we can only
not satisfy conditions (F3)-(F5). Then, we will constructonsider thats,t € A;. By similar arguments in proving
a canonical Hamiltoniar(s,t)-path of P(m,n). We first Case 1.1, a canonical Hamiltoniésn t)-path of P(4,3) can
consider 3-parallelograr®(m, 3) as follows. be constructed.

Case2.2:s € Ay andt € Ay, Letp € Ay andg € A,
such thap # s, ¢ # t, (A1, s,p) and(Aa, g, t) do not satisfy
condition (F1), angh ~ ¢. Consider thap andq do exist. By
Lemma 8,A; andA, contain canonical Hamiltoniafs, p)-
path P, and (q,t)-path P», respectively. Thenp;, = P,
forms a canonical Hamiltoniafs, t)-path of P(4, 3). On the

Proof: Let w andw’ be two parallel corners aP(m,3). other hand, consider thator ¢ does not exist. By inspecting
Since(P(m,3), s, t) does not satisfy condition (F5), we getevery case for the locations efandt, only one case occurs
thats » w ort ~ w for w = w orw’. Consider the following about thatp and¢ do not exist. The location of andt is
cases: shown in Fig. 8(b). Then, a canonical Hamiltoniant)-path

Casel: m = n = 3. We first make a vertical cut on of P(4,3) can be easily constructed, as depicted in Fig. 8(b).
P(3,3) to obtain two disjoint triangular supergrid subgraphs Case3: m = n + 2 = 5. We first perform two vertical
A; = A(3,3) and A, = A(2,2), as depicted in Fig. 8(a). cuts on P(5,3) to partition it into three disjoint supergrid
Without loss of generality, assume thate A, andw’ € Ay, subgraphsA; = A(3,3), Ay = A(2,2), andR = R(2, 3),
Let w; andw, be respectively parallel corners &f; andA, as depicted in Fig. 8(c). Letr; and w, be respectively

Lemma 12. Let P(m,n) be a3-parallelogram withn = 3
and m > 3, and lets and ¢t be two distinct vertices of
P(m,n) with s, < t,. If (P(m,n),s,t) does not satisfy
condition(F5), then P(m, n) contains a canonical Hamilto-
nian (s, t)-path, and, hencell P(P(m, 3), s, t) does exist.

different fromw andw’. There are three subcases: parallel corners ofA; and A, different from w and w’'.
Casel.l: s,t € A;. By visiting all boundary edges There are four subcases:
of Ay, we obtain a Hamiltonian cyclé/ C;5 of A,. Suppose Case3.1:s,t € A; or A,. Consider thats,t € Aj.

that (A, s, t) does not satisfy condition (F1). By Lemma 8By visiting all boundary edges o = R(2,3), we get
A; contains a canonical Hamiltonidr, ¢t)-path P; (see Fig. a Hamiltonian cycleH Cr of R such that it contains four
5(a)). Then, there exist two edges € P, ande; € HC, flat paths of R. By visiting all boundary edges of\,, we
such thate; = ey. By Proposition 4,P, and HC; can be obtain a canonical Hamiltonian cyclH#Cy of A,. Then,
combined into a canonical Hamiltonigsn ¢)-path of P(3,3). there exist two edgesg € HCr andes € HC, such that
On the other hand, suppose ttiat; , s, t) satisfies condition er = e,. By Proposition 3HCr and HC, can be combined
(F1). Then,(s,t) is a nonboundary edge df;, ands ~ w into a Hamiltonian cycleHC* of R U Ay such thatiH C*
ort =~ w (see Fig. 4(a)). By inspecting every case, we carontains one flat face dt that is placed to facé;. Suppose
construct a Hamiltoniafs, t)-path P; of Ay —w, such that that (A1, s,t) does not satisfy condition (F1). By Lemma 8,
it contains a vertical boundary edge of A;. Let w* be A, contains a canonical Hamiltoniafs, ¢)-path P;. Then,
the vertex of Ay — {w’,ws}. Then, HCy contains vertical there exist two edges; € P, ande* € HC* such that
boundary edgéw*, ws) of Ay such thatvy; ~ w* andw; ~ ey = e*. By Proposition 4,7, and HC* can be combined
wy. By Proposition 5, can be merged inté/C; to form into a canonical Hamiltoniats, t)-path of P(m, n). On the
a Hamiltonian cycleH C5 of A, U {w;}. Then, there exists other hand, suppose thai\, s, t) satisfies condition (F1).
an edgee; € HC5 such thate; =~ es. By Proposition 4, Then, (s,t) is a nonboundary edge ak,, ands ~ w or
P and HC3 can be combined into a canonical Hamiltoniam ~ w (see Fig. 4(a)). By inspecting every case, we can
(s,t)-path of P(3,3). Fig. 8(a) depicts such a constructe@¢onstruct a Hamiltoniaxs, t)-path P;* of A; —w; such that
Hamiltonian (s, t)-path. it contains a vertical boundary edge of A;. Let w* be
Casel.2: s,t € Ay. By Lemma 6,A; contains a the down-left corner ofR and let (w*,p) be the vertical
canonical Hamiltonian cyclé/C,. Since(P(3,3), s,t) does edge inR. Then,w; ~ w* andw; ~ p. By Proposition 5,
not satisfy condition (F5)s »~ w’ ort « w’. Thus,w’ = s or w; can be merged intd/C* to form a Hamiltonian cycle
t. Sinces, < t,, w' = t. Then,A, contains a Hamiltonian HC’ of Ao U RU {w,}. By Lemma 7,A; — {w;} contains
(s, t)-path P, such that it contains the vertical boundary edga canonical Hamiltoniar(s, ¢)-path P;. Then, there exist
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two edgese; € Py and ¢/ € HC' such thate] = €’. By A:A(3’3 I

Proposition 4,P;* and HC’ can be combined into a canonical
Hamiltonian(s, t)-path of P(5,3). The subcase of,t € A,
can be proved similarly.

Case 3.2: s,t € R. By Lemma 6,A; contains a
canonical Hamiltonian cyclé/C,. By visiting all boundary
edges ofA,, A, has a Hamiltonian cyclé/ Cy which con-
tains all boundary edges. Suppose that) is a horizontal
and nonboundary edge at. Then, HP(R,s,t) does not
exist. We then perform a horizontal cut dhto obtain two
disjoint subgraph®?; and R», as illustrated in Fig. 8(c). By
visiting all boundary edges aR; except(s,t), we obtain a
Hamiltonian(s, t)-path Pr of R. For every vertew € Ry, _ o
v is incident to one edge af/C, or HC,. By Proposition (Fa'l‘f’-rf-: ?i,iogsgf?t:gdc(?in;?; ';';?;'f'ité’:'gl rf&;tﬁ):;h(gii(& 3):fo
5, the vertices of?; can be merged inté/Cy or HC>. Let  angs € Ayt € Ao, () m = 5, s,¢ € R = R(2,3), and (s, ¢) is
the merged cycles of, into HC, and HC, be HCY and a horizontal and nonboundary edge &f and (d)m > 6, ands € Aq,

HC! r ivelv. Then. there exist four HC! t € A, where bold dashed lines represent the cut operations (en, 3),
C5, respectively en, there exist fou edgﬁse C1 solid lines indicate the constructed Hamiltoniant)-path, and® represents

ey € HC3, _a_nde’{, e € Pr such thate} ~ e7 and e% ~ 6_3- the destruction of an edge while constructing the Hamiltorfiart)-path.
By Proposition 4 Pr, HC}, and HCY, can be combined into

a canonical Hamiltoniafs, t)-path of P(5, 3). For example,

Fig. 8(c) shows a such canonical Hamiltonignt)-path of _ _ ]

P(5,3). On the other hand, suppose that ¢ or (s, t) isnot ~_ Cased:m > n+3 = 6. We first make two vertical cuts on

a horizontal and nonboundary edge /f Then, R contains P(m, 3) to partition it into three disjoint supergrid subgraphs,

a canonical Hamiltoniarfs, ¢)-path P constructed in [18]. 21 = A(3,3), B = R(m — 3,3), and Ay = A(3,3), as

Thus, there exist four edges € HCy, ex € HCs, and depicted in Fig. 8(d). By Lemma % is Hamiltonian con-

e*, e € P such thate; ~ e} andes ~ e5. By Proposition nected. Then, a canonical Hamiltonign¢)-path of P(m, 3)

4, Pr, HC,, and HC, can be combined into a canonicaf@n be constructed by similar arguments in proving Case 3.

Hamiltonian (s, ¢)-path of P(5,3). For instance, Fig. 8(d) depicts a canonical Hamiltor{iar)-
Case 3.3: s and ¢ are in the different partitioned P&th of P(m,3) whens € A, andi € Ao, _

subgraphs. Note that, < ¢,. We have the following We have considered any case to construct a canonical

subcases: Hamiltonian (s, t)-path of P(m,3) for m > 3. This com-

Case3.3.1: 6 € A, andt € R) or (s € R and Pletes the proof of the lemma. u

t € A,). Consider that € A; andt € R. Letp be a vertex By similar arguments in proving Lemma 12, we can

in Ay such thatp = wy if s # wy, and(p,w,) is a vertical Prove the Hamiltonian connectivity of parallelogram super-

boundary edge of\; otherwise. Lety € R such thatg # ¢, 9rid graphP(m,n) with m > n > 4 as follows.

g ~ p, and(g,?) is not a horizontal nonboundary edge of emma 13. Let P(m,n) be a parallelogram supergrid
R. Then, (Ay,s,p) does not satisfy condition (F1), amd graph withm > n > 4, and lets and ¢ be two distinct
contains a ca.ng_nlcal Hamiltonidp, t)-path Pr constructed | artices ofP(m, n) with s, < t,. If (P(m,n), s,t) does not
in [18]. By visiting all boundary edges of\;, we get a gaiisfy condition(F5), then P(m,n) contains a canonical

Hamiltonian cycleH Cs of A, which contains all boundary Hamiltonian(s, ¢)-path, and, hencef P(P(m, n), s, t) does
edges. Then, there exist two edggse Pr andez € HCy  gyist.

such thatep = e,. By Proposition 4,Pr and HCs can be

combined into a Hamiltoniaxy, t)-path P;, of RU A,. By Proof: We will prove this lemma by constructing a
Lemma 8,A; contains a canonical Hamiltonig, p)-path ~ canonical Hamiltoniarts, t)-path of P(m, n). Letw andw’
Py. Then, P, = Py, forms a canonical Hamiltoniafs, ¢)- be the two parallel corners &(m,n). Since(P(m,n), s, t)
path of P(5,3). The subcase of € R andt € A, can be does not satisfy condition (F5,~ w or t ~ w for & = w

A=A(3,3)

verified by the same arguments. orw'. Sincen > 4, n—1 > 3. The considered cases are the
Case3.3.2:s € A; andt € A,. Let p be a same as Lemma 12 and are discussed as follows:
vertex in A, such thatp = wy if s # wy, and (p,w:) Casel: m = n. We first make a vertical cut oR(m,n)

is a vertical boundary edge ak; otherwise. Letq be a to get two disjoint triangular supergrid subgraphs =
vertex in A, such thatg = ws if t # ws, and (¢, wy) is A(n,n) and Ay = A(n — 1,n — 1), as depicted in Fig.

a vertical boundary edge ok, otherwise. Letr;,7, € R 9(a). Without loss of generality, assume thatce A; and
such thatr; ~ p, 7, ~ ¢, and (r1,72) is not a horizontal w’ € Az. Letw; andw, be respectively corners ak; and
nonboundary edge oR. By inspecting any case, ¢, and A; different fromw andw’. There are three subcases::
r1,m2 do exist. Then(Aq,s,p) does not satisfy condition Casel.1l: s,t € Ay or As. By Lemma 6,A; and
(F1), HP(A2, q,t) does exist, andl P(R, r1,ry) does exist. Ap contain canonical Hamiltonian cycles. Then, a canonical
By Lemma 8,A; contains a canonical Hamiltonias, p)- Hamiltonian (s, t)-path of P(m,n) can be constructed by
path P;. Let P be the canonical Hamiltoniafr;, r»)-path similar arguments in proving Case 1.1 of Lemma 12.

of R constructed in [18], and leP, be the Hamiltonian Casel.2: s € Ay andt € As. Let ¢ be a vertex in
(¢,t)-path of As. Then, P, = Pr = P, forms a canonical A, such thaty = we if ¢ # we, and (¢, w2) is a vertical
Hamiltonian(s, t)-path of P(5, 3). boundary edge ofA, otherwise. Then(As,¢,t) does not
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Fig. 10. The canonical Hamiltonian cycle of (&) (8,4), (b) 71(9,5),
(c) T»(11,4), andT>(13,5), where arrow lines indicate the edges in the
Hamiltonian cycle.

Fig. 9. The constructed canonical Hamiltoniés ¢)-path of P(m,n)
withm > n >4 for (@ m =n,ands € Ay, t € Az, (b)m=n+1,
anQS,t €A1, (c)m=n+2,s,te€ R(2,n), and HP(R, s,t) does not
exist, and gd)m >n+3, am;sqe A;, t ?dAIQ' Wh%re boldhdashed “nez It follows from the above cases that a canonical Hamil-
represent the cut operations &t{m, n), solid lines indicate the constructe . _ .
Hamiltonian (s, t)-path, and® represents the destruction of an edge WhiléOnlan (S’t) path of P(m,n) with m > n > 4 f:an be
constructing a Hamiltoniars, t)-path. constructed, and, henc& P(P(m,n), s,t) does exist. W
It immediately follows from Lemmas 12 and 13 that we

conclude the following theorem.

satisfy conditions (F1) and (F2). Let € A; such that Theorem 14. Let P(m,n) be a parallelogram supergrid
p # s, p ~ g, and (Ay,s,p) does not satisfy condition graph withm > n > 1, and lets and ¢t be two dis-
(F2). Sincen > 4, p andq do exist. By Lemma 8A; and tinct vertices ofP(m,n). If (P(m,n),s,t) does not satisfy
A, contain canonical Hamiltonia(s, p)-path P, and(q,¢)- conditions (F3){F5), then P(m,n) contains a canonical
path P,, respectively. ThenP, = P, forms a canonical Hamiltonian(s,t)-path, and, hencel P(P(m,n), s, t) does
Hamiltonian(s, t)-path of P(m,n). Fig. 9(a) depicts a such exist.

canonical Hamiltoniaris, t)-path.

Case2: m = n+1. In this case, we first perform a vertical IV. THE HAMILTONICITY AND HAMILTONIAN
cut on P(m,n) to partition it into two disjoint triangular ~ CONNECTIVITY OF TRAPEZOID SUPERGRID GRAPHS
supergrid subgrapha; = A(n,n) and A; = A(n,n), @ |n this section, we will prove the Hamiltonicity and

depicted in Fig. 9(b). By similar arguments in proving Casgamiltonian connectivity (except two trivial conditions) of
1, we can construct a canonical Hamiltonignt)-path of trapezoid supergrid graphs. There are two types of trapezoid
P(m,n). For instance, Fig. 9(b) shows a constructed canogupergrid graphd’y (m,n) and T5(m,n). By similar argu-

ical Hamiltonian(s, t)-path whens,t € Ay and (A, s,t)  ments in proving Lemma 9, we can verify the Hamiltonicity

does not satisfy condition (F2). of trapezoid supergrid graphs as follows.
Case3: m = n + 2. We first make two vertical cuts . _
on P(m,n) to partition it into three disjoint supergrid -émma 15. Let T'(m,n) be a trapezoid supergrid graph.

subgraphs, A, = A(n,n), R = R(2,n), and Ay — Then,T'(m,n) contains a canonical Hamiltonian cycle.
A(n - 1,n — 1), as depicted in Fig. 9(c). There are the  proof: ConsiderT(m,n) = Ty(m,n), i.e., T(m,n) is
following three subcases: a np,-trapezoid. By inspection, the lemma can be easily

Case3.1:s,t € Ay or Ay. By Lemma 6,A; andA;  verified when3 > n. In the following, assume that > 4. By
contain canonical Hamiltonian cycles. By similar argumentgefinition of Ty (m,n), m > n + 1 > 5. Note thatT; (m, n)
in proving Case 3.1 of Lemma 12, a canonical Hamiltoniagonsists ofm columns andn rows of vertices. Let;; be
(s,t)-path of P(m,n) can be constructed. the vertex located atth row andj-th column of 7 (m, n),

Case3.2: s,t € R. By similar arguments in proving wherel < i < n and1 < j < m — i + 1. Consider the
Case 3.2 of Lemma 12, we can construct a canonical Hanfidlowing two cases:
tonian (s, t)-path of P(m,n). For instance, Fig. 9(c) depicts Casel: n is even. LetP, = a1 — a2 — - —
a constructed canonical Hamiltonigs, t)-path of P(m,n)  aj(n_pn) — @igment1), P = @2 — a3 — - —
when HP(R, s,t) does not exist. Uu(m-nti—1) — Gu(m-nts TOr n > ¢ > 2, and let

Case3.3: s and ¢t are not in the same partitionedP,,;; = as1 — as1 — -~ — ap_1y1 — an1. Let
subgraph. This subcase can be verified by similar argumefe’ = P, = rev(P;) = P3 = reV(Py) = --- = P, =
in proving Case 3.3 of Lemma 12. re(P11) = -+ = Po_1 = rev(P,) = rev(P,41),

Cased: m > n+ 3. We first perform two vertical cuts on where 3 is an odd andn — 1 > 5 > 1. Then, HC is a
P(m,n) to partition it into two disjoint supergrid subgraphscanonical Hamiltonian cycle of; (m, n). For example, Fig.
Ay = A(n,n), R = R(m —n,n), and A = A(n,n), as 10(a) depicts a canonical Hamiltonian cycleTgf(8, 4).
depicted in Fig. 9(d). Then, a canonical Hamiltoniant)- Case 2: n is odd. In this casepn > 5. Let P, =
path of P(m,n) can be constructed by similar arguments;; — a2 — -+ = Gim-n) = Gi(m-nt1), £ =
in proving Case 3.3 of Lemma 12. For instance, Fig. 9(d)> — a3 — -+ = Gm_nti—1) — Q(m—n+s,) fOF
shows a canonical Hamiltonig®, t)-path of P(m,n) when n — 3 > + > 2, Py 2 = Gpu-22 — Gn-1)2 —
s e Ay andt € As. (n—2)3 — Q(n—1)3 — " — Qp—2); — On—1)j —
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h proveT;(m,n) to be Hamiltonian connected as follows.
P ESRES AN _ Lemma 17. Let T3 (m,n) be a trapezoid supergrid graph
Lo e with m —1 > n > 2, and lets andt be two distinct vertices

of Ty (m,n). If (T1(m,n),s,t) does not satisfy conditions
(F6)(F7), thenTy(m,n) contains a canonical Hamiltonian
(s, t)-path, and, henceld P(Ty(m,n), s,t) does exist.

t
trapezoid —---=-=mmmmmmmmmmmmmoeeed

® ®) Proof: Whenn = 2, i.e., Ty (m,n) is a 2, -trapezoid,
HP(Ry,s,t) does exist [18] and hencH P(Ty(m,n), s,t)
Fig. 11. Trapezoid supergrid graph in which there exists nmildanian ~ can be easily constructed. In the following, assume that
(_s,t)—_pat_h for (a) condition (F6), and (b) condition (F7), where the solicy By definition of T} (m,n), m >n+1 > 4 and, hence,
lines incicate the longegts, )-path. m —n+1 > 2. We first make a vertical cut off; (m,n)
to obtain two disjoint subgraph®; = R(m —n+1,n) and
Ay = A(n —1,n — 1), as shown in Fig. 12(a). Depending
© T Gp—2)(m-2) — Om-1)(m-2)m — G(n-1)(m-1), 0N the locations ok andt, we consider the following three
wherem —2 > 7> 2, 1 = Gp2 — Gn3 —> *++ = Gnm, CASES:

and let P, = as1 — as1i — - = Qu-n1 — Aol Casel: s,t € Ry. In this case, we consider whetha&g
Let HC* = P1 = rev(l») = P; = re\(Py) = --- = s a 2-rectangle as follows:
Py = reV(Pyy1) = -+ = Pya = revV(P,—1) = rev(P,), Casel.l:m —n + 1 = 2. In this subcaseR; is

where j is an odd andr — 2 > j5 > 1. Then, HC™ is @ a 2-rectangle. Suppose thét,t) is not a horizontal and
canonical Hamiltonian cycle dfy (m, n). For example, Fig. nonboundary edge aR;. In [18], R, contains a canonical
10(b) shows a canonical Hamiltonian cycleBf(9, 5). Hamiltonian (s, t)-path P,. By Lemma 6,A; contains a

We have proved the lemma holds true fb(m,n) = canonical Hamiltonian cycl€. Then, there exist two edges
Ti(m,n). For the type of trapezoid supergrid graphs, ¢ P, ande, € C; such thate; ~ ey. By Proposition
Ty(m,n), we can verify their Hamiltonicity by the same4, P, and C; can be merged into a Hamiltoniafs, )-
construction. For instance, Fig. 10(c) and Fig. 10(d) depighth of 7)(m,n). On the other hand, suppose thatt)
the canonical Hamiltonian cycles @t(11,4) and75(13,5), is a horizontal and nonboundary edge Bf. Then, R;
respectively. Thus, the lemma holds true. B contains no Hamiltoniaris, t)-path. We next preform two

Next, we will study the Hamiltonian connectivity horizontal cuts onR; to get three disjoint rectangular su-
of trapezoid supergrid graphs. Lefl'(m,n) be a pergrid subgraphst,;, Ri» and R;3 so thatR;, contains
trapezoid supergrid graph, whefE(m,n) = Ti(m,n) only s andt, as depicted in Fig. 12(b). Let;,q; € Ri1,
or T'(m,n) = Ty(m,n). We first observe the conditions sop,,¢o € Ry3, 71,72 € A; such that(s,p;) and (s,p2)
that H P(T'(m,n),s,t) does not exist. For &r,-trapezoid are vertical edges(, ;) and (¢, ¢.) are vertical edges, and
or 2p,-trapezoid, the following condition implies that(q;,r;) and (g,72) are horizontal edges iff’} (m,n), as
HP(T(m,2),s,t) does not exist. shown in Fig. 12(b). We can easily construct a Hamiltonian

(p1,q1)-path P, of Ry; and a Hamiltonian(gz, p2)-path
(F6)T'(m,n)is a2, -trapezoid oRr,-trapezoid, ands, t) is P, of Ry3 such thatP, (resp., P,) visits all boundary
a vertical and nonboundary edge®fm, n) (see Fig. 11(a)). edges of Ry, (resp. Ry3) except(pi,q1) (resp., (ga,p2))
if [V(Ri1)| > 2 (resp.,|V(Ri3)| > 2). We can see that

For a trapezoid cornew of T'(m,n), we can easily (A;,r,r) does not satisfy conditions (F1) and (F2). By

see thatH P(T'(m,n),s,t) does not exist whes,t # w, Lemma8,A; contains a canonical Hamiltonidm , r»)-path

s ~w, andt ~ w. P;. Then,s = P, = P; = P, = t forms a canonical
Hamiltonian(s, t)-path of T} (m, n).

(F7) T'(m,n) is a trapezoid supergrid graph far> 2, w is Casel.2:m —n+1 > 2. By Lemma 2,R; contains

a trapezoid corner of'(m,n), s,t # w, s ~ w, andt ~ w a canonical Hamiltoniaris, t)-path P;. By Lemma 6,A;

(see Fig. 11(b)). contains a canonical Hamiltonian cyalg. Then, there exist

two edgese; € P, andes € Cp such thate; = es. By

By similar arguments in proving Lemma 7, the followingProposition 4,P, and C; can be combined into a canonical
lemma can be verified. Hamiltonian (s, t)-path of 77 (m, n).

Case2: s,t € A;. Let w be the trapezoid corner of
Ty(m,n), and letw’ be a trapezoid corner ak; different
from w. Since (T1(m,n), s,t) does not satisfy conditions
(F6)—(F7), we get that = w or t =~ w. Suppose that
(A4, s,t) satisfies condition (F1) or (F2). Lek] = A; —
{w'} and letR] = R; U {w'}. By Lemma 7,A] contains
a canonical Hamiltoniar{s, ¢)-path P/. By Lemma 1,R;
contains a canonical Hamiltonian cyelg. Then, there exists
an edge(u,v) in C; such thatu ~ w’ andv ~ w'. By

In the following, we will assume thdt'(m,n), s,t) does Proposition 5, andw’ can be merged into a Hamiltonian
not satisfy conditions (F6) and (F7). Then, we will construatycle C| of R}. We can easily find two edges, € C]

a canonical Hamiltoniar(s, t)-path of T'(m,n). We first ande; € P such thate; = e;. By Proposition 4,P] and

Lemma 16. Let T'(m,n) be a trapezoid supergrid graph
with n > 2, and lets and ¢ be two distinct vertices of
T'(m,n). Then, the following statements hold true:

(1) if (T(m,n),s,t) satisfies condition (F6), then
L(Ty(m,n),s,t) = max{2(m — s, + 1) — 1,2s,}
and L(T»(m,n), s,t) = max{2(m — s, + 1) — 1,2s, + 1}.
(2) if (T(m,n),s,t) satisfies condition (F7), then
L(T(m,n),s,t) = |V(T(m,n))| — 1.
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o on the locations o& andt, there are three cases:

ol Casel: s,t € As. Let wy be a triangular corner of\,

Rigrigl, different fromw. Suppose thatA., s, t) satisfies condition

n n R.;;ia;i,g,,iﬁ\ (F1) or (F2). SincéT3(m,n), s,t) does not satisfy condition
Riebtd o, (F7), we get that ~ w; andt ~ wy. Let A, = Ay — {wy},
T and letT] = Ty(m —n + 1,n) U {w;}. By Lemma 7,A),

(b) contains a canonical Hamiltonign, ¢)-path P’. By Lemma

15,7y (m—n+1,n) contains a canonical Hamiltonian cycle

,,’"—2_””., m (4. Then, there exists an edde,v) in C; such thatu ~

wy; andv ~ wy. By Proposition 5,w; can be combined
into C; to form a canonical Hamiltonian cycle’] of T7.
Then, there exist two edge$ € P’ ande; € Cf such that
e’ = e1. By Proposition 4P’ andC{ can be combined into a
canonical Hamiltoniaris, ¢)-path of T»(m, n). On the other
hand, suppose théaf\,, s, t) does not satisfy conditions (F1)
and (F2). By Lemma 8)\, contains a canonical Hamiltonian
;ig- 12. (a{ A Vg;ti;:aAl cut Zﬁ(ﬂ(mi n) tO1%1et(t§1)ist{zgntr]§ﬁgg;?;h§1tgn (s,t)-path P. By Lemma 15,73 (m — n + 1,n) contains a
REWfLor (Zt) i’s;”ll horizantal ard noﬁt?oundéry edge Bf, (¢) a vertical Canonical Hamiltonian cycl€'y. Then, there exist two edges
cut onTh (m, n) to obtain disjoint subgraphg; (m —n +1,n) andA, = e € P ande; € C such thate = e;. By Proposition 4,P

A(n —1,n — 1), and (d) the Hamiltoniar(s, t)-path of Tz(m,n) for and(C,; can be combined into a canonical Hamilton{ant)-
s,t € T1(m—n+1,n), where bold dashed lines indicate the cut operatlonaath of T. (m n)
2 ) .

onTi(m,n) or T>(m,n), solid lines indicate the constructed Hamiltonian
(s,t)-path, and® represents the destruction of an edge while constructing Case2: s € As andt € Ty(m —n + 1,n). Letp € A,

the Hamiltonian(s, )-path. andq € Ti(m — n + 1,n) such thatHP(A,,s,p) and
HP(Tiy(m—n+1,n),q,t) do exist, ang ~ q. The vertices
p and ¢ can be easy to compute. Lét and Q be the
C4 can be combined into a canonical Hamiltoniént)- constructed canonical Hamiltonidn, p)-path and Hamilto-
path of 7} (m, n). On the other hand, suppose thiat,, s,t) nian (¢, t)-path of Ay and 71 (m — n + 1,n), respectively.
does not satisfy conditions (F1) and (F2). By Lemma\g, Then, P = @ forms a canonical Hamiltonia(s, t)-path of
contains a canonical Hamiltonign, t)-path forn — 1 > 3. T(m,n).
Whenn — 1 = 2, it is easy to construct a canonical Case 3: s,t € Ti(m — n + 1,n). By Lemma 17,
Hamiltonian(s, t)-path of A;. Thus,A; contains a canonical 71 (m—n+1,n) contains a canonical Hamiltonids, t)-path
Hamiltonian (s, t)-path P;. By Lemma 1,R; contains a P. By Lemma 6,A, contains a canonical Hamiltonian cycle
canonical Hamiltonian cycl€’;. Then, there exist two edgesC. Then, there exist two edgesc P ande; € C such that
e; € P; ande, € C; such thate; = e,. By Proposition 4, e =~ e;. By Proposition 4,F andC can be combined into a
P, and C, can be combined into a canonical Hamiltoniaganonical Hamiltoniarts, ¢)-path of 7% (m, n). For instance,
(s,t)-path of Ty (m,n). Fig. 12(d) depicts the construction of such a canonical
Case3: s € R; andt € A;. In this case, we first find two Hamiltonian (s, ¢)-path.
verticesp € Ry andq € A; to satisfy thatH P(Ry, s, p) It follows from the above cases that a canonical Hamilto-
and HP(Ay,q,t) do exist, andp ~ ¢. The verticesp and nian (s, t)-path of 75 (m,n) is constructed. Thus, the lemma
q can be easily computed. Le®, = HP(Ry,s,p) and holds true. |
Q1 = HP(A4,q,t) be canonical Hamiltoniaris, p)-path It immediately follows from Lemmas 17-18 that the
and (¢, t)-path of R; and A, respectively. ThenP; = @, following theorem holds true.
forms a canonica] Hamiltoniafs, t)-path of T} (m, n). Theorem 19. Let T
Wg haye considered any case to cpnstruct a Canomﬁﬁ{h n > 2, and let s and t be two distinct vertices
Hamiltonian (s, ¢)-path of Ty (m,n). This completes the T(m,n), where T(m,n) — Ti(m,n) or To(m,n). If

proof of the lemma. " m,n),s,t) does not satisfy conditiond=6)«(F7), then
Next, we consider the other type of trapezoid supergrgggﬁ%;l))éo’mains a canonical Hamiltoniahs,t)—path,, and,

graph T (m, n) as follows. hence,H P(T(m,n), s,t) does exist.

(m,n) be a trapezoid supergrid graph

Lemma 18. Let T»(m,n) be a trapezoid supergrid graph
with & > n > 2, and lets andt be two distinct vertices V. CONCLUDING REMARKS
of To(m,n). If (Tx(m,n),s,t) does not satisfy conditions
(F6)(F7), thenT»(m,n) contains a canonical Hamiltonian
(s,t)-path, and, hencell P(Tx(m,n), s, t) does exist.

In this paper, we provide constructive proofs to show that
some shaped supergrid graphs, including triangular, paral-
lelogram, and trapezoid, are Hamiltonian and Hamiltonian

Proof: By inspection, HP(T>(m,2),s,t) does exist connected except few trivial conditions. These constructive
when (Tz(m,n), s, t) does not satisfy condition (F6). In theproofs give linear time algorithms to construct the longest
following, assume that > 3. We first perform a vertical paths or Hamiltonian paths between any two distinct vertices
cut onTs(m,n) to partition it into two disjoint subgraphsof shaped supergrid graphs. A supergrid graph is called
Ay =A(n—1,n—1) andTi(m —n+1,n), as depicted in alphabet if its boundaries form an alphabet. There are 26
Fig. 12(c). Letw andw’ be the trapezoid corners ®%(m,n) types of alphabet supergrid graphs. We can see from the
such thatw € Ay andw’ € T1(m —n + 1,n). Depending structures of alphabet supergrid graphs that they can be
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decomposed into triangular, parallelogram, and trapezagix)
swpergrid subgraphs. In the future, we would like to apply
our results to study the Hamiltonian connectivity of alphabet
supergrid graphs. [22]
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