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Abstract—Some parallel application such as image or signal
processing is originally designated on cycle architecture owing
to the simple structure and low degree. Thus it is important
to have fault tolerant cyclic embedding in a host network. In
this paper, we investigate the faulty embedding of circles onto
a k-ary n-cube, denoted as Qk

n with odd k ≥ 3 and n ≥ 3
which is not bipartite. The faulty k-ary n-cube is considered
that each vertex is incident with at least two healthy edges. We
prove that there exist fault free cycles of every length varying
from k to kn in Qk

n even if Qk
n contains up to 4n − 5 faulty

edges.

Index Terms—Interconnection network, conditional edge
fault, k-ary n-cubes, cyclic embedding.

I. INTRODUCTION

IN recent decades, Very Large Scale Integration (VLSI)
systems which have brought the parallel and distributed

systems of thousands of processors to reality, have become
widely used in data centers. There are quite a few inter-
connection networks proposed to serve as the underlying
topologies of large scale multiprocessor systems [1], [2]. The
topology is one of the crucial factors for an interconnection
network because it determines the performance of the net-
work or the distributed systems. So such a network usually
has a regular degree. For example, every node is incident
with the same number of links.

While numerous topologies have been proposed over the
years, almost many networks have actually been constructed
using topologies derived from a main family which is named
torus or k-ary n-cubes [3], [4]. Networks such as torus or
mesh, and k-ary n-cubes (see Figure 1), pack N = kn

nodes in a regular n-dimensional grid with k nodes in each
dimension and edges between nearest neighbors. They span
a range of networks from rings (n = 1) to binary n-cubes
(k = 2), which is also known as hyper cubes. A network [5],
[6], [7], [8] based on k-ary n-cubes is such that each node is
incident with 2n edges, and consequently k can be increased,
in order to incorporate more processors, while keeping n
constant.

Another important advantage of increased distributed sys-
tems is a network’s ability to handle faults, such as failed
vertices or edges. In the interconnection network, fault edges
are inevitable. One measure of a network’s ability to handle
faults is the number of edge disjoint or node disjoint paths
allowed by the routing function between each source destina-
tion pair or among cycles. Studying faulty k-ary n-cubes has
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Fig. 1. The torus and k-ary n-cubes

a rich history that spans many decades. Ashir and Stewart
[3] studied the problem of embedding cycles in healthy k-ary
n-cubes. Stewart and Xiang [9] showed that healthy k-ary n-
cubes are edge-bipancyclic for arbitrary k ≥ 3 and n ≥ 2.
They also showed that the healthy k-ary n-cubes with odd
k ≥ 3 contains a cycle of every possible length between
k − 1 and kn. In [4] Ashir and Stewart studied the problem
of Hamiltonian cycle embedding in a k-ary n-cubes with
a possibility of edge failures. Yang et al. [10] studied the
problem of Hamiltonian path and linear array embedding
in faulty k-ary n-cubes with odd k ≥ 3. They proved that
for two arbitrary distinct healthy vertices of a faulty k-ary
n-cubes, there exist a fault free Hamiltonian path connecting
these two vertices if the number of faulty vertices or edges
is at most 2n − 3. For even k ≥ 4, Stewart and Xiang [11]
considered the problem of embedding long paths in the k-ary
n-cubes with faulty vertices and edges.

Cheng and Hao [12] considered an n-dimensional hyper-
cube denoted by Qn with faulty edges fe ≤ 3n − 8 and
n ≥ 5. The hypercube is under the condition that each vertex
is incident to at least two fault free edges, and every 4-
cycle does not have any pair of non-adjacent vertices whose
degrees are both two after removing the faulty edges. They
proved that Qn has a fault free cycle of every even length
from 4 to 2n. In [13] Dong et al. consider the problem
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of embedding cycles and paths into faulty 3-ary n-cubes.
They show that when the faulty vertices and edges satisfy
fv + fe ≤ 2n − 2, there exists a cycle of any length from
3 to |V (Q3

n − fv − fe)|. Yang et al. [14] investigated the
problem of embedding cycles of various lengths passing
through prescribed paths in the k-ary n-cubes. They proved
every path with length h (1 ≤ h ≤ 2n−1) in the k-ary n-cube
lying on cycles of every length from h+(k−1)(n−1)/2+k
to kn inclusive for n ≥ 2 and k ≥ 5 with k odd. In another
work [15], Zhang et al. considered the problem of a fault-
free hamiltonian cycle passing through prescribed edges in
a k-ary n-cube Qk

n with some faulty edges. For any n ≥ 2
and k ≥ 3, let F ⊂ E(Qk

n) and P ⊂ E(Qk
n) \ F with

|P | ≤ 2n− 2 and |F | ≤ 2n− (|P |+ 2). Then there exists a
hamiltonian cycle passing through all edges of P in Qk

n \F
if and only if the subgraph induced by P consists of pairwise
vertex-disjoint paths.

In recent years, the Hamiltonian cycle, path embedding or
extra connectivity of the k-ary n-cubes have been researched
in many literatures (see, for example, [16], [17], [18]). Under
similar conditions, let Qk

n be a non-bipartite k-ary n-cubes
for k ≥ 3 and n ≥ 3 with k odd, in which each vertex is
incident with at least two healthy edges. In this paper we will
prove that Qk

n with at most 4n−5 faulty edges has fault free
cycles of every length between k and kn so that we call F
as a conditional faulty edges set.

Ashir and Stewart [4] showed that, with only edge faults
and under the condition that every node is incident with at
least two fault-free edges, a wounded k-ary n-cubes still has
a Hamiltonian circuit, provided that there are no more than
4n− 5 faulty edges.

Theorem 1.1: (see [4]) Let k ≥ 4 and n ≥ 2, or let k = 3
and n ≥ 3. If Qk

n has at most 4n−5 faulty edges, and every
vertex is incident with at least two healthy edges, then Qk

n

has a Hamiltonian circuit.

II. DEFINITION AND TERMINOLOGY

Generally, an interconnection network is represented by
an undirected simple graph G. Given a graph G, we denote
it as G = (V,E) where V = V (G) is the vertex set and
E = E(G) is the edge set respectively. We say that a graph
is regular if the degree of every vertex v ∈ V (G) is equal
which can be expressed as dG(v) = k. A graph G is bipartite
if V (G) can be divided into two partite sets such that every
edge has two end vertices indifferent partite sets.

A path denoted by < v1, v2, · · · , vk > is a sequence of
adjacent vertices where all the vertices are distinct but with
a possibility of v1 = vk. We say that a path is a Hamiltonian
path if it traverses all the vertices of G exactly once. A
cycle is a path that begins and ends with the same vertex. A
Hamiltonian cycle is a cycle which includes all the vertices
of G. A graph G is Hamiltonian connected if, for any two
arbitrary vertices u and v in G, there is a Hamiltonian path
connecting u and v. A graph G is pan connected if, for any
two arbitrary vertices x and y in G, there is a path of length
from dG(x, y) to |V (G)| − 1 connecting x and y.

A graph G is pan cyclic if it contains cycles of every length
from the shortest cycle length of G as g(G) to |V (G)| and
edge pan cyclic if every edge lies on a cycle of every length
from g(G) to |V (G)|. A bipartite graph G is bipancyclic if
it contains cycles of every even length from g(G) to |V (G)|

and edge bipancyclic if every edge lies on cycle of every
even length from g(G) to |V (G)|.

The k-ary n-cube, denoted by Qk
n (k ≥ 2 and n ≥ 2), is a

graph consisting of kn vertices, each of which has the form
u = un−1un−2 · · ·u0, where ui ∈ {0, 1, · · · , k − 1} for i ∈
{0, 1, · · · , n−1}. Two vertices u = un−1un−2 · · ·u0 and v =
vn−1vn−2 · · · v0 are adjacent if and only if there exists an
integer j ∈ {0, 1, · · · , n−1} such that uj = vj±1(modulo k)
and for every i ∈ {0, 1, · · · , j − 1, j + 1, · · · , n − 1} there
exists ui = vi. Such an edge (u, v) is called a j-dimensional
edge.

We can partition Qk
n along the dimension j, by deleting

all the j-dimensional edges, into k disjoint sub cubes as
Qk

n[0], Q
k
n[1], · · · , Qk

n[k−1], (for ease of notation, abbrevi-
ated as Q[0], Q[1], · · · , Q[k− 1], if there is no ambiguity).
If Q[i], for every i ∈ {0, 1, · · · , k−1}, is a sub graph of Qk

n

induced by the vertices labeled by un−1 · · ·uj+1iuj−1 · · ·u0

(see Figure 2), then it is clear that each Q[i] is isomorphic to
Qk

n−1 for 0 ≤ i ≤ k − 1. Note that Qk
n can be divided into

k disjoint copies of Qk
n along n different dimensions. And

vice versa we can combine k k-ary (n − 1)-cubes in order
to construct a k-ary n-cubes.

…

…

…

…

…… … …

…j-dimensional edges

Q[0] Q[1] Q[k-2] Q[k-1]

Fig. 2. Qk
n is divided into Q[0], Q[1], . . ., Q[k − 2], Q[k − 1].

We consider the fault-tolerance of a graph G. The follow-
ing definitions are cited from the reference [19]. Let F be a
set of faulty edges of Qk

n . We call F a conditional faulty
edge set of Qk

n if every vertex in Qk
n − F is incident with

at least two healthy edges. F j indicates the set of faulty j-
dimensional edges for j ∈ {0, 1, · · · , n− 1}. Then we refer
to F as

⋃n−1
j=0 F j . For p, r ∈ {0, 1, · · · , k − 2, k − 1} and

p = r ± 1(modulo k) , we use Fs,r ∈ F j to denote the set
of faulty j-dimensional edges between p and its neighbor r
sub cubes. On the other hand, for each i ∈ {0, 1, · · · , k−1},
we refer to Fi as F ∩ E(Q[i]).

III. PAN CYCLIC EMBEDDING IN THE CONDITIONAL
FAULTY k-ARY n-CUBES

Let us now proceed to the proof of our main theorem. We
begin by proving the inductive step, and then we return to
the base cases of the induction.

A. Preliminaries

Theorem 3.1: (see [20]) Let k be an odd integer with k ≥
3, and let n ≥ 3 be an integer. Let Qk

n be a k-ary n-cube with
faulty vertices fv and faulty edges fe where 0 ≤ fv + fe ≤
2n− 3. We call F as a faulty vertex and edge set of Qk

n if
every vertex in Qk

n−F is incident with at least two healthy
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edges. For two arbitrary healthy vertices, there exists a path
whose length is from (n(k − 1) − 1) to |V (Qk

n − F ) − 1|
connecting these two vertices in the faulty Qk

n. The k-ary
n-cubes is also referred as 2n− 3 faults (n(k− 1)− 1) pan
connected.

Yang et al. investigate the fault-tolerant capabilities of
the k-ary n-cubes for odd integer k with respect to the
Hamiltonian and Hamiltonian connected properties. By a
simple mathematical induction of Theorem 8 in [10], we
have the following theorem.

Theorem 3.2: (see [10]) Let F be a faulty set with vertices
and edges, and let k ≥ 3 be an odd integer. When |F | ≤
2n − 2, it is showed that there exists a Hamiltonian cycle
in a wounded k-ary n-cube. In addition, when |F | ≤ 2n −
3, it is proved that, for two arbitrary nodes, there exists a
Hamiltonian path connecting these two nodes in the wounded
k-ary n-cubes.

In the following lemmas, namely Lemmas 3.1-3.6, which
are useful for the proof of the main theorem, we shall
construct cycles of various lengths in conditional faulty k-ary
(n− 1)-cube. Before going any further, we will consider an
arrangement of the 4n− 5 edge faults in the k-ary n-cubes.

Lemma 3.1: Let Qk
n be a k-ary n-cubes with n ≥ 3 and

4n−5 edge faults, then there is an m-dimension where exist
the most faulty edges in Qk

n and the number of the most
faulty edges is no less than three denoted by |Fm| ≥ 3.

Proof: Suppose the most number of faulty edges which
is denoted by |F| is in the m-dimension. To consider the limit
of |Fm| ≥ d 4n−5

n e = d4 −
5
ne, and when it satisfies n ≥ 3

hence we compute |Fm| ≥ 3. It means that the number of
the most faulty edges in the m-dimension is at least three.

We say that Qk
n is partitioned along the dimension m for

some m ∈ {0, 1, · · · , n−1} by deleting all the m-dimension
edges into k disjoint sub cubes Q[0], Q[1], · · · , Q[k−1]. Let
u be a vertex in Q[i], we denote it as ui. We also use uj

which is adjacent to ui to stand for the vertex belongs to Q[j].
Furthermore, if (ui, vi) is an edge of Q[i], then (uj , vj) is
the edge which belongs to Q[j] .

Let F be a set of faulty edges of Qk
n. Assume that Fi =

F ∩ E(Q[i]) where i ∈ {0, 1, · · · , k − 2, k − 1}. Obviously
after deleting all the m-dimension edges, we can estimate
the number of fault edges |F0 ∪ F1 ∪ · · · ∪ Fk−2 ∪ Fk−1| =
4n− 5− |Fm| ≤ 4n− 8 in the k disjoint sub cubes.

We may suppose Q[0] is the sub cube with the most faulty
edges while suppose Q[s] and Q[t] are the second and the
third most faulty edges sub cubes where s, t ∈ {1, 2, · · · , k−
2, k − 1}. Taking a step back, without loss of generality we
assume that |F0| ≥ |Fs| ≥ |Ft| as illustrated in Figure 3.

Ft F1 FsF0

… …

Fk-1

… …

Fig. 3. Arrangement of 4n− 5 edge faults in the k-ary n-cubes

Lemma 3.2: Let F be a set of faulty edges of Qk
n. Assume

that Fi = F ∩ E(Q[i]) where i ∈ {0, 1, · · · , k − 2, k − 1}.

If Q[0] is the sub cube with the most faulty edges, then
there exist |Fs| ≤ 2n − 4 and |Ft| ≤ 2n − 5 where s, t ∈
{1, 2, · · · , k − 2, k − 1}.

Proof: We will give a proof by contradiction. Suppose
that |Fs| ≥ 2n − 3 then we have |F0| ≥ |Fs| ≥ 2n − 3.
Clearly, there exists |F0 ∪ Fs| ≥ 4n− 6. Note that, Lem-
ma 3.1 implies that |F0∪F1∪ · · ·∪Fk−2∪Fk−1| ≤ 4n− 8,
so we obtain a contradiction. Hence, we have the assertion
of |Fs| ≤ 2n− 4 where s ∈ {1, 2, · · · , k − 2, k − 1}.

We may use a similar construction in the proof of |Fk−1| ≤
2n− 5. By assuming |Ft| ≥ 2n− 4 we have |Fs| ≥ |Ft| ≥
2n − 4. Similarly, there exists |Fs ∪ Ft| ≥ 4n − 8 which
contradicts that |F0 ∪ F1 ∪ . . . ∪ Fk−2 ∪ Fk−1| ≤ 4n− 8
since we also have the assumption of |F0| ≥ |Fs| ≥ 2n− 3.
This concludes the proof of this lemma.

B. Cycles of length from k to 2 × kn−1 embedding in
conditional fault k-ary n-cubes

In this section, we will prove the main assertion.
Lemma 3.3: Given an odd integer k ≥ 3, let F be a set

of faulty edges of Qk
n. If each vertex of the k-ary n-cubes

is incident with at least two healthy edges, then there exist
a cycle of length from k to 2× kn−1 in the fault Qk

n −F if
it has at most 4n− 5 edge faults.

Proof:
From Lemma 3.2 there exists the implication of |Fs| ≤

2n − 4 = 2(n − 1) − 2. As Q[s] is isomorphic to Qk
n−1

where n − 1 ≥ 2, thus by Theorem 3.2, it is showed that
there exists cycles in the faulty Q[s] − Fs whose length is
from k to kn−1. The k-ary (n− 1)-cube is also referred as
pan cyclic.

Consequently, we will prove the following assertion that
there exist a cycle of length from kn−1 + 1 to 2× kn−1 in
the faulty Qk

n − F .
Case 1: |Fs| = 2n− 4
In this case, |F0| ≥ |Fs| = 2n − 4 and |F0 ∪ F1 ∪ . . . ∪

Fk−2 ∪ Fk−1| = 4n − 5 − |Fm| ≤ 4n − 8, suffice it to say
that there exists |F0| = |Fs| = 2n− 4 and Fm = 3. By the
induction hypothesis, the other |Fi| = 0 can be constructed
provided that i ∈ {1, 2, · · · , k − 2, k − 1} and i 6= s

From Theorem 3.2, there exist a cycle Cs of length from
k to kn−1 in the faulty Q[s] − Fs. On the other hand, we
suppose that its neighbor is r sub cubes where r = s ±
1(modulo k). We select two adjacent vertices such as us, vs
lying on Cs which satisfy (us, ur), (vs, vr) /∈ Fs,r.

According to Theorem 3.2, with the aid of path
P [us, vs] = Cs − (us, vs), the length ls of P [us, vs] is
from k − 1 to kn−1 − 1. For an illustrative example of
|Fr| = 0, by Theorem 3.1 there exists a path P [vr, ur] in
Q[r] whose length is lr holding for lr ∈ {(k − 1)(n− 1)−
1, . . . , kn−1 − 1}. Connect ls, lr as illustrated in Figure 4,
so that we get a cycle whose length is l = ls + lr + 2 ∈
{k + (k − 1)(n− 1), . . . , 2× kn−1}.

When n ≥ 3 and an odd integer k ≥ 3, it will be seen
that k+ (k− 1)(n− 1) ≤ kn−1 +1. As a result, we can get
a cycles whose length is from kn−1 + 1 to 2× kn−1 in the
faulty Qk

n − F .
Case 2: |Fs| ≤ 2n− 5
If n ≥ 3 and |V (Q[s])| − |Fs,r| ≥ kn−1 − (4n− 5) ≥ 2,

without loss of generality, we select two vertices such as us,
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QrQsQ0

… …

Qk-1

…ls

us

vs
lr

ur

vr

Fig. 4. The cycle whose length from k + (k − 1)(n− 1) to 2× kn−1

vs where it satisfies the requirement of (us, ur), (vs, vr) /∈
Fs,r.

Since |Fs|, |Fr| ≤ 2n−5 = 2(n−1)−3, by Theorem 3.1,
we note ls in Q[s]−Fs and lr in Q[r]−Fr as ((n− 1)(k−
1)−1) fault pan connected whose length is (k−1)(n−1)−
1 ≤ ls, lr ≤ kn−1 − 1. Connecting ls, lr then we get that
l = ls + lr + 2 ∈ {2(k − 1)(n− 1), . . . , 2× kn−1}.

If there exist n ≥ 3 and 2(k−1)(n−1) ≤ kn−1+1, then
the Lemma is as required. This completes the proof.

C. Cycles of length from 2× kn−1 + 1 to kn embedding in
conditional fault k-ary n-cubes

Lemma 3.4: Assume |Fs| ≤ 2n−5 for s ∈ {1, 2, · · · , k−
2, k − 1}. If there is a cycle C0 whose length is kn−1 − 1
or kn−1 in Q[0] , then there exists a cycle of length from
2× kn−1 + 1 to kn − 1 in the conditional fault Qk

n − F .
Proof:

We say that the length of C0 is l0. Then there is l0 =
kn−1 − 1 or l0 = kn−1.

Suppose first that l0 = kn−1 − 1 and it is enough to
consider that the length of C0 is more than the number
of the largest faulty edges in the m-dimension which can
be denoted by l0 = kn−1 − 1 ≥ 4n − 5 ≥ |Fm|. Hence,
there would exist some edge named (u0, v0) where (u0, u1),
(v0, v1) /∈ F0,1 or (u0, uk−1), (v0, vk−1) /∈ F0,k−1.

Without loss of generality, assume (u0, u1), (v0, v1) /∈
F0,1. Using |F1| ≤ 2n − 5 = 2(n − 1) − 3 in Q[1] and
kn−1−(2n−3) ≥ (k−1)(n−1)−1, by Theorem 3.1,we con-
nect these two vertices in the faulty Q[1] and consequently
get a path P [u1, v1] whose length is from ((n−1)(k−1)−1)
to |V (Q[1])− 1| . We use l1 to stand for the length of path
P [u1, v1] where (k − 1)(n− 1)− 1 ≤ l1 ≤ kn−1 − 1.

Suppose next P [u0, v0] = C0 − (u0, v0). If connect the
paths of P [v1, u1] and P [u0, v0] then we can obtain a cycle
C1 whose length is L1 = (l0 − 1) + l1 + 2 = l0 + l1 + 1 ∈
{(k − 1)(n − 1) + kn−1 − 1, . . . , 2 × kn−1 − 1}, and it is
shown in Figure 5.

Q1

l1

u1

v1

Q0

l0

u0

v0
…

Qk-1 Qs

… …

Fig. 5. The cycle C1 whose length is L1

Suppose now that an edge (x0, y0) lies on P [u0, v0] where
it satisfies the requirements of (x0, xk−1), (y0, yk−1) /∈
F0,k−1. However, from Lemma 3.2 there exist |Fk−1| ≤
2n−5 = 2(n−1)−3 and kn−1−(2n−3) ≥ (k−1)(n−1)−1.
By Theorem 3.1 connecting these two vertices in the faulty

Q[k − 1] we consequently get a path P [xk−1, yk−1] whose
length is from ((n − 1)(k − 1) − 1) to |V (Q[k − 1]) − 1|.
We use lk−1 to stand for the length of path P [xk−1, yk−1]
where (k − 1)(n− 1)− 1 ≤ lk−1 ≤ kn−1 − 1.

Suppose eventually that P [x0, y0] = C0 − (x0, y0) whose
length is l0 − 1 = kn−1 − 2. Connect P [xk−1, yk−1]
and P [x0, y0] then we can obtain a cycle Ck−1 whose
length is as follows: For a given Lk−1, there exists
Lk−1 = (L1 − 1) + lk−1 + 2 = l0 + l1 + lk−1 + 2 ∈
2(k − 1)(n− 1) + kn−1 − 1, . . . , 3× kn−1 − 1. Figure 6 il-
lustrates such an example.

Q1

l1

u1

v1

Q0

u0

v0
…

Qs

… …

Qk-1

lk-1

xk-1

yk-1

x0

y0

Fig. 6. The cycle Ck−1 whose length is Lk−1

Finally, the following cases can be done as this: connect
P [xk−2, yk−2] and P [u2, v2] and so on which is shown in
Figure, we can obtain a whole cycle C whose length is L =
l0 + l1 + . . . + lk−1 + k − 1 ∈ {(k − 1)(k − 1)(n − 1) +
kn−1 − 1, . . . , k × kn−1 − 1} = {k − 1)

2
(n− 1) + kn−1 −

1, . . . , kn − 1}.
Because of (k − 1)

2
(n − 1) + kn−1 − 1 ≤ 2 × kn−1, it

implies that L ∈ {2×kn−1, 2×kn−1+1, . . . , kn−1}. Then
the conclusion is as required.

From Lemma 3.4, the following corollary is immediate.
Corollary 3.1: Let |Fs| ≤ 2n− 5 and a path P [u0, v0] of

length kn−1 − 2 or kn−1 in Q[0] where (u0, u1), (v0, v1) /∈
F0,1 or (u0, uk−1), (v0, vk−1) /∈ F0,k−1, then there exist a
cycle of length from 2× kn−1 to kn − 1 in the conditional
fault Qk

n − F .
Lemma 3.5: Let |F0| = 4n − 8 then there exist an

edge (u0, v0) ∈ F0 where (u0, u1), (v0, v1) /∈ F0,1 or
(u0, uk−1), (v0, vk−1) /∈ F0,k−1.

Proof: As |Fm| ≥ 3 from Lemma 3.1, clearly, we only
need to consider the case for |Fm| ≤ 4n− 5− |F0| = 3 and
so |Fm| = 3.

First, assume that there exist two distinct and non-adjacent
fault edges in Q[0], the conclusion is true apparently. Sup-
pose next that any two fault edges are adjacent, then they
are incident with the same vertex. Assume this vertex is
u0, the degree of u0 is 2n − 2 in Q[0] after deleting all
the m-dimension edges, this also mean that u0 is incident
with 2n − 2 both healthy and faulty edges. By taking into
consideration of 4n− 8 ≤ 2n− 2 and n ≥ 3, hence, there is
n = 3. Since |Fm| = 3, there exist at least one healthy edge
of (u0, u1) . We now consider the conditional faulty k-ary
n-cubes that each vertex is incident with at least two healthy
edges. So if u0 is incident with at most four faulty edges,
and then there existing a faulty edge of (u0, v0) and an edge
of (v0, v1) which is an inevitable healthy edge as shown in
Figure 7.

Lemma 3.6: There exist a cycle of length from 2×kn−1+
1 to kn in the conditional fault Qk

n − F .
Proof: According to Theorem1.1 there exist a cycle of

length kn in the faulty Qk
n − F . As a result, we need find
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Q0

…

Qk-1 Q1

…

u0
u1

v1
v0

uk-1

vk-1

…

Fig. 7. The degree of u0 is at least two

the cycle of length from 2×kn−1+1 to kn−1 in the faulty
Qk

n − F .
Case 1: By assumption, there exists a vertex w0 that is

incident with at most one healthy edge in Q[0].
Assume Fw

0 is a set of faulty edges which are incident with
w0 in the faulty Q[0]. Therefore, there are |Fw

0 | ≥ 2n−3 and
|Fs| ≤ 4n− 8− (2n− 3) = 2n− 5 where s ∈ {1, 2, · · · , k−
2, k−1}. Suppose w0 as a temporary faulty vertex. If |(F0−
Fw
0 )∪ {w0}| ≤ 4n− 8− (2n− 3)+ 1 = 2(n− 1)− 2, from

Theorem 3.2, then there exists a cycle C0 of length kn−1−1
in the faulty Q[0]− ((F0 − Fw

0 ) ∪ {w0}).
Since |Fs| ≤ 2n − 5, from Lemma 3.4, we can find a

cycle C0 whose length is kn−1− 1 in Q[0] , then there exist
a cycle of length from 2×kn−1 to kn− 1 in the conditional
fault Qk

n − F . Figure 8 shows an example of this case.

w0

Q1Q0

…

Qs

… …

Qk-1

Fig. 8. The cycle C0 whose length is kn−1 − 1 in Q[0]

Case 2: Suppose that each vertex of Q[0] is incident with
at least two healthy edges and |F0| = 4n− 8.

Since |F0| = 4n − 8, by Lemma 3.5, we can get the
results of |Fm| = 3 and |F1| = |F2| = . . . = |Fk−1| = 0.
Suppose next that there is a Hamiltonian cycle in Q[0]−F0,
from Lemma 3.4, the conclusion is proved. Consequently,
assume that there is not any Hamiltonian cycle in Q[0]−F0.
From Lemma 3.5, then there exist a faulty edge (u0, v0) ∈
F0 for (u0, u1), (v0, v1) /∈ F0,1 or (u0, uk−1), (v0, vk−1) /∈
F0,k−1.

Suppose (u0, v0) is a pseudo-healthy edge, by Theo-
rem 1.1, given an integer of k ≥ 3, the conditional faulty
Qk

n−1 with at most 4(n−1)−5 faulty edges is Hamiltonian.
Then there is a Hamiltonian cycle in the modified Q[0]−F0

which has 4n−9 faulty edges containing pseudo-healthy edge
of (u0, v0). So the Q[0]−F0 has a Hamiltonian path from u0

to v0 whose length is kn−1 − 1. According to corollary 3.1,
we present the conclusion.

Case 3: Let each vertex of Q[0] be incident with at least
two healthy edges and |F0| ≤ 4n− 9.

Case 3.1: |Fs| ≤ 2n− 5

Given |F0| ≤ 4n − 9 and n ≥ 3, from Theorem 1.1,
there is a cycle of length of kn−1 in Q[0]. By Lemma 3.4,
if |Fs| ≤ 2n − 5, then there exist a cycle of length from
2× kn−1 to kn − 1 in the conditional fault Qk

n − F .
Case 3.2: |Fs| = 2n− 4

If |F0| ≥ |Fs| and |F0 ∪ F1 ∪ . . . ∪ Fk−2 ∪ Fk−1| ≤
4n−5−|Fm| ≤ 4n−8, then there exists |F0| = |Fs| = 2n−4
and |Fm| = 3. From Theorem3.2, given an odd integer of
k ≥ 3, where |F0| = |Fs| = 2n−4, there exists a cycle C0 of
length of kn−1 in the fault Q[0]−F0 and a cycle Cs of length
of kn−1 in the faulty Q[s]−Fs for s ∈ {1, 2, · · · , k−2, k−1}.

In contrast, without loss of generality consider the in-
terconnections between Q[0] and Q[1] shown in Figure 9.
If there are two healthy edges of (u0, v0) and (v0, w0) on
the cycle C0, then it is satisfied that (u0, u1), (v0, v1) and
(w0, w1) are three healthy edges. Suppose that (u1, v1) and
(v1, w1) are healthy edges in Q[1], with the aid of marking
some edges which are incident with v1 as temporary faulty
ones except (u1, v1) and (v1, w1), so as to have v1 be inci-
dent with at most three healthy edges. Given |F1| ≤ 2n− 4,
therefore, there is |F1| ≤ (2n − 4) + (2n − 5) = 4n − 9
after joining the new temporary fault edges. According to
Theorem1.1, then there exists a Hamiltonian cycle where
(u1, v1) or (v1, w1) lie on in Q[1].

On the other hand, we provide an assumption that either
(u1, v1) or (v1, w1) is a faulty edge and without loss of
generality we may assume (u1, v1) is the faulty one.

Q1

l1

u1

v1

Q0

l0

u0

v0
…

Qk-1 Qs

… …

w1w0

Fig. 9. Interconnections between Q[0] and Q[1]

Next, we suppose that (u1, v1) is a pseudo-healthy edge, so
it is easy to see that |F1−{u1, v1}| ≤ 2n−5. By Theorem 3.1
there exists a path P [u1, v1] in Q[1] whose length is l1 hold-
ing for l1 ∈ {(k− 1)(n− 1)− 1, . . . , kn−1− 1}. Connecting
C0 and P [u1, v1] with (u0, u1) and (v0, v1), then we get that
L1 = l0 + l1 + 1 ∈ {kn−1 + (k− 1)(n− 1), . . . , 2× kn−1}.

Finally, the following cases can be done as this: connect
P [uk−1, vk−1] and P [u2, v2] and so on we can obtain a
whole cycle C whose length is L ∈ {(k−1)(k−1)(n−1)+
kn−1, . . . , k × kn−1} = {k − 1)

2
(n− 1) + kn−1, . . . , kn}.

Because of (k − 1)
2
(n−1)+kn−1 ≤ 2×kn−1, it implies

that L ∈ {2× kn−1, 2× kn−1 + 1, . . . , kn − 1}.
By the above cases, we complete the proof.

IV. CONCLUSION

In conclusion, by Lemma 3.3 and Lemma 3.6, the fault-
tolerant pan cyclicity of Qk

n is given in the following
theorem.

Theorem 4.1: Let Qk
n be a k-ary n-cube with odd k ≥ 3

and n ≥ 3 which is not bipartite. We consider the faulty
k-ary n-cubes that each vertex is incident with at least two
healthy edges. We prove that there exist a fault-free cycle of
every length from k to kn in Qk

n even if it has up to 4n− 5
edge faults. It also means that the Qk

n is conditional (4n−5)
edge fault pan cyclic.

In this paper, we investigate the k-ary n-cubes for an
odd k ≥ 3 with some faulty edges such that each vertex
is incident with at least two healthy edges. We proved that
such a k-ary n-cube with at most 4n−5 faulty edges contains
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a cycle whose length varies in different k to kn. We show
that the conditional fault-tolerant capability of the k-ary n-
cubes is excellent in terms of pan cyclic embedding which
can be used to develop corresponding applications on the
distributed-memory parallel system in the environment of k-
ary n-cubes. Our further work is to consider whether the
above result is optimal in conditional faulty k-ary n-cubes
with odd k ≥ 3.

Interconnection networks are often composed of hundreds
(or thousands) of components, just like routers, channels,
and connectors. They collectively have failure rates higher
than is acceptable for the application. Thus, these networks
must employ error control to continue operation without
interruption. The k-ary n-cubes are particularly easy to map
to physical space with uniformly short edges. The simplest
case is when the network is a cycle with the same number
of dimensions as the physical dimensions of the packaging
technology. A k-ary n-cube can be transformed into an
express cube network augmented with a number of long
or express cycles. By routing packets that must traverse
a long distance in a dimension over the express channels.
The header latency can be reduced to nearly the channel
latency limit. Because the number of express channels can
be controlled to match the bisection width of the network,
this reduction in header latency can be achieved without
increasing serialization latency. So these are also used to
provide fault tolerance.
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