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Abstract—Time series classification is the task of predicting
the class label of an unclassified time series. In the era of
big data, time series classification is one of the best-known
grand challenges because of its many fields of application and
difficulty. There are three important things that we need to
consider in time series classification; representation, similarity
measurement, and assignment strategy. Representation for time
series is a technique that converts time series to feature vectors
representing the characteristics of time series. In the last decade,
Symbolic Aggregate approXimation (SAX), which is a state-
of-the-art feature expression for time series, has attracted
the attention of many data mining researchers, because huge
number of good sequence data mining algorithms are available
once time series are converted to SAX sequences. In this paper,
we propose a novel method for time series classification using
a hybrid SAX-based symbolic representation, which is called
a moving average convergence divergence (MACD)-histogram-
based SAX (MHSAX) proposed in our previous work. The
proposed time series classification method includes the MHSAX
and a nearest neighbor (1-NN) classifier utilizing the local
sequence alignment technique. To evaluate the proposed time
series classification method, we implemented it and conducted
experiments using all 85 data sets in the UCR Time Series
Classification Archive. The experimental results show that the
proposed time series classification method outperforms not
only other distance-based 1-NNs, but also other state-of-the-
art methods.

Index Terms—Time series classification, SAX, MACD his-
togram, Local sequence alignment

I. INTRODUCTION

T IME series are temporal data representing as sequences

of data observed periodically or observations collected

at regular intervals. Time series are ubiquitous in any domain

of natural science involving temporal data measurements,

such as engineering, medical science, astronomy, and sociol-

ogy [1], [2]. In last few decades, data mining techniques

for time series have been active research topics, because

knowledge discovery on time series data is beneficial for

the broad range of applications. Data mining researchers

and practitioners have been studying a wide range of time

series data mining techniques, from basic methods, such

as classification, clustering, prediction, frequent pattern and

motif extraction, similarity search, and anomaly detection, to

large-scale time series management, parallel processing, and

time series indexing structures [3], [4], [5], [6].

There are several different types of time series; in this

study, we focus on a simple time series that is a sequence

of primitive items (e.g., real numbers, integer values, or

symbols), including sensor-monitored values, stock prices,
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currency exchange rates, radio waves, electrocardiogram

values, event streams, earthquake waves, and biomedical sig-

nals. With the emergence of the Internet of Things (IoTs), the

use of time series data generated by sensor devices has been

attracting attention. Time series data from devices of IoTs

are usually simple time series. For example, temperatures

observed by temperature sensors are series of real values.

Large scale time series databases have been constructed on

the Internet. Developing new data mining techniques for a

large scale time series databases is one of the most important

key challenges in the era of big data.

Time series classification is the task that identifies the

class label of an unlabeled time series using training data

whose class labels are known in advance [7]. Time series

data mining researchers and practitioners have been tackling

developing methods for time series classification, because

it has a broad range of applications from science to engi-

neering, including biological analysis, electroencephalogram,

image and motion recognition, and financial analysis. Each

data point in a time series is simple; however, in contract

to multivariate data, time series data are sequence data, such

as strings; therefore, there is a specific need to capture time-

variable features. In the design of time series classifiers three

points should be considered: the feature expression for the

time series, the definition of the distance function, and the

classification strategy.

High-level symbolic representation is one of the most ro-

bust techniques for the feature expression of a time series. In

high-level symbolic representation, a time series is encoded

into a sequence of symbols in order to eliminate the influence

of noise. Techniques for the symbolic representation of time

series allow a rich variety of sequence algorithms (e.g., sub-

sequence search, frequent sequence mining, and sequence

alignment) to be applied to time series data. This has

motivated researchers to utilize well-known string algorithms

to improve the performance of time series data mining. In

particular, symbolic Aggregate approXimation (SAX) [8] is

one of the best-studied high-level symbolic representations

for time series because it can compress time series and

provide a variety of measurement metrics. SAX is the

first symbolic representation for time series that allows for

dimensionality reduction and indexing with a lower-bounding

distance measure.

In our previous work [9], we proposed nearest neighbor

(1-NN) SAX-based time series classification methods that

utilize a moving average convergence divergence (MACD)-

histogram-based SAX (MHSAX) representations. Moving

average convergence divergence (MACD) histogram [10] is

the acceleration of time that represents the latent features

of time series. MHSAX is a hybrid representation of SAX

representations of a time series and its MACD histograms.

MHSAX adequately captures not only the local variation,
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but also the global variation in time series. To evaluate the

method, we implemented it and experiments were conducted

by using the UCR time series classification archive [11].

The experimental results showed that the proposed time

series classification methods outperform other distance-based

1-NNs. Moreover, subsequent work [12] proposed a new

measurement for MHSAX.

MHSAX is a superior high-level representation; however,

there is room for further improvement in the accuracy of the

calculation of the distance between time series. In this paper,

we propose a novel method for time series classification

involving the MHSAX representation. The proposed time

series classification method includes the MHSAX represen-

tation and a nearest neighbor (1-NN) classifier utilizing the

local sequence alignment technique. The main contributions

of this study are as follows.

• The proposed time series classifier is a novel 1-NN

SAX-based classifier utilizing the local sequence align-

ment technique, which is used in the bioinformatics field

and is useful for distinguishing dissimilar sequences

that are suspected to contain regions of similar se-

quence motifs within their larger sequences. The Smith-

Waterman algorithm [13] is a general local alignment

method based on dynamic programming. We modified

this algorithm so that it measures the distance between

two MHSAX representations using the algorithm.

• To evaluate the proposed time series classification

method, experiments were conducted by using the

whole data sets of the UCR Time Series Classification

Archive [11]. The proposed time series classification

method is compared with other distance-based 1-NNs.

The experimental results showed that the proposed time

series classification method outperforms other distance-

based 1-NNs. In addition, the proposed time series clas-

sification method shows good performance compared

with our previous method and the other latest SAX-

based methods.

The rest of this paper is organized as follows. In Sections

II and III, related work and MHSAX are respectively sum-

marized and described briefly. In Section IV, a novel method

for time series classification is proposed. In Section V, the

experimental results are shown, and we discuss the method’s

performance. We conclude the paper in Section VI.

II. RELATED WORK

There are three major approaches to classify time series:

distance-based, feature-based, and model-based approaches

[14]. The distance-based approach defines the distance func-

tion, measuring the distance between time series, and clas-

sifies the time series with reference to the mutual dis-

tance. The feature-based approach discovers the signature

subsequences of a time series and classifies the time series

according to whether the time series includes these signature

subsequences. The model-based approach attempts to apply

statistical model analysis to time series classification.

The distance-based approach has been well-studied, and

many studies have reported that 1-NN is the simplest and yet

most stable algorithm. The early studies were based on the

Euclidean distance; however, the Euclidean distance is not

robust against slight gaps between time series and differences

in their shapes. To address this problem, the dynamic time

warping (DTW) distance was proposed [15]. DTW improves

the performance of time series classification dramatically.

Ding et al. [3] reported that 1-NN with DTW, in general,

performs well, and the difference between its performance

and that of other subsequent distance metrics is small.

Shapelets [16], [17] are one of the most well-known

techniques for feature-based and model-based approaches.

Shapelets are segments of time series that identify class

efficiently. They are extracted by evaluating the class pre-

diction qualities of numerous candidates extracted from the

series segments. Since SAX was proposed, researchers have

focused on the feature-based approach using SAX. SAX-

VSM [18] is a state-of-the-art algorithm based on SAX and

the “bag of words” model. Each class is represented by a

feature vector and the feature vector is weighted by TF*IDF

weighting. An unlabeled time series is assigned to a class in

which the unlabeled time series has the highest feature score.

Recently, some state-of-the-art methods have been pro-

posed. Silva et al. [19] proposed recurrence plots for time

series feature representation. To measure the distance be-

tween two time series, they use Campana-Keogh (CK-1)

distance, which is a Kolmogorov complexity-based distance

for estimating image similarity. Gormes et al. [20] proposed

a novel feature-based method in which frequent sequences

of symbols (motifs) are defined as features that are included

only in a specific class. Decision trees are then constructed

using the extracted motifs. Kamath et al. [21] proposed a fea-

ture construction algorithm based on genetic programming.

In addition, Wang et al. [22] introduced a completely new

method in which deep learning techniques are applied.

The proposed time series classification method uses the

SAX-based approach. The SAX-based method is limited in

terms of discrimination capability because it cannot capture

the local variation in a time series. MACD histograms

facilitate the recognition of local variation in a time series;

therefore, MHSAX improves the class identification rate

of the time series. The method most similar to ours was

presented in [23], where Zhao et al. proposed a new DTW-

based method named shapeDTW. DTW can capture the

global variation; however, it does not necessarily achieve

locally sensible matches. To address this issue, shapeDTW

attempts to pair locally similar subsequences and to avoid

matching points with distinct neighborhoods. In contrast

to conventional methods, our method encodes time series

into SAX-based high-level symbolic representations because

noise can then be ignored.

III. MACD-HISTOGRAM-BASED SAX

In this section, SAX, MACD histogram and MHSAX are

described more in detail.

A. Symbolic Aggregate approximation

High-level symbolic representation of time series, once

introduced, has attracted much attention by enabling applica-

tions of numerous sequence mining algorithms, bioinformat-

ics, and text mining to temporal data. Symbolic Aggregate

Approximation (SAX) algorithm [8] is one of the most active

techniques for high-level symbolic representation for time

series and being used widely by researchers to analyze time
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Fig. 1. Example of SAX

series and streaming data. There are two aspect of SAX:

compression of a time series and conversion of the time series

into symbols. SAX reduces the length of the time series and

transforms the compressed time series into a symbolic string.

After SAX was proposed, it enthralled time series researchers

because it is a simple and intuitive representation. Moreover,

the lower bound of the distance between SAX representations

of two different time series can be calculated and this allows

conventional sequence algorithms to be utilized efficiently.

SAX is a symbolization technique to convert a time

series to a sequence string. There are three main steps in

SAX: (1) normalization, (2) compression using piecewise

aggregate approximation (PAA) [24], and (3) discretization.

In the normalization step, each time series is normalized

such that the mean and standard deviation are zero and

one, respectively. In the compression using the PAA step,

a compressed time series is created, where the length is

reduced from n to l, where l ≤ n. In the discretization step,

each value of the compressed time series is converted into a

discrete symbol from a set of α symbols.

TABLE I
BREAKPOINTS

α 3 4 5 6 7 8

β1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15

β2 0.43 0 -0.25 -0.43 -0.57 -0.76

β3 0.67 0.25 0 -0.18 -0.32

β4 0.84 0.43 0.18 0

β5 0.97 0.57 0.32

β6 1.07 0.76

β7 1.15

The details of a SAX representation of a the time series are

as follows. Let the i-th time series in a time series data set

TS be Ti = (ti,1, ti,2, · · · , ti,n). In this study, Ti is a simple

time series, where each value is a primitive value such as an

integral value or real number. In the normalization step, for

each value of Ti, ti,j is normalized to the value

ci,j =
ti,j − avg

sd
, (1)

where avg = (
∑m

i=1

∑n

j=1 ti,j)/(n × m) and sd =
√

∑m

i=1

∑n

j=1(ti,j − avg)2/(n×m). Let the i-th normal-

ized time series of n lengths be

Ci = (ci,1, ci,2, · · · , ci,n). (2)

In the compression using the PAA step, Ci is divided into

l frames, where each frame has the same length w = n/l.
The average of the values in each frame represents the

frame. Thus, Ci of length n is compressed into a time

series of length l. Let the PAA representation of Ci be

Pi = (pi,1, pi,2, · · · , pi,l), where the j-th value of Pi is

defined as follows:

pi,j =
1

w

w×j
∑

k=w×(j−1)+1

ci,k. (3)

In the discretization step, the codomain of the real number

is first divided into α regions, where the boundaries between

areas are determined by equalizing the area of each region

under the N(0, 1) Gaussian curve. The number α is called

the cardinality. The boundaries are called breakpoints, and

an ordered list of the breakpoints’ values is denoted by

B = (β0, β1, · · · , βα−1, βα),

whereβi < βi+1, β0 = −∞, and βα = +∞). (4)

If there are α regions, the area of the region between the

breakpoints βi−1 and βi is 1/α.

For cardinality is α, there are α symbols for mapping

a symbol to each region. Let a set of symbols be Σ =
{Σ1, · · · ,Σα}. The value of pi,j is mapped to a symbol

according to

si,j = Σk, iif βk−1 ≤ pi,j < βk. (5)

Let a sequence of the assigned symbols be Si =
(si,1, si,2, · · · , si,l). This sequence is called a SAX string.

A SAX string, where Ti is encoded on the condition that the

cardinality is α and the size of window is w, is denoted by

SAX(w,α)[Ti]. The j-th element of SAX(w,α)[Ti] is also

denoted by SAX(w,α)[Ti]j . Fig. 1 shows an example of a

SAX representation of a time series. The blue and red lines

show a normalized time series and its PAA representation,

respectively. The domain is divided into four regions so that

the cardinality is four. Each region is assigned a symbol “a,”

“b,” “c,” or “d.” The time series is hence converted to SAX

string “bcdcca.”

B. MACD Histogram

The MACD and its histogram are defined as the velocity

and the acceleration of a time series. These criteria are used

for the technical analysis of stock prices, which provides

the indicator of stock trading. A series of stock prices is

referred to as a time series; therefore, the chances of profiting

from trading a stock can be determined by analyzing the

time series of stock prices. In the theory, an object moves

in a two-dimensional space and a time series is regarded

as trajectories of its two-dimensional positions. Velocity and

acceleration of the object are calculated using the observed

changes in position.

MACD is the difference between the two types of ex-

ponential moving averages (EMAs). The EMA is a type

of weighted moving average known as an exponentially

weighted moving average. The weighting for each older

value in a time series decreases exponentially. The definition

of the EMA for the t-th element of Ti is

ema(ws)[Ti]t = γ × ti,t + (1 − γ)ema[Ti]t−1

=

ws
∑

k=0

(γ(1 − γ)kti,(t−k)), (6)
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Fig. 2. Example of MACD histogram

where ws is the size of the sliding window, and γ =
2/(ws−1). Suppose that t = k; this implies that the average

is calculated using the (k −ws)-th to the k-th element. Fig.

2 shows a simple example. The blue line is an time series

and EMAs are the moving average of T
Let the time series of the EMA values of Ti under ws

be ema(ws)[Ti]. The difference between ema(ws1)[Ti]t and

ema(ws2)[Ti]t is called the MACD, where ws1 6= ws2:

macd(ws1, ws2)[Ti]t =

ema(ws1)[Ti]t − ema(ws2)[Ti]t, ws1 < ws2. (7)

The MACD is considered to be a derivative value of the

EMA and is a velocity. In Fig. 2, the MACD of T is the

difference between the long term EMA and the short term

EMA. A value in the MACD is the difference between the

red line and the green line.

The EMA of the MACD, where the size of window is

ws3, is called the MACD signal. The difference between the

signal and the MACD is called the MACD histogram.

signal(ws1, ws2, ws3)[Ti]t =

ema(ws3)[macd(ws1, ws2)[Ti]]t, (8)

histogram(ws1, ws2, ws3)[Ti]t =

macd(ws1, ws2)[Ti]t − signal(ws1, ws2, ws3)[Ti]t, (9)

The MACD histogram is a derivative value of the MACD

and is regarded as the acceleration of the time series. In Fig.

2, the purple line and the orange lines are the MACD and

the MACD signal of T . The red bars are the values of the

MACD histogram.

C. Definition

By utilizing SAX strings of time series and analyzing

techniques for sequences, it is possible to capture the charac-

teristics of the whole time series data. Discretization brings

robustness to noise. However, depending on the use of

discretization the degree of change in value may be ignored.

Normalization

Compression 

using PAA

Discretization

Normalization

Compression 

using PAA

Discretization

MACD Histogram

Raw Time Series

Combination

MACD 

Histogram 

Extraction

<aabcdeaa><ccdeeadac>

<(ac)(ac)(bd)(ce)(de)(ed)(aa)(ac)>

Fig. 3. MHSAX

To compensate for this drawback, the MACD histogram of

time series is embedded in SAX. In MHSAX approach, a

time series is defined as a sequence of a pair of values of

time series and its MACD histogram.

The MHSAX sequence of a time series is a hybrid high-

level symbolic representation of SAX. A MHSAX string is a

sequence that merges two different types of SAX sequences:

the SAX sequence of a time series and the SAX sequence of

the MACD histograms of the time series. Let the SAX of Ti

and histogram(ws1, ws2, ws3)[Ti] be SAX(w,α)[Ti] and

SAX(w,α)[histogram(ws1, ws2, ws3)[Ti]], respectively.

For brevity, SAX(w,α)[Ti] is denoted by OSAX(p)[Ti],
and SAX(w,α)[histogram(ws1, ws2, ws3)[Ti]] is denoted

by MSAX(p)[Ti], where p is the set of parameters

{w,α,ws1, ws2, ws3}.
MHSAX is a sequence that alternates elements of

OSAX(p)[Ti] and MSAX(p)[Ti]. In particular, the se-

quence is (OSAX [Ti]1,MSAX(w,α)[Ti]1, OSAX [Ti]2,

MSAX(w,α) [Ti]2, · · · , OSAX [Ti]l, MSAX(w,α)[Ti]l),
where l = n/w. The MHSAX sequence of Ti is de-

noted by MHSAX(p)[Ti]. Suppose that OSAX(p)[Ti] =<
aabcdeaa> and MHSAX(p)[Ti] =<ccdeedac> . We

resequence alternately, and then, MHSAX(p)[Ti] =<
(ac)(ac)(bd)(ce)(de)(ed)(aa)(ac)>.

Fig. 3 shows the process for generating a MHSAX se-

quence from a time series. First, the MACD histogram of

a time series is extracted. The SAX sequences of the time

series and its MACD histogram are generated through three

SAX generation steps. Finally, the MHSAX sequence is

generated by merging these two different types of SAX

sequences.

IV. PROPOSED METHOD

In this section, we propose a novel method for time series

classification utilizing the local alignment technique.

A. Problem Definition

Suppose that there are k classes in a time series data

set and CL is given as a set of class labels CL =
{CL1, CL2, · · · , CLk}. Time series classification is defined

as a task that maps a time series Tu, which is unlabeled, to a

class label cl ∈ CL. The mapping function is a classifier TC,

which is written as TC : Tu → cl, cl ∈ CL. Given a training
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data set that consists of pairs: a time series and its class label,

the classifier TC learns patterns of the training data set and

then outputs the predicted class label of an imputed time

series.

B. Local Sequence Alignment

In the distance-based approach for classifying time series.

The definition of distance between time series is a critical

factor to classify time series. In this study, a time series is

represented as a MHSAX sequence. Therefore, the distance

between two MHSAX sequences needs to be defined. In

our previous work, we measured the distance between two

MHSAX sequences using the extended Levenshtein distance,

because they are regarded as strings. The Leveshtein distance

is known as the edit distance and measures how many

operations are required to transform one MHSAX sequence

into another MHSAX sequence.

The edit distance measure how dissimilar two MHSAX

sequences are. Suppose that there are three MHSAX se-

quences in Table II. The distances between MHSAX(p)[T1]
and MHSAX(p)[T2], and between MHSAX(p)[T2] and

MHSAX(p)[T3] are 3/5 and 2/5, respectively. In this case,

our previous method detect T2 is similar to T3. T1 and

T2 have a characteristic pattern < ∗(aa)(aa)(aa)∗ >,

though. The majority of difficult time series classification

problems distinguish different class time series by identifying

characteristic patterns. The extended Levenshtein distance

is unsuitable for these types of time series classification

problems.

To consider characteristic patterns, the distance between

two MHSAX sequences is calculated using local sequence

alignment scores. Local sequence alignment is known as the

Smith-Waterman algorithm, and it can extract the locally

most similar subsequences. The Smith-Waterman algorithm

was originally proposed for determining similar patterns be-

tween two sequences of gene sequences. The local sequence

alignment technique help to distinguish time series which are

partly different. The Smith-Waterman algorithm also has shift

invariance. Therefore, when two sequences are similar but

differ in phase or when there are regions of the sequences that

are aligned and others are not, the Smith-Waterman algorithm

can calculate the similarity score between time series.

Suppose that there are two time series Tl and Tk and

their MHSAX representations are MHSAX(p)[Tl] and

MHSAX(p)[Tk]. The score matrix for the local sequence

alignment is defined as

SMi,0 ← 0 i = 0, · · · , ll/2, SM0,j ← 0 j = 0, · · · , lk/2,

SMi,j ← max



















0

SMi−1,j − 1

SMi,j−1 − 1

SMi−1,j−1 + f(a, b, c, d)

, (10)

where a ← MHSAX(p)[Tl]2i−1, b ←
MHSAX(p)[Tk]2j−1, c ← MHSAX(p)[Tl]2i, d ←
MHSAX(p)[Tk]2j .

TABLE II
EXAMPLE OF MHSAX

Symbols Contents

MHSAX(p)[T1] < (ac)(aa)(aa)(aa)(ba) >

MHSAX(p)[T2] < (ba)(bb)(aa)(aa)(aa) >

MHSAX(p)[T3] < (ac)(bc)(ab)(bb)(aa) >

Normalization

Compression 

using PAA

Discretization

Training Data Set

Class 1 Class 2

Class 1

T1 (dd)(cb)(aa)(dc)(ba)

T2 (dd)(ca)(aa)(dc)(ba)

T3 (cd)(cb)(aa)(dc)(ba)

Class 2

T4 (aa)(bc)(ca)(dc)(ba)

T5 (aa)(bc)(da)(dc)(ba)

T6 (ab)(bc)(da)(dc)(ba)

Unlabeled Time Series

(dd)(ca)(aa)(dc)(ba)

Minimum distance is the 

distance between T2 and the 

unlabeled time series

-> assigned class = Class 1

(dd)(cb)(aa)(dc)(ba)

(dd)(ca)(aa)(dc)(ba)
Normalization

Compression 

using PAA

Discretization

MACD Histogram Raw Data

Combination

Normalization

Compression 

using PAA

Discretization

Normalization

Compression 

using PAA

Discretization

Combination

MACD Histogram Raw Data

measuring distance

Pre-registered

1-NN Classifier

input:T

output:Class 1

Fig. 4. Processing steps of proposed time series classification method.

f(s1, s2, s3, s4)←



















1, if s1 = s2 & s3 = s4

e1, if s1 6= s2 & s3 = s4

e2, if s1 = s2 & s3 6= s4

−1, otherwise.

(11)

The parameter e1 and e2 are user given parameters. The

default values are e1 = 0 and e2 = 0. This means if either

the raw data of a time series or the MACD histogram of the

time series is different, score is set to 0.

The distance is defined as follows:

dist(MHSAX(p)[Tl],MHSAX(p)[Tk]) =

1−max(SM)/max(ll/2, lk/2), (12)

where max(SM) returns maximum value in SM .

Let us consider the above example again. Under

the local sequence alignment score, the distance be-

tween MHSAX(p)[T1] and MHSAX(p)[T2], and between

MHSAX(p)[T2] and MHSAX(p)[T3] are 3/5 and 1/5,

respectively. In this case, T2 is more similar to T1 than T3.

C. Algorithm

The main algorithm of the proposed classifier is based

on the 1-NN classifier [25], which is the simplest yet most

robust technique for distance-based time series classification.

The 1-NN classifier assigns an unlabeled time series to the

class label of its closest neighbor. The processing steps for

the proposed time series classification are as follows (Fig.

4).

1) Each time series in the training data set is encoded to

an MHSAX sequence.

2) An unlabeled time series is encoded to an MHSAX

sequence.

3) For all pairs of time series in the training data set and

the unlabeled time series, the distance based on the
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TABLE III
RESULTS OF ERROR RATES

Name

Number
of

Classes

Number
of

Train Data

Number
of

Test Data Length

Euclidean

1-NN

Best Warping

Window DTW

1-NN

DTW

1-NN MHSAX

Proposed

Method
50Words 50 450 455 270 0.369 0.242 0.31 0.193 0.195

Adiac 37 390 391 176 0.389 0.391 0.396 0.286 0.299
ArrowHead 3 36 175 251 0.2 0.2 0.297 0.085 0.097

Beef 5 30 30 470 0.333 0.333 0.367 0.133 0.133
BeetleFly 2 20 20 512 0.25 0.3 0.3 0.1 0.05

BirdChicken 2 20 20 512 0.45 0.3 0.25 0 0
Car 4 60 60 577 0.267 0.233 0.267 0.133 0.116
CBF 3 30 900 128 0.148 0.004 0.003 0.034 0.04

ChlorineConcentration 3 467 3840 166 0.35 0.35 0.352 0.369 0.371
CinC ECG torso 4 40 1380 1639 0.103 0.07 0.349 0.114 0.121

Coffee 2 28 28 286 0 0 0 0 0
Computers 2 250 250 720 0.424 0.38 0.3 0.272 0.268
Cricket X 12 390 390 300 0.423 0.228 0.246 0.248 0.233
Cricket Y 12 390 390 300 0.433 0.238 0.256 0.243 0.243
Cricket Z 12 390 390 300 0.413 0.254 0.246 0.248 0.238

DiatomSizeReduction 4 16 306 345 0.065 0.065 0.033 0.058 0.055
DistalPhalanxOutlineAgeGroup 3 139 400 80 0.218 0.228 0.208 0.2025 0.205

DistalPhalanxOutlineCorrect 2 276 600 80 0.248 0.232 0.232 0.231 0.231
DistalPhalanxTW 6 139 400 80 0.273 0.272 0.29 0.245 0.2625

Earthquakes 2 139 322 512 0.326 0.258 0.258 0.208 0.204
ECG 2 100 100 96 0.12 0.12 0.23 0.11 0.09

ECG5000 5 500 4500 140 0.075 0.075 0.076 0.064 0.064
ECGFiveDays 2 23 861 136 0.203 0.203 0.232 0.132 0.105

ElectricDevices 7 8926 7711 96 0.45 0.376 0.399 0.324 0.322
Face(all) 14 560 1690 131 0.286 0.192 0.192 0.218 0.211

Face(four) 4 24 88 350 0.216 0.114 0.17 0.034 0.022
FacesUCR 14 200 2050 131 0.231 0.088 0.095 0.045 0.039

Fish 7 175 175 463 0.217 0.154 0.177 0.051 0.051
FordA 2 1320 3601 500 0.341 0.341 0.438 0.326 0.266
FordB 2 810 3636 500 0.442 0.414 0.406 0.350 0.297

Gun-Point 2 50 150 150 0.087 0.087 0.093 0 0
Ham 2 109 105 431 0.4 0.4 0.533 0.361 0.333

HandOutlines 2 370 1000 2709 0.199 0.197 0.202 0.164 0.162
Haptics 5 155 308 1092 0.63 0.588 0.623 0.512 0.509
Herring 2 64 64 512 0.484 0.469 0.469 0.343 0.343

InlineSkate 7 100 550 1882 0.658 0.613 0.616 0.552 0.550
InsectWingbeatSound 11 220 1980 256 0.438 0.422 0.645 0.453 0.472

ItalyPowerDemand 2 67 1029 24 0.045 0.045 0.05 0.048 0.048
LargeKitchenAppliances 3 375 375 720 0.507 0.205 0.205 0.32 0.322

Lightning-2 2 60 61 637 0.246 0.131 0.131 0.163 0.147
Lightning-7 7 70 73 319 0.425 0.288 0.274 0.219 0.164
MALLAT 8 55 2345 1024 0.086 0.086 0.066 0.108 0.118

Meat 3 60 60 448 0.067 0.067 0.067 0.033 0.033
MedicalImages 10 381 760 99 0.316 0.253 0.263 0.315 0.359

MiddlePhalanxOutlineAgeGroup 3 154 400 80 0.26 0.253 0.25 0.235 0.24
MiddlePhalanxOutlineCorrect 2 291 600 80 0.247 0.318 0.352 0.265 0.258

MiddlePhalanxTW 6 154 399 80 0.439 0.419 0.416 0.393 0.388
MoteStrain 2 20 1252 84 0.121 0.134 0.165 0.114 0.107

Non-InvasiveFetalECGThorax1 42 1800 1965 750 0.171 0.185 0.209 0.413 0.430
Non-InvasiveFetalECGThorax2 42 1800 1965 750 0.12 0.129 0.135 0.290 0.304

OliveOil 4 30 30 570 0.133 0.133 0.167 0.066 0.1
OSULeaf 6 200 242 427 0.479 0.388 0.409 0.119 0.107

PhalangesOutlinesCorrect 2 1800 858 80 0.239 0.239 0.272 0.265 0.258
Phoneme 39 214 1896 1024 0.891 0.773 0.772 0.708 0.724

Plane 7 105 105 144 0.038 0 0 0 0
ProximalPhalanxOutlineAgeGroup 3 400 205 80 0.215 0.215 0.195 0.175 0.170

ProximalPhalanxOutlineCorrect 2 600 291 80 0.192 0.21 0.216 0.265 0.161
ProximalPhalanxTW 6 205 400 80 0.292 0.263 0.263 0.235 0.23
RefrigerationDevices 3 375 375 720 0.605 0.56 0.536 0.453 0.453

ScreenType 3 375 375 720 0.64 0.589 0.603 0.538 0.538
ShapeletSim 2 20 180 500 0.461 0.3 0.35 0.038 0.016
ShapesAll 60 600 600 512 0.248 0.198 0.232 0.12 0.101

SmallKitchenAppliances 3 375 375 720 0.659 0.328 0.357 0.389 0.402
SonyAIBORobotSurface 2 20 601 70 0.305 0.305 0.275 0.244 0.251

SonyAIBORobotSurfaceII 2 27 953 65 0.141 0.141 0.169 0.157 0.136
StarLightCurves 3 1000 8236 1024 0.151 0.095 0.093 0.057 0.075

Strawberry 2 370 613 235 0.062 0.062 0.06 0.044 0.044
SwedishLeaf 15 500 625 128 0.211 0.154 0.208 0.088 0.0832

Symbols 6 25 995 398 0.1 0.062 0.05 0.034 0.043
SyntheticControl 6 300 300 60 0.12 0.017 0.007 0.046 0.06

ToeSegmentation1 2 40 228 277 0.32 0.25 0.228 0.166 0.149
ToeSegmentation2 2 36 130 343 0.192 0.092 0.162 0.061 0.053

Trace 4 100 100 275 0.24 0.01 0 0 0
TwoLeadECG 2 23 1139 82 0.253 0.132 0.096 0.070 0.034
TwoPatterns 4 1000 4000 128 0.09 0.002 0 0.00025 0.002

uWaveGestureLibrary X 8 896 3582 315 0.261 0.227 0.273 0.219 0.233
uWaveGestureLibrary Y 8 896 3582 315 0.338 0.301 0.366 0.305 0.352
uWaveGestureLibrary Z 8 896 3582 315 0.35 0.322 0.342 0.296 0.31072
UWaveGestureLibraryAll 8 896 3582 945 0.052 0.034 0.108 0.036 0.044

Wafer 2 1000 6174 152 0.005 0.005 0.02 0.003407 0.0037
Wine 2 57 54 234 0.389 0.389 0.426 0.259 0.259

WordSynonyms 25 267 638 270 0.382 0.252 0.351 0.246 0.258
Worms 5 77 181 900 0.635 0.586 0.536 0.436 0.480

WormsTwoClass 2 77 181 900 0.414 0.414 0.337 0.276 0.254
Yoga 2 300 3000 426 0.17 0.155 0.164 0.095 0.094
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TABLE IV
SUMMARY OF RESULTS

Metric

EQ

1-NN

BWW
DTW

1-NN

DTW

1-NN MHSAX

Proposed

Method
Number of

Best Solutions 7 16 11 31 47
Average of

Error Rates 0.288 0.237 0.256 0.198 0.195
Average of

Rankings 3.976 2.835 3.505 2.011 1.882

local sequence alignment score between the MHSAX

sequences is calculated. The class label of the nearest

time series is assigned to the unlabeled time series.

V. EXPERIMENTS

In the experiments, we used the UCR Time Series Clas-

sification Archive [11], which is the largest available time

series classification benchmark data set. Table III shows the

details of each data set in the UCR Time Series Classification

Archive. This archive includes 85 types of labeled time series

data sets with a variety of lengths, class numbers, and data

sizes. Each data set is divided into two types of data sets: a

training data set, and a test data set. For each data set, we

constructed a 1-NN classifier using the training data set and

we measured the error rates of classification using the test

data set. To evaluate the proposed time series classification

method, we conducted three experiments.

A. Experiment 1

In this experiment, the proposed time series classification

method was compared with four types of 1-NN classifiers:

EQ 1-NN, BWW DTW 1-NN, DTW 1-NN, and MHSAX.

The EQ 1-NN classifier utilizes the Euclidean distance and

the BWW DTW 1-NN, and DTW 1-NN classifiers employ

the DTW distance. The MHSAX classifier is our previous

method, which is a 1-NN classifier with MHSAX using the

edit distance as the distance measurement. The MACD’s

parameters for the proposed time series classification method

were ws1 = 3，ws2 = 5，and ws3 = 4. Moreover, the least

error rates were found by varying the following parameters:

the PAA window size w ∈ {1, 2, 3, 4, 5} and the cardinality

α ∈ {3, 4, · · · , 14}.
Table III shows the classification error rates for each

method. The values in the table are described on the UCR

Time Series Classification Archive web site. Underlined

values indicate the lowest error rate. Table IV summarizes

the results. The proposed time series classification method

obtains the lowest error rates of the tested methods for

47 out of 85 data sets. In addition, its average error rates

and average rankings are the smallest. Moreover, MHSAX-

based 1-NN classifiers is superior to DTW-based classifiers.

Wang et al. [26] reported the classification performance of 9

distance measures and several variants thereof. They found

DTW performs exceptionally well in comparison to other

distance measurements. This indicates MHSAX-based 1-NN

classifiers have the best performance.

B. Experiment 2

We compared the proposed time series classification

method with two other SAX-based classifiers BOW [27] and

TABLE V
COMPARISON WITH SAX-BASED METHODS

BOW SAX-VSM Proposed Method
50Words 0.316 0.374 0.195

Adiac 0.325 0.417 0.299
Beef 0.267 0.233 0.133
CBF 0.048 0.01 0.04

ChlorineConcentration 0.405 0.341 0.371
CinC ECG torso 0.164 0.344 0.121

Coffee 0.036 0 0
Cricket X 0.305 0.308 0.233
Cricket Y 0.313 0.318 0.243
Cricket Z 0.295 0.297 0.238

DiatomSizeReduction 0.111 0.121 0.055
ECG 0.11 0.14 0.09

ECGFiveDays 0.164 0.001 0.105
Face(all) 0.238 0.245 0.211

Face(four) 0.102 0.114 0.022
FacesUCR 0.137 0.109 0.039

Fish 0.029 0.017 0.051
Gun-Point 0.407 0.013 0

Haptics 0.63 0.584 0.509
InlineSkate 0.629 0.593 0.55

ItalyPowerDemand 0.044 0.089 0.048
Lightning-2 0.328 0.213 0.147
Lightning-7 0.37 0.397 0.164
MALLAT 0.098 0.199 0.118

MedicalImages 0.401 0.516 0.359
MoteStrain 0.177 0.125 0.107

OliveOil 0.233 0.133 0.1
OSULeaf 0.153 0.165 0.107

SonyAIBORobotSurface 0.409 0.306 0.251
SonyAIBORobotSurfaceII 0.154 0.126 0.136

SwedishLeaf 0.125 0.278 0.083
Symbols 0.088 0.109 0.043

SyntheticControl 0.017 0.017 0.06
Trace 0 0 0

TwoPatterns 0.01 0.004 0.034
TwoLeadECG 0.248 0.014 0.002

uWaveGestureLibrary X 0.242 0.323 0.233
uWaveGestureLibrary Y 0.352 0.364 0.352
uWaveGestureLibrary Z 0.325 0.356 0.31

Wafer 0.01 0.001 0.003
WordSynonyms 0.371 0.44 0.258

Yoga 0.145 0.151 0.094

SAX-VSM [18]. Table V compares their performance on 42

data sets from the UCR Time Series Classification Archive.

The proposed time series classification method achieves good

performance compared with BOW and SAX-VSM. We also

compared our proposed time series classification method

with shapeDTW [23]. In [23], 84 data sets (not including

the StarLightCurves data sets) in the UCR Time Series

Classification Archive were used. Table VI compares the

performance of the methods. Both our previous method and

the proposed time series classification method are superior

to shapeDTW.

TABLE VI
COMPARISON WITH SHAPEDTW

Metric

EQ

1-NN

BWW
DTW
1-NN

DTW
1-NN

shapeDTW

1-NN MHSAX

Proposed

Method
Number of

Best Solutions 1 1 2 31 31 37
Average of

Error Rates 0.288 0.237 0.256 0.214 0.198 0.195
Average of

Rankings 4.607 3.392 4.047 3.202 2.547 2.380

C. Experiment 3

In Eqn. (11), there two user given parameters e1 and

e2. In this experiment, we discuss performance regarding

to parameters e1 and e2. In Experiment 1 and Experiment

2, these parameters are set to the default value, which is

zero. When we use the default value, this means that local

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_07

(Advance online publication: 20 November 2017)

 
______________________________________________________________________________________ 



TABLE VII
PARAMETER STUDIES (A)

Name Default Sensitive

50Words 0.195604 0.221978

Adiac 0.299233 0.304348

ArrowHead 0.097143 0.08

Beef 0.133333 0.066667

BeetleFly 0.05 0.1

BirdChicken 0 0.1

Car 0.116667 0.166667

CBF 0.04 0.226667

ChlorineConcentration 0.371094 0.358594

CinC ECG torso 0.121014 0

Coffee 0 0

Computers 0.268 0.292

Cricket X 0.233333 0.284615

Cricket Y 0.24359 0.297436

Cricket Z 0.238462 0.317949

DiatomSizeReduction 0.055556 0.062092

DistalPhalanxOutlineAgeGroup 0.205 0.21

DistalPhalanxOutlineCorrect 0.231667 0.245

DistalPhalanxTW 0.2625 0.265

Earthquakes 0.204969 0.189441

ECG 0.09 0.07

ECG5000 0.064222 0.060222

ECGFiveDays 0.105691 0.00813

ElectricDevices 0.322786 0.371807

Face(all) 0.211243 0.230769

Face(four) 0.022727 0.011364

FacesUCR 0.039024 0.054146

Fish 0.051429 0.051429

FordA 0.26687 0.18717

FordB 0.297305 0.244774

TABLE VIII
PARAMETER STUDIES (B)

Name Default Sensitive

Gun-Point 0 0

Ham 0.333333 0.361905

HandOutlines 0.162 0.171

Haptics 0.50974 0.594156

Herring 0.34375 0.375

InlineSkate 0.550909 0.650909

InsectWingbeatSound 0.472727 0.452525

ItalyPowerDemand 0.048591 0.041788

LargeKitchenAppliances 0.322667 0.370667

Lightning-2 0.147541 0.245902

Lightning-7 0.164384 0.315068

MALLAT 0.11855 0.123241

Meat 0.033333 0.05

MedicalImages 0.359211 0.389474

MiddlePhalanxOutlineAgeGroup 0.24 0.23

MiddlePhalanxOutlineCorrect 0.258333 0.26

MiddlePhalanxTW 0.388471 0.390977

MoteStrain 0.107827 0.111022

Non-InvasiveFetalECGThorax1 0.430534 0.609669

Non-InvasiveFetalECGThorax2 0.304326 0.397964

OliveOil 0.1 0.1

OSULeaf 0.107438 0.136364

PhalangesOutlinesCorrect 0.258741 0.258741

Phoneme 0.724156 0.768987

Plane 0 0

ProximalPhalanxOutlineAgeGroup 0.170732 0.156098

ProximalPhalanxOutlineCorrect 0.161512 0.14433

ProximalPhalanxTW 0.23 0.2475

RefrigerationDevices 0.453333 0.477333

ScreenType 0.538667 0.530667

TABLE IX
PARAMETER STUDIES (C)

Name Default Sensitive

ShapeletSim 0.016667 0.166667

ShapesAll 0.101667 0.165

SmallKitchenAppliances 0.402667 0.456

SonyAIBORobotSurface 0.251248 0.234609

SonyAIBORobotSurfaceII 0.136411 0.129066

StarLightCurves 0.075765 0.075765

Strawberry 0.044046 0.035889

SwedishLeaf 0.0832 0.1056

Symbols 0.043216 0.063317

SyntheticControl 0.06 0.203333

ToeSegmentation1 0.149123 0.122807

ToeSegmentation2 0.053846 0.092308

Trace 0 0.03

TwoLeadECG 0.034241 0.031607

TwoPatterns 0.002 0.02075

uWaveGestureLibrary X 0.233948 0.295366

uWaveGestureLibrary Y 0.352038 0.352038

uWaveGestureLibrary Z 0.31072 0.363763

UWaveGestureLibraryAll 0.044389 0.064210

Wafer 0.003731 0.000649

Wine 0.259259 0.259259

WordSynonyms 0.258621 0.302508

Worms 0.480663 0.524862

WormsTwoClass 0.254144 0.309392

Yoga 0.094333 0.092

alignment scores are one if only both of raw value and

its MACD value are same. In time series classification,

there are problems of distinguishing time series where the

value fluctuates drastically. Even if, the difference is large or

small, local alignment scores are zero. To consider this, the

followings are more sensitive parameter settings.

e1 = 0.5× (1−
|s1 − s2|

α
) (13)

e2 = 0.5× (1−
|s3 − s4|

α
) (14)

Table VII, Table VIII, and Table IX show that the com-

parisons of the default parameter setting and the sensitive

parameter setting. The results of the data sets of 23 are

improved when the sensitive parameter setting is used. The

results indicate that the sensitive parameter setting helps to

improve classification performance for some data sets. Time

series classification can be optimized for each application.

The sensitive parameter setting is effective to improve clas-

sification performance.

VI. CONCLUSION

In the era of big data, time series classification is one of

the best-known key challenges because of its many fields of

application and difficulty. In this paper, we propose a novel

method for time series classification using a hybrid SAX-

based symbolic representation, which is called a moving

average convergence divergence (MACD)-histogram-based

SAX (MHSAX) proposed in our previous work. The pro-

posed time series classification method includes the MHSAX

and a nearest neighbor (1-NN) classifier utilizing the local

sequence alignment technique. To evaluate the proposed

time series classification method, we implemented it and

conducted experiments using all 85 data sets in the UCR

Time Series Classification Archive. The experimental results

show that the proposed time series classification method

outperforms our previous method. Its classification ability

is superior to other state-of-the-art methods. Moreover, the

sensitive parameter setting can improve classification perfor-

mance.

In our future work, we are developing a new high-

level symbolic representation for time series based on MH-

SAX. MHSAX is good representation, however, it is in the

distance-based approach. Computation time for classifying

time series is more heavy that other approaches. MHSAX

needs its compressed representation to reduce computation

time. MACD histogram shows the acceleration of time series;

however, the type of movement of time series is not consid-

ered. We are going to develop more sensitive representation

to differences in movement.
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