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Abstract—This paper considers reasonable resource alloca-
tion for heterogeneous services in peer-to-peer (P2P) networks,
and presents a utility maximization model for bandwidth alloca-
tion of service providers. We firstly consider elastic services with
concave utility functions and find that the optimal bandwidth
allocation exists. Then we focus on heterogeneous services,
where inelastic services with sigmoidal utility functions are
coexisting with elastic services. The resource allocation model
for heterogenous services is an intrinsically difficult problem
of nonconvex optimization, resulting in difficulty of traditional
gradient-based algorithm to obtain the optimum. In order to
overcome it, we apply Particle Swarm Optimization (PSO) to
revolve the model, propose a heuristic algorithm for resource
allocation, and verify the results with simulation results.

Index Terms—P2P networks, heterogeneous services, utility
function, PSO.

I. INTRODUCTION

In peer-to-peer (P2P) networks, a service is offered and
requested by several peers at the same time. A peer can
choose freely the peers it provides service to and allocate
resources for the service (e.g. upload bandwidth for P2P file-
sharing applications)[1]. Thus, resources are used efficiently
at a peer when at least one other peer requests a service
from it. Meanwhile a requesting peer is normally serviced by
several providers in parallel. Hence, its total service resource
is accumulated over its providers.

Pricing mechanism for resource allocation in P2P networks
was proposed in [2] to ensure a fair bandwidth alloca-
tion of service providers between requesters. The authors
propose a rate-based bandwidth allocation algorithm where
service providing peers adjust their service rates and service
requesting peers adjust their price offers. The bandwidth
allocation mechanism is further studied in [3] [4] and the
weighted fairness is analyzed. Recently, a novel price-based
resource allocation scheme is presented by applying the
first order Lagrangian method and low-pass filtering scheme,
so that a service provider can allocate its resources to its
customers based on offered prices, achieving the efficient and
fair resource allocation [5]. These research results mainly
concentrate on how to allocate the resources of service
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providers between the service requesters fairly, however, they
do not differentiate the types of services and assume there is
only one service in the network.

Indeed there are a lot of network services [6][7][8][9].
These services can be divided into two types on the basis
of the main shapes of utilities: elastic services and inelastic
services. The former correspond to the traditional data ser-
vices, such as file transfer. These services have the concave
utility functions. The latter correspond to delay or rate
sensitive real-time services, such as real-time streaming video
services [10]. They have non-concave utility functions, e.g.,
the sigmoidal utility functions [7][8]. Resource allocation for
elastic services in P2P has been investigated in [11], however,
they do not consider resource allocation in scenario where
inelastic services are coexisting with elastic ones.

In this paper we consider how to allocate the resource
of service providers for heterogeneous services and propose
the utility maximization model for resource allocation. It is
different from that in [11] [5] where elastic services are only
considered. Our model is to maximize the total utility of
heterogeneous services, including not only elastic services,
but also inelastic services. The resource allocation model for
heterogeneous services is proven to be a difficult nonconvex
optimization problem, which is hard to be resolved through
traditional gradient-based resource allocation schemes, e.g.,
[11] [5]. We apply Particle Swarm Optimization (PSO) to re-
solve the problem and present a heuristic resource allocation
algorithm, which is confirmed through simulation results.

The rest of this paper is summarized as follows: We
introduce the resource allocation model for heterogeneous
services in P2P networks in Section 2. In Section 3 we
analyze the model for heterogeneous services through non-
linear programming theory. We propose a heuristic scheme
by applying PSO to resolve the problem in Section 4 and
give some simulation in Section 5. Finally we conclude this
paper in Section 6.

II. RESOURCE ALLOCATION MODEL

Consider a P2P network which consists of a set of peers
P and a set of services S. Each peer p ∈ P is interested
in one or several services, offers one or several services or
is interested and offers different services at the same time.
Thereby, a peer is not only a service customer, but also a
service provider. For file-sharing applications in P2P, the
upload capacity of one peer is used to transmit a file or
a fragment of a file to remote peers which are interested in
the file. Hence, the upload capacity of this peer is a scarce
resource and other peers compete for it. Then an important
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problem is arising that how to allocate the resources of
service providers between service customers.

Define the set of peers which offer at least one service s as
the set of service providers P (s). And also define the set of
services that peer p provides as S(p). Note that it is obvious
that p ∈ P (s) if and only if s ∈ S(p). We model the resource
allocation for heterogeneous services in P2P networks as the
following optimization problem

max
∑

s:s∈S

wsUs(ys)

subject to
∑

p∈P (s)

xps = ys, s ∈ S

∑

s∈S(p)

xps ≤ Cp, p ∈ P

over xps ≥ 0, s ∈ S, p ∈ P

(1)

where Us(ys) is the utility function of service s when the
total flow rate of this service is ys, ws is the weight of service
s which can be used to achieve fair resource allocation
between service customers, xps is the service rate that the
service provider p provides for service s, and Cp is the
upload capacity of service provider p.

In this optimization problem the objective is to maximize
the aggregated utility of service rate ys over all services in the
network. Notice that, for service customer, the service rate ys

is the sum of the rates xps that service provider p provides,
which is described by the equality in the resource allocation
model. Meanwhile, the service rate of service provider p is
constrained by its capacity, i.e. Cp, which is described by
the inequality in the optimization problem above.

Recall that there are mainly two types of services in this
network, elastic services with concave utilities and inelastic
services with noncocave utilities (e.g., sigmoidal). We adopt
the utilities described in [6][7][8]. As shown in Fig. 1, the
concave utility function for elastic service s is given by
Us(ys) = cs(log(asys + bs) + ds) with flow rate ys, and
the sigmoidal utility function for inelastic service is given by
Us(ys) = cs

(
1

1+e−as(ys−bs) + ds

)
, where as, bs, cs and ds

are parameters of service s. The inelastic services correspond
to delay and rate sensitive real-time services, such as real-
time streaming video and audio services, and always require
a high level of QoS[12].
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Fig. 1. Utility functions for elastic and inelastic services

Notice that the resource allocation model (1) is indeed
a difficult nonconvex optimization problem, and it is hard

to obtain the optimum through traditional methods. We will
investigate this difficult problem, and find sufficient condition
for existence of the global optimum to the model.

III. MODEL ANALYSIS

A. Optimal Resource Allocation

The resource allocation model (1) equals to the follow-
ing optimization problem, which is regarded as the primal
problem

max
∑

s:s∈S

wsUs


 ∑

p∈P (s)

xps




subject to
∑

s∈S(p)

xps ≤ Cp, p ∈ P

over xps ≥ 0, s ∈ S, p ∈ P.

(2)

We can obtain the Lagrangian of the primal problem as
following

L(x, λ) =
∑

s:s∈S

wsUs


 ∑

p∈P (s)

xps




+
∑

p:p∈P

λp


Cp −

∑

s∈S(p)

xps


 ,

(3)

where λp ≥ 0 is the Lagrange multiplier associated with the
linear constrain on service provider p, and can be considered
as the price charged by service provider p.

The Lagrange dual function f(λ) is defined as the maxi-
mized L(x, λ) over x for a given λ, that is

f(λ) = max
x

∑

s:s∈S

wsUs


 ∑

p∈P (s)

xps




−
∑

p:p∈P

λp

∑

s∈S(p)

xps +
∑

p∈P

λpCp,

and the optimal flow rate is denoted as

x∗(λ) = arg max
x

∑

s:s∈S

wsUs


 ∑

p∈P (s)

xps




−
∑

p:p∈P

λp

∑

s∈S(p)

xps,

(4)

where x∗(λ) is an optimal flow rate vector with the element
x∗ps(λp), the optimal flow rate service provider p provides
for service s, which is a function of the price λp charged by
service provider p.

The Lagrange dual problem of the primal problem is

min f(λ) = L(x∗(λ), λ) (5)

subject to λ ≥ 0,

where the optimization variable is λ, a price vector with
element λp.

The primal problem is how to allocate the scarce resource,
i.e., upload capacity of service providers, to service cus-
tomers, so as to obtain the requesting services. And the dual
problem is how to charge the price the service customers
should pay to service providers.

Let xopt be the optimal solution to the primal problem, and
U∗ =

∑
s:s∈S wsUs(

∑
p∈P (s) x

opt
ps ) be the optimal primal
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objective value. Also let λopt be the optimal solution to
the dual problem, and D∗ = f(λopt) be the optimal dual
objective value. So we can obtain the following theorem.

Theorem 1 If the services are all elastic, that is, the utility
functions are all concave, both the optimal flow rates for
services and optimal primal objective value can be obtained.
Furthermore, the optimal primal objective value is equal to
the optimal dual objective value, i.e., U∗ = D∗. However,
the optimal service rate from each service provider, i.e., xps,
may be not unique.

This theorem can be obtain from the convex optimization
theory [13], since the primal objective function

∑
s wsUs(ys)

is concave, and the constraint set of this problem is convex.
The optimal rate y

opt
s for service s is unique, however, the

rate that each service provider provides, i.e., x
opt
ps , may be

not unique because of the equality y
opt
s =

∑
p∈P (s) x

opt
ps .

To realize the optimal resource allocation for elastic ser-
vices in decentralized P2P architectures, distributed band-
width allocation schemes should be designed. Recall that
the resource allocation model (1) is a convex programming
problem, thus gradient-based projection approach can be
applied to the optimal bandwidth allocation scheme design,
e.g., fair resource allocation mechanism proposed in [5] can
be used to achieve the optimum of resource allocation model
(1).

We analyze the prices charged by service providers and
obtain the following result.

Theorem 2 At the optimal solution to the dual problem,
i.e., λopt, for all service providers p ∈ P (s) that provide
resource for service s, prices charged by these service
providers are equal, that is, for providers i, j ∈ P (s) and
i 6= j, λ

opt
i = λ

opt
j .

Proof The Lagrange dual function is

f(λ) = L(x∗(λ), λ) =
∑

s:s∈S

wsUs(
∑

p∈P (s)

x∗ps)

−
∑

p:p∈P

λp

∑

s∈S(p)

x∗ps +
∑

p:p∈P

λpCp.

At the optimal solution λopt, the Lagrange dual function
is,

f(λopt) =
∑

s:s∈S

wsUs(
∑

p∈P (s)

x∗ps)

−
∑

p:p∈P

λopt
p

∑

s∈S(p)

x∗ps +
∑

p:p∈P

λopt
p Cp.

The partial derivatives of f(λopt) on x∗is and x∗js are

∂f(λopt)
∂x∗is

=
∂wsUs(

∑
p∈P (s) x∗ps)

∂
∑

p∈P (s) x∗ps

∂
∑

p∈P (s) x∗ps

∂x∗is
− λ

opt
i ,

∂f(λopt)
∂x∗js

=
∂wsUs(

∑
p∈P (s) x∗ps)

∂
∑

p∈P (s) x∗ps

∂
∑

p∈P (s) x∗ps

∂x∗js

− λ
opt
j ,

respectively.
Since x∗ is the optimal flow rate, ∂f/∂x∗is = 0,

∂f/∂x∗js = 0, then λ
opt
i = λ

opt
j . This theorem is completed.

B. Optimum for Elastic Services

We can construct a simple graph which is composed of
the two sets S and P . Thereby, a node denotes a service

provider or customer, and an edge denotes a service between
a provider and a customer. Thus, we can separate the
whole network into several regions according to the service
relationship between providers and customers. In each one
the prices charged by service providers that offer the same
service are all equal at the optimum. In particular, if there
is only one service offered by all providers, then the prices
charged by these service providers are all equal. Suppose the
bipartite graph is connected, then the optimal price charged
by service providers is λ. Otherwise, if the bipartite graph is
not connected, an optimization can be run for every disjoint
connected subgraph separately.

Then, the Lagrangian (3) can be rewritten as

L(x, λ)

=
∑

s:s∈S

wsUs


 ∑

p:p∈P (s)

xps


 +

∑

p:p∈P

λpCp

−
∑

p:p∈P

λp

∑

s:s∈S(p)

xps

=
∑

s:s∈S


wsUs


 ∑

p:p∈P (s)

xps


−

∑

p:p∈P (s)

λpxps




+
∑

p:p∈P

λpCp

=
∑

s:s∈S


wsUs


 ∑

p:p∈P (s)

xps


− λ

∑

p:p∈P (s)

xps




+λ
∑

p:p∈P

Cp

=
∑

s:s∈S

(wsUs(ys)− λys) + λ
∑

p:p∈P

Cp

= L̃(y, λ).

Substituting the utility function Us(ys) = cs(log(asys +
bs) + ds) for elastic service s into L̃(y, λ), and setting
∂L̃(y, λ)/∂ys = 0, we obtain the optimal resource allocation
for elastic service s

y∗s =
wscs

λ
− bs

as
. (6)

Substituting (6) into L̃(y, λ), then

L̃(y, λ) =
∑

s:s∈S

(
wscs(log

wsascs

λ
+ ds)− wscs +

bs

as
λ

)

+λ
∑

p:p∈P

Cp.

Setting dL̃(y, λ)/dλ = 0, we can obtain the optimal price
that the peers request service s should pay

λ∗ =

∑

s:s∈S

wscs

∑

p:p∈P

Cp +
∑

s:s∈S

bs

as

, (7)

then with (6)

y∗s =
wscs∑

s:s∈S

wscs


 ∑

p:p∈P

Cp +
∑

s:s∈S

bs

as


− bs

as
. (8)
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Particularly, if we choose the utility function Us(ys) =
log(ys + 1) for elastic service s, then the optimal price

λ∗ =

∑

s:s∈S

wscs

∑

p:p∈P

Cp + |S|
,

and

y∗s =
wscs∑

s:s∈S

wscs


 ∑

p:p∈P

Cp + |S|

− 1,

where |S| is the number of services in the network. There-
fore, the total flow rate of an elastic service depends on
the number of services plus the total capacity of all service
providers, and the total willingness-to-pay weighted by the
willingness-to-pay of the service customer who requests this
elastic service. We can also observe from (8) that the total
optimal flow rate of each service is unique.

C. Capacity Guarantee for Inelastic Services

Now consider the optimization model with inelastic ser-
vices which have the sigmoidal utility functions. For sim-
plicity, we assume all the service providers can offer these
inelastic services. For the inelastic service s, instruct a
tangent from the origin to the sigmoidal function Us(ys),
and let y0

s(sig)
and λ0

s be the flow rate and slope, respectively,
at the point where the tangent from the origin interests the
sigmoidal function.

Theorem 3 Consider the optimization model for resource
allocation of heterogeneous services in P2Ps. The optimal
flow rates for services can be obtained and the optimal primal
objective value is also equal to the optimal dual objective
value, i.e., U∗ = D∗, if there exists a price vector λ ≥ 0 with
element λp ≥ 0 satisfying the inequality λp < λ0

s, p ∈ P (s)
and the capacity Cp(λp) for each service provider p ∈ P ,
where

Cp(λp) =
∑

s∈S(p)

x∗
ps(sig)

(λp) +
∑

s∈S(p)

x∗ps(con)(λp). (9)

Here, x∗
ps(sig)

(λp) and x∗ps(con)(λp) are the price-based flow
rates (3) that service provider p offers for inelastic and elastic
services, respectively.

Proof Note taht the optimal price for the dual problem is
λopt = λ, i.e., λ

opt
p = λp because the subgradient of f(λ)

is zero when Cp = Cp(λp). Since λp < λ0
s, p ∈ P (s),

the optimal price at service provider p is less than the
critical price λ0

s, i.e. λ
opt
p < λ0

s, p ∈ P (s). At the optimal
point to the dual problem (4), the price seen by the service,
i.e., λs, is equal to the price of any service provider that
supports this service, i.e. λp, p ∈ P (s). So for inelastic
service, ys(sig)(λs) =

∑
p∈P (s) x∗

ps(sig)
(λp) > y0

s(sig)
(λ0

s),
which means that ys(sig) lies in the concave part of the
sigmoidal function. In this part, the optimal flow rate for the
service supported by the service providers can be obtained,
and the duality gap is zero. Since λp is the optimal price
of the dual problem, x∗

ps(sig)
(λp) and x∗ps(con)(λp) are the

flow rates that service provider p offers for inelastic and
elastic services, respectively. ys(sig) =

∑
p∈P (s) x∗

ps(sig)
(λp)

and ys(con) =
∑

p∈P (s) x∗ps(con)(λp) are the optimal flow
rates for the inelastic and elastic services, respectively. This
theorem is completed.

The inelastic services may require high QoS and the high
QoS can be guaranteed by the service providers through the
optimization model by adding the constraint ys(sig) ≥ y0

s(sig)

for every inelastic service s. Here we assume the capacity of
service provider p is no less than

∑
s∈S(p) x∗

ps(sig)
(λ0

s) +∑
s∈S(p) x∗ps(con)(λ

0
s), where λ0

s is the slope where the
tangent from the origin interests the sigmoidal function. The
model is modified to the following

max
∑

s:s∈S(sig)

wsUs(ys(sig)) +
∑

s:s∈S(con)

wsUs(ys(con))

subject to
∑

p∈P (s)

xps(sig) = ys(sig),

∑

p∈P (s)

xps(con) = ys(con),

∑

s∈S(p)

xps(sig) + xps(con) ≤ Cp,

ys(sig) ≥ y0
s(sig)

,

over xps(sig) ≥ 0, xps(con) ≥ 0.
(10)

where xps(sig) and xps(con) are the flow rates that service
provider p offers for inelastic and elastic services, respec-
tively.

Now for the resource allocation model (1) consisting of
inelastic services which have the sigmoidal utility functions,
it is a nonconvex optimization problem, and it is difficult to
obtain the global optimum. Furthermore, the gradient-based
resource allocation algorithm proposed for elastic services is
not efficient to converge to the optimum. We will investigate
the nonconcave optimization problem in next section and
develop a heuristic algorithm by applying PSO approach.

IV. RESOURCE ALLOCATION SCHEME USING PSO

A. Algorithm description

Since the resource allocation model is an intrinsically dif-
ficult problem of nonconvex optimization, thus the traditional
gradient-based schemes are not efficient to converge to the
optimum. In this short paper we apply PSO method to resolve
the optimization problem and give a heuristic algorithm. PSO
is an algorithm based on stochastic optimization algorithms,
and owns some distinct advantages, for example, it does
not need to calculate the gradients of the objective function,
or even define the form of the objective function. PSO has
been found useful to deal with very complicated optimization
problems, such as power optimization [14][15] image seg-
mentation [16][17], function optimization problems[18][19],
and communication networks [8][9].

In the scheme each particle represents one available
resource allocation solution for the model. Let x and
v denote a particle coordinates (position) and its corre-
sponding flight speed (velocity) in a search space, respec-
tively. Therefore, the ath particle is represented as Xa =
(xa

11, . . . , x
a
p1; . . . ;x

a
ps), and V a = (va

11, . . . , v
a
p1; . . . ; v

a
ps) in

PSO-based resource allocation scheme. Next, let Xa = (xa
pj)

and V a = (va
pj) for simplicity. And let Pbesta = (xaPbest

pj )
and Gbest = (xGbest

pj ) be the best position of individual a
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and its neighbors’ best position so far, respectively. Using
the information, the velocity and position of individual a are
updated by the following law

V a(k + 1) = ωV a(k) + c1 ∗ <1 ∗ (Pbesta(k)−Xa(k))
+c2 ∗ <2 ∗ (Gbest(k)−Xa(k)),

Xa(k + 1) = Xa(k) + V a(k + 1),

where ω is the inertia weight factor; c1, c2 are the acceler-
ation constants; <1,<2 are uniform random values between
0 and 1; Xa(k) is current position of individual a at the
iteration step k; V a(k) is the velocity of individual a at the
iteration step k, V a

min < V a(k) < V a
max; Pbesta(k) is best

position of the individual a at the iteration step k;Gbest(k)
is best position of the whole group.

In the iteration rule above, the parameters V a
min and V a

max

determine the resolution, or fitness, with which regions
between the present position and target position. The con-
stants c1 and c2 represent the weighting of the stochastic
acceleration terms which pull each particle toward Pbest and
Gbest positions.

B. The Fitness Function

As for the fitness function in this scheme, notice that the
optimization problem is subjected to inequality constraints,
thus we adopt the PSO with penalty function in the scheme.
Then, the fitness function in our scheme is

Ff =
{

f(X), if the solution is feasible
f(X) + h(k)H(X), otherwise

(11)
where f(X) is the original objective function to be opti-
mized, h(k) is a penalty value, and H(X) is a penalty factor.

Following the main idea for choosing fitness function
above, we formulate the fitness function as the following
form:

Ff =





∑

s:s∈S

wsUs(
∑

p∈P (s)

xps), if
∑

s∈S(p)

xps ≤ Cp

∑

s:s∈S

wsUs(
∑

p∈P (s)

xps)

+
∑

p:p∈P

λp(Cp −
∑

s∈S(p)

xps), otherwise.

(12)
Thus if one particle satisfies all constraints, the solution
is feasible. Otherwise, an extra charge should be paid. It
is proportional to the amount of violation with very large
positive constant.

Thus the proposed scheme is to obtain the optimal position
(the optimal bandwidth allocation for peers) according to the
fitness function (the objective function) through the velocity
(the auxiliary variable).

V. SIMULATION RESULTS

In this part we will give some numerical examples to verify
the results above. In the simulation of PSO-based scheme,
the PSO strategy parameters c1, c2 are both chosen to 2 and
ω = 1 in order to guarantee the convergence of the algorithm.

A. Elastic Services

Firstly, we consider a simple P2P network which only
provides elastic services with utilities Us(ys) = log(ys + 1).
There are two service requesters and two service providers.
The willingness-to-pay is w = (w1, w2) = (2, 1), and the
upload capacity of providers is C = (C1, C2) = (4, 6)Mbps.
The swarm size is 20 and the maximum number of iterations
is 100. The simulation result is shown in Fig. 2. We can
observe that the optimum can be achieved within reasonable
iterations (e.g., 50 iterations). Furthermore, the optimum
obtained from the algorithm is equal to the value from (8).
Thus, the algorithm is efficient in solving the resource allo-
cation model and can achieve the optimum within reasonable
convergence times.
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Fig. 2. Aggregated utility for elastic services

Now we consider a large scale network which consists
of 100 service requesters and 100 service providers. The
willingness-to-pay is 2 for the first 50 requesters and 1 for
the rest. The upload capacities of service providers are all
5Mbps. We depict the performance of the proposed algorithm
in this case in Fig. 3.
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Fig. 3. Aggregated utility for elastic services in a large scale network

We observe that the size of the network (i.e., the number
of peers) does not affect the convergence speed of the
algorithm. The final objective increases with the number of
peers but, this value is reached with almost the same number
of iterations (e.g., 50 iterations). This is rather expected. The
algorithm is synchronously operated, and different peers run
the separate optimization steps in parallel. Thus the number
of peers does not alter the convergence speed obviously. In
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fact, the convergence speed mainly depends on algorithm
parameters other than the number of peers.

Now we consider the performance of the resource alloca-
tion algorithm with peer departures. The simulation setup is
identical with the one above except that the peers are not
static, that is, after a period of peer interaction 20 service
requesters and 20 service providers are leaving the network.
We depict the evolution of aggregated utility for the network
in Fig. 4. We find that the algorithm behaves well after the
transitional points of peer departures and is convergent to the
optimum within reasonable iteration times.
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Fig. 4. Aggregated utility for elastic services with peers departure

B. Elastic and Inelastic Services

Now, we consider a simple network consisting of two
different service requesters. The utility function of elastic
service is log(y1 + 1), and the sigmoidal utility function
of inelastic service is 2/(1 + e−(y2−4)) − 2/(1 + e4). For
this inelastic service, y0

2 = 5.5398 and λ0
2 = 0.2908. These

services are provided by two service providers.The upload
capacities of these providers are 4Mb/s and 6Mb/s, respec-
tively. The optimal bandwidth allocation is 3.9497Mb/s for
the elastic service and 6.0503Mb/s for the inelastic service.
And the optimal objective value is 3.3353, as shown in Fig.
5. The optimal price to the dual problem is λ = (λ1, λ2) =
(0.202, 0.202). The price at service provider 1 is equal to the
price at service provider 2 because at the optimal point both
these providers support the elastic service (or, the inelastic
service). The optimal price seen by the inelastic service, i.e.,
0.202, is less than the slope λ0

2 where the tangent from the
origin interests the sigmoidal function, i.e., 0.2908.

We depict the performance of the resource allocation
scheme using PSO in Fig. 6. Here we choose the swarm
size 20 and the maximum number of iterations 100. We
can observe that the algorithm can converge to the optimum
within reasonable iteration times.

Now we increase the number of both elastic and inelastic
services to 50 and consider the performance of the scheme.
There are 100 service providers. Each one has the upload
capacity 10Mb/s. As shown in Fig. 7, the resource allocation
scheme still converges to the optimum at about 50 iterations
in this large scale network.

Now we consider the performance of the resource al-
location algorithm with peers departure and arrival. The
simulation setup is identical with the one above except

Fig. 5. Optimum for resource allocation model
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Fig. 6. Aggregated utility of heterogeneous services
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Fig. 7. Aggregated utility of heterogeneous services in a large scale network

that the peers are not static, that is, after a period of peer
interaction some service requesters and providers are leaving
the network while other new service requesters and providers
join. That is, at iteration 50, 20 service requesters (10 peers
requesting elastic services and the others requesting inelastic
services) and 20 providers leave the network and after a
period time at iteration 100, 40 new service requesters (20
peers requesting elastic services and the others requesting
inelastic services) and 40 new service providers join the
network. The evolution of aggregated utility for the network
is shown in Fig. 8. Obviously, the algorithm behaves well
after the transitional points of peer departures and arrivals,
and it is still convergent to the optimum within reasonable

IAENG International Journal of Computer Science, 44:4, IJCS_44_4_09

(Advance online publication: 20 November 2017)

 
______________________________________________________________________________________ 



iteration times.
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Fig. 8. Aggregated utility for heterogeneous services with peers departure
and arrival

Finally we also analyze the affect of the swarm sizes on the
behavior of the resource allocation scheme using PSO and
depict the result in Fig. 9. We observe that the convergence
speed of the proposed algorithm is slightly improved by
increasing the swarm size from 20 to 100. Thus, as we have
observed in Figs. 3 and 7, the convergence speed mainly
depends on algorithm parameters other than the number of
peers.
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Fig. 9. Aggregated utility of heterogeneous services with different swarm
sizes

VI. CONCLUSIONS

In this short paper we present the utility maximization
model for resource allocation of heterogeneous services in
P2P networks. Firstly, we only consider the model for elastic
services. The optimal resource allocation for each service
can be obtained since the utilities of these services are all
concave. For the model with heterogeneous services, it is
a difficult nonconvex optimization problem, and is hard to
handle through traditional methods such as gradient-based
algorithms. We apply PSO approach to revolve the optimiza-
tion problem and develop a heuristic algorithm. Finally, we
verify the performance of the scheme with some numerical
examples.
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