
 

Abstract— A space travelling wave tube (STWT) is an 

important microwave device that serves as the final-stage 

power amplifier in satellite systems and performs high-power 

signal conversion. The focus of this paper is the multi-objective 

problem of improving the electronic beam efficiency and 

suppressing nonlinear distortion for the slow-wave structure 

design of the STWT. We propose a design method based on 

multi-objective cat swarm optimization with gravitational 

search operator (GS-MOCSO) to improve the slow-wave 

structure. Electron beam efficiency and phase shift are used as 

the two objective functions, and 1-D CHRISTINE code is 

introduced to obtain the output value of the STWT. Finally, the 

best pitch distribution can be calculated by GS-MOCSO. An 

experiment is conducted based on GS-MOCSO, and the 

traditional multi -objective cat swarm optimization (MOCSO) 

is introduced for a baseline performance comparison. The 

experimental results demonstrate that the electronic beam 

efficiency on the best pitch distribution obtained by 

GS-MOCSO reaches 40.2%, which is 10.2% higher than the 

rated value of 30%. Moreover, it is higher than the value 

achieved by MOCSO, which reaches only 38.5%. Then, the 

phase shift is only 36.5°, which is a reduction of 23.5° compared 

to the value 60° under a constant pitch. Extensive investigations 

were also performed on the varying trends of beam efficiency 

and phase shift using input power scanning. The proposed 

method is highly suitable for the slow-wave structure design of 

STWT, and the GS-MOCSO algorithm is superior to the 

MOCSO algorithm for the multi-objective problem (MOP) of 

beam efficiency and phase shift.  

 
Index Terms— space traveling-wave tube, slow-wave 

structure, multi-objective problem, cat swarm optimization, 

gravitational search operator 

I. INTRODUCTION 

travelling-wave tube (TWT) is a microwave device 

that amplifies an electromagnetic wave travelling 

along a slow-wave structure. TWTs are important 

microwave devices that are widely used in radar, electronic 

warfare, communications and other fields. A space 

travelling- wave tube (STWT) is a special type of  
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travelling-wave tube used in the space technology field; it 

serves as the final-stage power amplifier in satellite systems 

to perform high-power signal conversions. The STWT is the 

research target of this paper. An STWT is a critical 

component in satellite communications, thus, it must exhibit 

high efficiency, high gain and high linearity; consequently, 

the STWT manufacturing process must maintain high 

standards. The power amplification effect of an STWT 

depends on the interaction between the electron beam and 

electromagnetic wave, and the speed of the electromagnetic 

wave along the axial position should be nearly equal to that of 

the electron beam to achieve energy exchange. The circuit 

that generates travelling-wave fields along the axis is a 

slow-wave structure; pitch distribution is one of its core 

parameters. The primary target of pitch distribution design in 

a slow-wave structure is to improve the electron beam 

efficiency and reduce the phase distortion. The electronic 

beam efficiency and linear amplification characteristics of an 

STWT are controlled and influenced by each other; therefore, 

these values need to be solved through a multi-objective 

problem (MOP) optimization. In recent years, applying 

swarm intelligence optimization methods to solve MOPs has 

become a hot topic. The optimum pitch distribution is 

obtained through simulations to ensure both high electronic 

beam efficiency and small phase distortion. The slow-wave 

structure of an STWT can be designed contrapuntally to 

reduce the difficulty of this work. 

It is difficult to simultaneously improve the electronic 

beam efficiency and suppress nonlinear distortion for the 

slow-wave structure design of an STWT [1]–[2]. Previously 

published research studies have examined the effects of 

slow-wave structure parameters (i.e., length and pitch) on 

electron beam efficiency and gain, and some valuable results 

were obtained in [3]–[5]. In our previous paper, a new swarm 

intelligence algorithm, called quantum particle swarm 

optimization (QPSO) [6], was introduced to optimize the 

slow-wave structure of a TWT with 1-D CHRISTINE code 

and applied to find the optimal pitch distribution as in [7]. 

However, QPSO's convergence speed and efficiency 

improvement are unsatisfactory; therefore, a new intelligence 

algorithm should be developed to optimize the STWT 

slow-wave structure and obtain the best pitch distribution to 

maximize the electron beam efficiency. The cat swarm 

optimization (CSO) [8] is a recently developed intelligent 

algorithm based on swarm intelligence that imitates the 

natural behaviour of cats. The CSO has achieved excellent 

optimization results in many fields [9]–[13]. In recent years, 

scholars have focused on applying multi-objective PSO and 

multi-objective CSO algorithms to solve MOP problems, 

with excellent results, as detailed in [14]–[18]. To avoid 
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premature convergence and local optimum results, the 

gravity search operator derived from the gravity search 

algorithm is applied to improve the population diversity and 

obtain a high -precision solution, as in [19]–[20]. In addition, 

some new swarm intelligence algorithms [21]–[22] are also 

helpful for the algorithm research in this paper.  

The remainder of this paper is organized as follows. 

Section II introduces the pitch distribution optimization in the 

slow-wave structure and the 1-D CHRISTINE code. In 

Section III, a new GS-MOCSO is proposed such that each 

cat’s position is influenced by the gravitational force of the 

optimum cats, which generates a better population in the next 

iteration and helps avoid local optimum results. Section IV 

proposes applying the GS-MOCSO application flow to 

slow-wave structure design. To obtain the best pitch 

distribution, GS-MOCSO is used to solve the MOP to 

improve the electronic beam efficiency and suppress phase 

distortion. Section V presents an experimental analysis and 

discussion concerning the application of GS-MOCSO to 

slow-wave structure design. Electronic beam efficiency and 

phase shift are set as the two objective functions, and the 

GS-MOCSO is compared to MOCSO regarding multi- 

objective optimization performance and the change trend of 

pitch distribution. Finally, in Section VI, some conclusions 

are drawn. 

II. SLOW-WAVE STRUCTURE DESIGN 

The primary objective of pitch distribution optimization in 

the slow-wave structure design of STWT is to achieve higher 

electronic beam efficiency and lower nonlinear phase shift. 

The influence mechanism of pitch distribution on the 

beam-wave interaction of slow-wave structure is explained in 

detail in the chapter, and the calculation process of 1-D 

CHRISTINE code is also given. 

A. Pitch distribution in slow-wave structure 

The STWT studied in this paper is a helix traveling-wave 

tube. Fig 1 shows a diagram of helix slow-wave structure in a 

STWT. In the slow-wave structure, the electromagnetic wave 

velocity is kept synchronized with the electron beam velocity 

to generate interaction and energy exchange between them, 

and it is reduced and becomes practically equal to the 

electron beam velocity through the pitch variation in the 

slow-wave structure. During this process, the 

electromagnetic wave can be amplified in the interaction 

region and its energy is transferred to electron beam. 

In the axial direction, it can also be divided into the 

following sections: input section L0 (length l0, pitch P0), 

phase velocity increase section L1 (length l1, pitch P1), phase 

velocity decrease section L2 (length l2, pitch P2). In the L1 

section, phase compensation and effective electron beam 

bunching can be completed, in the L2 section, as much 

bunching electron beam energy as possible is transferred to 

the high frequency field to improve the electronic beam 

efficiency of the STWT. During the electron beam bunching 

process, nonlinear distortion began to appear, the harmonic 

distortion arises from the incentive function of harmonic 

current generated by bunching process in the slow-wave 

structure, and reflection effect in the slow-wave structure 

generate intermodulation distortion. A set of pitch values {P0, 

P1, P2} form a pitch distribution, that directly determines the 

energy exchange efficiency between the electron beam and 

electromagnetic wave. The gradient or jump change in the 

pitch is an effective to realize phase velocity resynchron- 

ization, and it is also the most frequently used slow-wave 

structure of a STWT to improve electronic beam efficiency 

and suppress nonlinear phase distortion. The paper is to study 

the best pitch distribution along the axis in the interaction 

region of STWT.  

 
Fig 1. Diagram of helix slow-wave structure in a STWT 

B. Calculation process of 1-D CHRISTINE code 

In this paper, 1-D CHRISTINE code as in [5] is used for 

theoretical analysis and numerical simulation of slow-wave 

structure. The basic equations of 1-D nonlinear beam-wave 

interaction in STWT are expressed as: 

The field equations of nonlinear theory can be expressed 

as: 
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The normalized total field is: 
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The space step integration method is usually used to solve 

the Eq. (1) - (3), the iterative computation is executed using 

the 4th-order Runge-Kutta method. The output parameters of 

the STWT such as output power, phase shift, gain, beam 

efficiency, can be calculated by the 1-D CHRISTINE code 

under the conditions of suitable normalized complex 

amplitude, electron phase and relativistic factor. 

The output power P of the normalized complex amplitude 

in electromagnetic field  zan
 is as follows: 
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The gain G is defined as: 

)lg(10 inPPG                                                        (7)   

Electronic beam efficiency
eff is defined as 
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TABLE Ⅰ  

PHYSICAL PARAMETER INTERPRETATION 

Function Expression 

AI  Current constant (
4107.1  A) 

znk  The longitudinal propagation constant of the nth 

harmonic 

 xen
 The n th normalized harmonic of the field 

 n  Electron phase 

  Relativistic factor 

0z  The initial axial velocity 

n  Harmonic number of the field 

n  the harmonic number in the AC space charge field 

bor  Inner radii of the electron beam 

bir  Outer radii of the electron beam 

outP
 RF output power 

inP
 RF input power 

eP
 

Electron beam power 

bI
 Current of the electron beam 

bV
 Voltage of the electron beam 

ix
 

Helix pitch value 


 

A pitch distribution (a set of pitch values) 

III. AN INNOVATIVE MULTI-OBJECTIVE CAT 

SWARM OPTIMIZATION ALGORITHM 

The simultaneous electronic efficiency improvement and 

nonlinear distortion suppression of STWT need to be solved 

by multi-objective optimization. The excellent performance 

of multi-objective cat swarm optimization algorithm 

(MOCSO) has been demonstrated for various optimization 

problems. This paper proposes a innovative MOCSO 

algorithm with gravitational search operator, and several 

optimization problems are tested to demonstrate its 

superiority compared to existing algorithms. 

A. Multi-objective problem 

Multi-objective problem is composed of the variable 

vector X , the vector objective function Y  and a set of 

constraints, the model is defined as: 
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When u  performs better than v  for at least one objective, 

we define that solution u dominates v . The notation Xx *  

indicates that when solution *x  is not dominated by any other 

solutions, a Pareto-optimal solution is obtained in X. The 

curve containing all the Pareto-optimal solutions is defined as 

Pareto-optimal front. The solutions on a Pareto-optimal front 

are called non-dominated solutions. The various objective 

functions in MOP are not directly comparable and may not 

conflict with each other, so the MOP has no just one optimal 

solution for all objective-functions, but has a set of solutions 

called the "Pareto-optimal solution set". 
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A
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Fig 2. Schematic diagram of the objective function space particles trend and 

Pareto front 

B. Multi-objective cat swarm optimization (MOCSO) 

The cat swarm optimization method was proposed by Chu 

and Tsai [8] and imitates the constant attentive behaviour of 

cats. Even at rest, cats remain alert so they can hunt and catch 

moving prey, and cats move slowly when seeking potential 

hunting opportunities. This behaviour is termed “seeking 

mode”. After locking onto prey, cats increase their speed and 

may use much energy to capture it. This behaviour is termed 

“tracing mode”. Seeking mode enhances the global search 

capability, whereas tracing mode enhances the search 

accuracy to perform efficient local searches. Cats are 

distributed to prey according to a mixture ratio (MR). The 

steps of the MOCSO algorithm are as follows. 

1. The solution space is d-dimensional (1<d<D). The 

positions of cats are randomly initialized in d-dimensional 

space, where 
dix ,

is the position of the i-th cat in the d-th 

dimension. 

2. Initialize the velocity of cats, where div ,  is the velocity of 

the i-th cat. 

3. Randomly assign cats to either seeking mode or tracing 

mode based on the MR. 

4. Evaluate all cats’ fitness values. 

5. Store the cats' positions (the Pareto-optimal solutions) in 

an archive. 

6. If the algorithm's termination conditions are satisfied, 

terminate the algorithm; otherwise, repeat steps 3 to 5.  
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C. GS-MOCSO algorithm 

The mechanism of CSO algorithm generating population 

position does not fully consider the position information of 

other optimum cats, so it's hard to adequately guarantee the 

diversity of the cats. When the best position is not at or near 

the starting point, the CSO result may not be sufficiently 

ideal and may gradually fall into a local optimum point. In 

this paper, we introduce a universal gravitation search 

operator to increase the diversity of the cats and improve the 

global optimization capability. A MOCSO with gravitational 

search operator (GS-MOCSO) algorithm is proposed in 

which the position of each cat is influenced by the 

gravitational forces of the other optimum cats, thus 

generating a better population in the next iteration to avoid 

premature convergence and local optimums. 

 

Linear MR 

The global search range can be improved by increasing the 

ratio of seeking cats in early stages. An increase in the ratio of 

tracing cats will improve the local search accuracy and 

guarantee the convergence of the algorithm in later stages. 

The expression determining the search mode distribution of 

cats based on linear mixture ratio MRL is as follows: 

max

minmaxmaxL )(
IT

t
MRMRMRMR 

                        
 

(11)

                                     
Where MRmax and MRmin are the highest and the lowest 

values of mixture ratios, t is the current iteration number, and 

ITmax is the maximum iteration number. MRL can dynamically 

adjust the cat mode distribution to optimize the values of MR. 

 

Seeking Mode (SM) 

In seeking mode, a cat constantly moves toward its next 

position. Four parameters used to define this mode: the 

probability of a mutation operation (PMO), the counts of 

dimensions to change (CDC), The seeking memory pool 

(SMP), and the seeking range of the selected dimension 

(SRD). 

Step 1. Based on the SMP, K copies of the i-th cat are 

generated. 

Step 2. The CDC is produced for every cat; thus, a 

population of cats is generated. For the entire cat swarm, a 

mutation is performed according to the SRD. 

Step 3. Evaluate the fitness of all K copies.  

Step 4. Nondominated selections are used to define the 

nondominated cat positions on the basis of their fitness 

values. The nondominated cat positions are stored in an 

external archive. 

Step 5. Replace the current position of 
icat  with the 

optimum solution in the SMP.  

 

Tracing Mode (TM) 

In tracing mode, cats change their positions quickly to 

pursue their prey. The next movement direction of each cat is 

determined based on the cat's velocity and the best position in 

the cat swarm.  

We define the ith cat position as dix , and the velocity of  

the ith cat as div , , where )...,,,( ,3,2,1,, Diiiidi xxxxx  and 

)...,,,( ,3,2,1,, Diiiidi vvvvv  . The global best position 
dgx ,

of the 

cat swarm is denoted as )...,,,( ,3,2,1,, Dggggdg xxxxx  . 

According to the status (seek or trace) of each cat, the 

mathematical model of the tracing mode is established as 

follows: 

Step1. The solution space is d-dimensional (1<d<D). 

Compute the new velocity of the ith cat. The velocity of the 

ith cat in every dimension is updated by 

)( ,,,, didgdidi xxrcvwv                             (12)                     

Where w is inertial weight, c is acceleration constant and 

r is a random number in [0, 1]. The initial global best 
dgx ,

is 

selected randomly from the external archive. 

Step2. Compute the new position of the ith cat. 

didi

n

di vxx ,,,                                                                 (13) 

Step3. If the new position of the ith cat in any dimension 

is out of the search space range, the velocity of the current 

dimension is set to the boundary value and is multiplied by -1 

to the reverse search direction. 

Step4. Evaluate the fitness of all cats. 

Step5. The external archive is updated by new positions 

which represent nondominated solutions. 

 

Gravitational Search Process 

Gravity search operator is introduced into MOCSO in this 

paper. The dimension information of cats can be changed by 

applying the displacement operation according to 

interactions and gravitational forces between cats. The 

nondominated optimal solutions information in external 

archive is shared in the whole population to ensure that every 

cat improves a poor dimension value. The set of all cats’ new 

positions updated by gravity is generated as the initial 

population
 
in the next iteration. 

The gravitational and inertial masses are expressed by the 

following Eq. (14) - (15): 
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Gravitational and inertial masses are calculated using the 

fitness evaluation. A heavier mass means a better cat, 

meaning that better cats have greater attraction and move 

more slowly. )]([ tXf  represents the fitness value of 

cat )(tX at time t, and )(tW is the aggregation of N 

cats )(tX at time t . The set of all cats is Na, and the ji, cat 

position is dix , djx , (1<d<D). The first 2*N cats of greatest 

mass from 
aN (small fitness value) are selected to form the 

optimum cats (R) used as the attractive element to exert a 

gravitational effect on )(tW . The gravity is defined as: 
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                         Where 
diF ,

is the sum of the forces on the ith cat in the 

d-dimensional space, G is the gravitational constant, 
iM is 

the passive inertial mass related to the ith cat, jir , is the 

Euclidean distance between the ith and jth cats, and  is a 

small constant. Under gravity 
diF ,

, the ith cat dix ,  
exhibits a 

position change in each dimension, and new position dix ,
'

is 

express as:  

idididi Mxx ,,,
' F

。                                                

(17) 

)...,,,()( 321 ixxxxtV  is the set of all cats’ new positions 

updated by gravity. According to the fitness value, N cats are 

selected from the set )}()({ tVtW  and set as the initial 

population )1( tX in the next iteration.  

Based on the gravitational action of  2*N cat with the best 

fitness values, the poor positions information of other cats 

can interact with optimum cats (nondominated optimal 

solutions) in each dimension to increase the diversity of cats 

and prevent falling into local optimum. The schematic 

diagram of GS- MOCSO algorithm is shown in Fig 3. 
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Fig 3. Schematic diagram of GS-MOCSO algorithm 

D. Simulation test of algorithms 

According to the proposed GS-MOCSO algorithm, each 

cat can appear in an arbitrary position in the solution area, 

and the entire population will be scattered within the area of 

the solution set. The evaluation of the nondominated optimal 

solution avoids becoming stuck in the best position of one 

objective function. More importantly, it reflects the 

constraint relationship among the multi-objective functions. 

Some simulation experiments were implemented in 

MATLAB to demonstrate the performance of GS-MOCSO 

for this complex multi-objective problem. The performance 

of GS-MOCSO is validated compared to MOCSO and 

MOPSO using the results obtained from four standard test 

functions, as shown in Table Ⅰ. The Pareto fronts calculated 

by the GS-MOCSO, MOCSO and MOPSO algorithms for 

test functions 1~4 are shown in Table II.   

The initialization parameters for MOPSO are as follows: 

archive size = 100, inertia weight = 0.25, acceleration 

constant = 2, random number is in [0, 1]. The initialization 

parameters for GS-MOCSO and MOCSO are as follows: 

SMP = 3, SRD = 0.1, CDC = 80%, MR = 0.5, MRmax = 0.75, 

MRmin =  0.25, C = 2, w = 0.5, archive size = 100 and r is in [0, 

1], the maximum iterations = 500. The results obtained from 

20 independent simulations are recorded and the best average 

result is shown on Pareto-font curves in Fig 3. 
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TABLE Ⅲ  

COMPARISON OF GS-MOCSO WITH MOCSO, MOPSO ON ALL THE 

FOUR TEST FUNCTIONS 

Parameter GS-CMCSO CMCSO CMPSO 

Test function 1 

1min f  1.9281 2.5639 2.3916 

2min f  0.3529 0.1590 0.2057 

Computation time 1.07315s 1.0665s 1.0452s 

Test function 2 

1min f  0.9005 0.9170 0.9238 

2min f  0.0010 0.0023 0.0031 

Computation time 0.09492s 0.097s 0.0887s 

Test function 3 

1min f  0.0000e+248 0.0000e+250 0.0000e+250 

2min f
 

-1.2365e+248 -7.6602e+250 -2.3713e+250 

Computation time 2.4434s 2.3482s  2.1071s 

Test function 4 

1min f  1.5983 0.9965 1.0520 

2min f  1.9375 4.0139 3.7948 

Computation time 0.0309s 0.0296s 0.0264s 

 

Test functions 1~4 each contain two objective functions 

 xf1
 and  xf 2

 for solving the minimization problem. The 

cats' positions are initialized and then evaluated by the two 
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objective functions to obtain Pareto-optimal solutions. As 

shown in Fig. 4, the solutions are uniformly distributed over 

the effective surface of the objective functions by iterative 

computation, the curves are clear and complete, and the 

results demonstrate the accuracy and reliability of the 

GS-MOCSO algorithm . GS-MOCSO, MOCSO and 

MOPSO can all traverse the entire Pareto-front. The 

GS-MOCSO algorithm performs best in finding the 

minimum value solution of  xf1
 xf 2

 except regarding 

computation time, as shown in Table Ⅲ.  

In MOPSO, the updating process for particle velocity and 

position is quite approximate in each iteration. Because the 

seeking and tracing modes must be executed independently, 

MOCSO requires more computation time than MOPSO. In 

GS-MOCSO, all the cats’ positions are updated at the end of 

each iteration by the gravitational search operator; then, the 

new initial population is generated. Hence, GS-MOCSO 

performs more operations on the cats than do the MOCSO 

and MOPSO algorithms. Consequently, GS-MOCSO 

requires more computing time on the test functions than do 

MOCSO and MOPSO.  

IV. APPLICATION PROCESS OF GS-MOCSO 

ALGORITHM FOR SLOW-WAVE STRUCTURE DESIGN 

In general, in order to obtain better linear amplification 

capability, the STWT outputs RF signals before saturation, 

but this is at the expense of reducing the electronic beam 

efficiency. The comprehensive processing of the electron 

beam efficiency and nonlinear phase distortion in slow-wave 

structure design of STWT is a typical multi-objective 

problem. The optimization target in this paper is to achieve 

higher electronic beam efficiency and lower nonlinear phase 

distortion simultaneously. By setting the electronic beam 

efficiency and phase shift as the two objective functions, the 

proposed GS-MOCSO algorithm is used to optimize the 

slow-wave structure of the helix STWT. 

A. Mathematical model 

The electronic beam efficiency 
eff  is defined as the ratio 

of power difference (between the RF output power outP  

and the RF input power inP  ) and the electron beam power. 

The magnitude of phase shift  iPha   represents the degree 

of nonlinear phase distortion, which indicates that the output 

phase is affected by the change of input power. A larger 

phase shift indicates the more serious nonlinear phase 

distortion. The multi-objective function is defined as follows: 

     

       












dBmPPPhaf

VI

PxP
Pxf

ininii

bb

iniout
meff

20min

,max

2

1




           (18) 

The multi-objective function has two objective functions, 

 xf1  and  if 2 , which represent electronic beam 

efficiency  meff P,  and phase shift  iPha  , respectively. 

dix ,
is a helix pitch distribution (a set of pitches), and 

 represents various physical parameters that affect the 

electronic beam efficiency of STWT, such as the radius of the 

metal vacuum barrel, the average radius of the helix, and the 

outside radius of the helix.  inP  BmPin 20 are the 

phases obtained for the input power of inP  and BmPin 20 , 

respectively. The difference between them is set as the phase 

shift  iPha  . 

B. Experimental parameters  

The PC used in the experiment is configured with a 3.8 

GHz Intel Core i7 CPU and 8 GB of RAM running 

MATLAB 2014a. The operating parameters are 

representative of the base performance of a STWT, such as a 

5 GHz operating frequency, 50–52 dBm peak output power, 

1 GHz gain bandwidth, 940 gauss Brillouin magnetic field, 

and electron beam parameters (3,000 v beam voltage, 170 

mA beam current, 0.36 mm beam radius, etc.) This study 

focuses on the pitch distribution in the helix slow-wave 

structure, which is the most important factor that affects the 

electronic beam efficiency and phase shift. Our program 

holds some parameters constant, such as the radius of the 

metal vacuum barrel (0.2974 cm), the outside radius of the 

helix (0.13970 cm), the average radius of the helix (0.12446 

cm), the helix tape width (0.03556 cm), the electron beam 

filling rates (0.5), the edge lengths of the support rods 

(0.0508× 0.14732 cm), and the clamping rod equivalent 

relative dielectric constant (1.75 BeO ), and so on.  

The role of the input section of the slow-wave structure is 

to focus the electron beam. In an STWT with good beam 

efficiency, the electron beam delivers maximal energy to the 

electromagnetic wave in the slow-wave structure, and the 

beam-wave interaction is guaranteed to occur only in the 

output section instead of the input section. Therefore, the 

helix pitch of the input section is held constant (0.8014, mm), 

and the focus in this experiment is to optimize the helix pitch 

in the output section. The total length of the output section in 

our experimental STWT is approximately 70 mm, and it is 

divided into seven sections whose initial length is 10 mm.  
 

TABLE Ⅳ  

GS-MOCSO INITIALIZATION PARAMETERS 

Parameter Value 

Initial cats 100 

D (Maximum dimension) 7 

SMP 3 

SRD 0.1 

CDC 80% 

MRmax 0.75 

MRmin 0.25 

w  0.2~0.75 

c  2 

r  [0,1] 

  0.03 

G 100* e-20 

 

The pitch variation range in each section is 0.7~0.9 mm based 

on practical experience. TableⅣ shows the initialization 

parameters of the GS-MOCSO algorithm. Cat
dix ,

defines a 

pitch distribution. The pitches in a pitch distribution set are 
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denoted as Pitches 4~10 and are given in mm. The total 

number of initial cats is 100; these represent 100 sets of pitch 

distributions recorded during the actual manufacturing 

process. The termination criterion for all algorithms is the 

maximum number of iterations (500). Because of the random 

nature of the optimization process, the experiments were all 

executed independently 20 times. 

C. Experiment procedures 

Based on the initial parameters, the 1-D CHRISTINE code 

used in the GS-MOCSO algorithm can obtain the output 

power by solving Eq. (1). It then calculates the electronic 

beam efficiency, which also measures the phase shift. As a 

result, the two objective functions  xf1
 and  if 2  can be 

evaluated. A Pareto-optimal front is obtained after the 

multi-objective optimization, based on the actual 

manufacturing requirements. After continuous optimization 

by GS-MOCSO, the best pitch distribution value 
dx ,g

that 

results in the highest electronic beam efficiency and lowest 

phase shift is calculated. Next, the actual pitch distribution in 

the slow-wave structure is implemented on 
dx ,g

 to improve 

the manufacturing efficiency and reduce test costs.  

The algorithm's parameters are initialized before 

optimization. Each cat represents a pitch distribution. 
dix ,
is 

the position of the i-th cat in the d-th dimension (1<d<D), 

which is the i-th pitch distribution (d is the number of 

sections in the helix). The cats’ positions are initialized using 

the constant 0.8014 mm and varied within the initial range of 

0.7~0.9 mm. The cat population size is 100, and the 

maximum number of iterations ITmax is 500. The 

GS-MOCSO parameters are set as shown in Table III. The 

cats are distributed among the two modes using MRL and can 

be detailed as follows: 

 

Seeking Mode 

The parameters, including PMO, CDC, SMP, and SRD, 

are initialized.  

1. The SMP copies of the i-th cat are produced. 

2. For each cat, the CDC is determined; thus, a population 

of cats is generated. 

3. For the entire cat population, mutation is performed 

according to the SRD. 

4. The fitness is evaluated for the i-th cat (the i-th set of 

pitches) according to Eq. (18). The electronic efficiency and 

phase distortion are obtained by the dispersion and coupling 

impedance module, the 1-D CHRISTINE code module, and 

the phase shift module. These calculations provide the two 

fitness values for the i-th cat. 

5. The nondominated cat positions are selected based on 

their fitness values, stored, and updated in the external 

archive. 

 

Tracing Mode 

1. The position 
dix ,

 and velocity div ,  of the i-th cat in the 

d-th dimension are updated by Eq. (17) to trace the targets 

and approach the optimum solution
dgx ,

.  

2. The fitness of all cats is evaluated in the multi-objective 

function concerning electronic beam efficiency and nonlinear 

phase distortion, where 1

,g dx  is the best solution for the 

electronic beam efficiency, and 2

,g dx is best for phase shift. 

The two objective functions collectively determine the 

optimal position of each cat. The weighted average method is 

used to evaluate the compromise values of electronic 

efficiency and phase shift. The expression is as follows: 
2

,g

1

,g,g )1( ddd xaxax  ,                          (19) 

where 
dgx ,

 is the weighted average of 1

,g dx and 2

,g dx , 

]1,0[a . The effects of 1

,g dx  or 2

,g dx  on 
dgx ,

 are 

determined as the change of a . When a  has larger values, 

we pay more attention to improving electronic beam 

efficiency. When a has smaller values, we pay more 

attention to reducing the phase shift.  

3. The contents of the archive are updated with the cats’ 

positions, which represent a nondominated optimal solution. 

4. Optimizing the gravitational search operator. Under the 

influence of the gravity of cats with heavier gravitational and 

inertial mass, the other cats exhibit a positional change in 

each dimension to ensure that every cat improves poor 

dimensional values. The new cat positions are generated as 

the initial population
 
for the next iteration.  

5. The seeking and tracing processes repeat until the 

optimization criterion is achieved. The algorithm outputs the 

dx ,g  
that expresses the best pitch distribution after the total 

optimization process is completed. 

V. EXPERIMENT AND ANALYSIS 

Based on the evaluation criteria of multi-objective 

function, the GS-MOCSO algorithm is combined with the 

1-D CHRISTINE code and applied to the slow-wave 

structure design to implement experiment. The experiment is 

to find a best pitch distribution that produces higher beam 

efficiency and lower phase shift. 

A. Single objective function optimization  

In this paper, to verify the superiority of the 

multi-objective model, the GS-MOCSO algorithm first 

performs single-objective function optimization. We set 

 xf1  as the objective function to optimize only the 

electronic beam efficiency and set  if 2  as the objective 

function to optimize only the phase shift.  

 

Improve electronic beam efficiency only 

Because the first objective only improves the electronic 

beam efficiency, its efficiency is rapidly improved by the 

GS-MOCSO algorithm. The optimization curve of electronic 

beam efficiency is shown in Fig 5 (a), in which the x-axis 

represents the iteration number and the y-axis represents 

beam efficiency. The optimization curve rises steadily in the 

early stages and tends to stabilize after 5 iterations, during 

which the beam efficiency rises from 30% to 38.3%. Then, 

the curve rises steadily and finally reaches the optimum beam 

efficiency of 42.6% at the 18th iteration. Compared to the 

rated efficiency of 30% for STWT, GS-MOCSO improves 

efficiency by 12.6%. However, the improvement in 

electronic beam efficiency comes at the expense of linear 
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performance. The pitch distribution with optimum beam 

efficiency causes a phase shift of approximately 110°, which 

exceeds the phase shift range of the STWT. The phase 

distortion caused by the slow-wave structure design when 

only the electronic beam efficiency is optimized is very 

serious.  

 

Decrease phase shift only 

The optimization on only the phase shift by the proposed 

GS-MOCSO algorithm is shown in Fig. 5(b), in which the 

x-axis represents the iteration number and the y-axis 

represents phase shift. Because the objective function only 

affects the phase shift, the phase shift curve decreases 

gradually with the increasing iterations falling from an initial 

value of 60.2° to the optimum value of 2.1° and achieves 

convergence after only 22 iterations. However, the pitch 

distribution obtained by optimizing only the phase shift does 

not improve the electronic beam efficiency, which 

consistently remains at approximately 28.8%.  

 
(a) 

 
(b) 

 Fig 5. The optimization on electronic efficiency only (a) phase shift only (b) 

by the proposed GS-MOCSO algorithm 

 
Fig. 6. Pitch distributions when only beam efficiency is optimized and only 

phase shift is optimized  

The pitch distributions with optimal beam efficiency and 

optimum phase shift are shown in Fig. 6. The x-axis 

represents the helix section number along the STWT axis and 

the y-axis represents the pitch value of the corresponding 

section in mm. The graphed pitch distribution contains 

constant pitches 1~3 in the input sections and pitches 4~10 in 

the final seven sections of the output. The pitch distributions 

with optimal beam efficiency and phase shift are shown in 

Table VI. Based on the experimental results above, the 

electronic beam efficiency enhancement and the phase shift 

reduction are a set of incompatible objective functions. This 

situation requires that the proposed method must improve not 

only the beam efficiency but also ensure that the STWT 

works in a linear state and reduce its nonlinear phase 

distortion in the slow-wave structure design. 

B. Multi-objective optimization  

This study aimed to find a best pitch distribution that 

produces higher beam efficiency and lower phase shift. 

Therefore, multi-objective optimization was implemented to 

avoid finding the best position for just one of the 

multi-objective functions. An optimized result reflects the 

constrained relationship among electronic beam efficiency 

and phase shift.  

In this experiment, we apply the proposed GS-MOCSO 

algorithm to the slow-wave structure design of STWT. 

MOCSO is used as a baseline performance comparison to 

evaluate the capability and versatility of GS-MOCSO. The 

rated beam efficiency of the STWT with constant pitch is 

approximately 30% and the initial phase shift is about 60°. 

The constant pitch distribution is 0.8014 in each helix section 

and is set as the cats’ initial positions. a is 0.6, as in Eq. (18), 

which represents that the importance of electronic beam 

efficiency is slightly more important than that of phase shift 

reduction. The results obtained by GS-MOCSO and MOCSO 

from 20 independent simulations are recorded. The 

optimized beam efficiency and phase shift values of MOCSO 

and GS-MOCSO are shown in Table V and compared to the 

results of only beam efficiency optimization and only phase 

shift optimization. As shown by Fig 7, the solutions are 

uniformly distributed over the effective surface of the two 

objective functions by iterative computation. The 

Pareto-front curve of GS-MOCSO is clearer and more 

complete. By comparison, the Pareto-front curve of MOCSO 
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is more concentrated at the lower part of the figure and is 

more affected by beam efficiency. The accuracy and 

reliability of the GS-MOCSO algorithm is better than 

MOCSO for the MOP in slow-wave structure design. 

A comparison of the best pitch distributions with higher 

beam efficiency and lower phase shift generated by the 

GS-MOCSO and MOCSO algorithms is shown in Fig. 8. The 

x-axis represents the helix section number along the axial 

directions, and the y-axis represents the pitch value of the 

corresponding helix section. The graphed pitch distribution 

includes the first three sections (pitch 1~3) with a constant 

value of 0.8014 mm and the seven output sections (pitch 

4~10) with the set of best pitches on GS-MOCSO and 

MOCSO. The first three sections, pitches 1~3, are the input 

part of the slow-wave structure where the pitch remains 

constant because it has little impact on the electronic beam 

efficiency. The latter seven sections, pitches 4~10, are the 

output where the pitches are the optimized results from the 

multi-objective functions. As shown in Table Ⅴ, the best pitch 

distribution is generated by GS-MOCSO ([0.8905, 0.8379, 

0.8836, 0.8416, 0.7898, 0.8033, 0.7935] (mm)). The best 

beam efficiency is 40.2%, which is an improvement of 10.2% 

compared with the initial value. Then, the optimized phase 

shift is 36.5°, a reduction of 23.5° below the initial value. The 

GS-MOCSO effectively improves the electronic beam 

efficiency of STWT while ensuring the phase shift reduction, 

achieving the experimental goal. In contrast, the best pitch 

distribution achieved by MOCSO is ([0.8725, 0.8632, 

0.8694, 0.8158, 0.7765, 0.7741, 0.7869] (mm)), with a best 

beam efficiency of 38.5% and phase shift of 36.8°, which are 

8.5% and 23.2° better than their initial states, respectively.  

 
(a) 

 
(b) 

Fig  7. Pareto-front obtained with GS-MOCSO (a) and MOCSO (b) after 

multi-objective optimization for electronic beam efficiency and phase shift. 

The phase shift reduction of the two algorithms is almost 

the same (23.5° vs. 23.2°), but the best beam efficiency of 

GS-MOCSO reaches 40.2%, which is significantly higher 

than the 38.5% achieved under MOCSO and only 2.4% lower 

than that achieved on beam efficiency alone. From Fig. 8, we 

can observe from that the pitches generated by GS-MOCSO 

are generally larger than those of MOCSO during the phase 

velocity increase section (pitches 4~7) and are lower during 

the phase velocity decrease section (pitch 8~10). The beam 

efficiency is more sensitive to pitch in the phase velocity 

increase section where the electron beam focus can be 

optimized. The phase velocity decrease section primarily 

performs the energy exchange between the electron beam and 

the electromagnetic waves, and properly reducing pitch can 

reduce electron beam energy loss. The results are consistent 

with the physical STWT mechanism. The varying amplitude 

of pitch value among the adjacent helix sections in the best 

pitch distribution optimized by GS-MOCSO is noticeably 

greater than that of MOCSO. Furthermore, the pitch 

distribution by GS-MOCSO is closer to the pitch jump 

change than that of MOCSO, which is closer to the gradual 

pitch change. The pitch jump change is more suitable for 

rapidly improving the output power and beam efficiency. 

Consequently, the optimization results of the GS-MOCSO 

algorithm are more consistent with the physical STWT 

mechanism.  

 
Fig  8. Comparison of the pitch distributions with best beam efficiency 

generated by the QPSO, MOCSO and GS-MOCSO 

C. Input power scanning 

According to the best pitch distributions generated by 

MOCSO and GS-MOCSO, we apply the 1D-CHRISTINE 

code to conduct the input power scanning experiment. The 

varying trends of beam efficiency and phase shift with input 

power scanning is shown in Fig 9, where the x-axis 

represents input power, and the y-axis represents the 

electronic beam efficiency (a) and phase shift (b), 

respectively.  

In Fig. 9(a), the beam efficiency increases as the input 

power increases. The maximum value reached by 

GS-MOCSO is 40.2% under an input power of 16 dBm. The 

maximum value reached by MOCSO is 38.5% under an input 

power of 14 dBm. However, as the input power continues to 

increase (to >20 dBm), the electronic beam efficiency drops 
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significantly and falls below the rated efficiency (30%). The 

MOCSO curve reaches its maximum at a smaller input power 

compared to GS-MOCSO. The best pitch distribution 

obtained by MOCSO causes the STWT to enter saturation 

earlier and slightly lose efficiency. In addition, for the 

GS-MOCSO curve, the input power range is larger (16 dBm 

to 12 dBm) when the beam efficiency is higher than the rated 

value. The maximum beam efficiency is greater (40.2% 

compared to 38.5%), and GS-MOCSO avoids the saturation 

point phenomenon of STWT to a certain extent.  

In Fig 9(b), the phase shifts with maximum efficiency are 

36.5° and 36.8° according to the GS-MOCSO and MOCSO 

curves. These values are obviously better than the phase shift 

(60%) under a constant pitch. As the input power continues 

to increase, the phase shift decreases, but the beam efficiency 

is lower than rated value. Therefore, the input power 

condition is no longer applicable. 

 
(a) 

 
(b) 

Fig  9. Curves on variation trends of electronic beam efficiency (a) and 

phase shift (b) with input power scanning 

VI. CONCLUSIONS 

The electronic beam efficiency and phase shift of STWT 

directly depend on the pitch distribution in the slow-wave 

structure. The simultaneous efficiency improvements and 

phase shift suppression must be solved using multi-objective 

optimization. This paper proposes a multi-objective cat 

swarm optimization with a gravitational search operator 

(GS-MOCSO) that has good global search capability and 

accurate convergence. The proposed optimization updates all 

the cats’ positions and generates new positions for the next 

iteration based on the gravity operator. The GS-MOCSO is 

used to solve the MOP to improve beam efficiency and 

suppress phase shift. In the experimental results, the best 

beam efficiency of GS-MOCSO was 40.2%, which was 

10.2% higher than the rated value and significantly higher 

than the 38.5% achieved by MOCSO. Moreover, the phase 

shift was 36.5°, which is 23.5° better than the value (60%) 

under constant pitch. In addition, the MOCSO reaches its 

maximum at a smaller input power than does GS-MOCSO. 

The best pitch distribution obtained by MOCSO causes the 

STWT to enter saturation earlier. In addition, the range of 

input power is wider (16 dBm to 12 dBm) when the 

efficiency is above the rated value, and the maximum beam 

efficiency is greater (40.2% compared to 38.5%) using 

GS-MOCSO. The GS-MOCSO is superior to MOCSO for 

the MOP of beam efficiency and phase shift. More 

importantly, although our research is focused on the 

slow-wave structure design in a STWT, GS-CMCSO can be 

applied to other complex multi-objective problems in the 

electromagnetic energy and microwave fields. 

At present, these experiments results have shown that 

under gravitational search operator, the poor positions 

information of cats can interact with optimum cats 

(non-dominated optimal solutions) in each dimension to 

increase the diversity of cats and prevent falling into local 

optimum. But all cats’ positions are updated by gravitational 

search operator at the end of each iteration, GS-MOCSO 

need more computing time than MOCSO. As future work, we 

will plan to further study how to deal with the computing 

time problem of gravitational search operator. In addition to 

the electronic efficiency and phase shift, there are some 

parameters including output power, gain, second-harmonic, 

third-order intermodulation and so on, we will apply the 

GS-MOCSO algorithm to solve more complex 

multi-objective optimization problems of STWT. 
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Fig  4. The diagram of test function 1~4 calculated by GS-MOCSO, MOCSO and MOPSO algorithms 

 

 

TABLEⅤ  

OUTPUT PARAMETER ON BEAM EFFICIENCY OPTIMIZED ONLY AND PHASE SHIFT OPTIMIZED ONLY 

Iterations number Iter1 Iter2 Iter3 Iter Iter16 Iter17 Iter18 Iter19 Iter Iter22 

 

GS-MOCSO 

optimized 

Beam efficiency 

only (%) 

30.43 32.43 35.72 ... 40.32 41.56 42.12 42.62 ... ... 

Phase shift only 

(degree) 

60.201 58.537 57.544 ... 20.208 18.104 10.193 7.347 ... 2.089 

 

 

TABLE Ⅵ  

PITCH DISTRIBUTION VALUE, OPTIMIZED BEAM EFFICIENCY AND PHASE SHIFT ON SEVERAL OPTIMIZATION MODELS 

Models Pitch distribution (mm) Optimized beam 

efficiency 

Optimized 

phase shift Pitch 4 Pitch 5 Pitch 6 Pitch 7 Pitch 8 Pitch 9 Pitch 10 

GS-MOCSO 

optimized 
0.8905 0.8379 0.8836 0.8416 0.7898 0.8033 0.7935 40.2% 36.5 o 

MOCSO 

optimized 
0.8725 0.8632 0.8694 0.8158 0.7765 0.7741 0.7869 38.5% 36.8 o 

Efficiency 

optimized only 
0.8933 0.8231 0.7116 0.7031 0.8676 0.7387 0.7993 42.6% 110o 

Phase shift 

optimized only 
0.8692 0.7972 0.7744 0.8159 0.8665 0.8768 0.8784 28.8% 2.1o 
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