
Non-Linear Skeletal Fusion with Multiple Kinects
for Unified Skeletal Animation Reconstruction

Naveed Ahmed

Abstract—We present a new method for reconstructing a uni-
fied skeletal animation with multiple Kinects over 360 degrees
using a non-linear skeletal fusion function. Using the skeletal
data from multiple Kinects, we use dynamic programming to
find the global optimal solution that selects the joints from each
camera to create a unified skeleton at each frame such that it
results in the correct pose. The unified skeletal reconstruction
is constrained by a number of terms that take into account
the orientation of the joints, bone lengths, and the temporal
smoothness of the joint’s motion. We quantitatively validate the
goodness of the unified skeleton using two evaluation methods,
and also perform qualitative and quantitative comparisons
with the sate-of-the-art methods in skeletal reconstruction.. The
output of our method is a 360-degree plausible unified skeletal
animation that would not be possible with a single Kinect due
to occlusions, tracking failures, and field of view constraints.

Index Terms—3D Animation, Kinect, Multi-view Video, Mo-
tion Capture, 3D Reconstruction

I. INTRODUCTION

The field of human motion capture has been an active area
of research both in computer vision and computer graphics.
Specifically, in the past two decades there has been a special
focus on the marker-less motion capture. Motion capture
in general has a number of applications in a number of
areas, e.g., movies, games and robotics etc. Marker-less
motion capture on the other hand opens new avenues of
application as it can capture a user’s motion in a general
environment without the need of any special attachment. It
has a number of applications in the areas such as natural
user interface design, motion analysis, video surveillance,
virtual reality etc. In addition to the motion, it also allows
to capture the shape, and appearance of the person that can
be employed for additional scene analysis and visualizations.
One of the earliest work in this area was done by Carranza
et al. [1]. They used eight synchronized RGB video cameras
and used an analysis-based-synthesis method for the marker-
less motion capture. Later, Theobalt et al. [2] extended their
work to not only capture the motion, but also the surface
reflectance properties. Debevec et al. [3] [4] also captured
different aspects of human motion and appearance. Later
Aguiar et al. [5] used a template based deformation method
to capture the motion of a moving actor, whereas Vlasic et
al. [6] used a skeleton based deformation approach to capture
non-trivial motion, and Ahmed et al. [7] used shape matching
of reconstructed visual hulls to capture the motion. All of
these methods used RGB cameras to capture the moving
person.

Microsoft introduced Kinect in 2010 as a natural user
interface device [8]. It has been widely adopted as a low-
cost depth sensor for the acquisition of static or dynamic 3D

Manuscript received August 31, 2017; revised November 7, 2017
N. Ahmed is with the Department of Computer Science, University of

Sharjah, Sharjah, 27272, UAE. E-mail: nahmed at sharjah.ac.ae

content. The major benefit of Kinect is that it provides both
color and depth data at 30 frames per seconds. Depth data can
also be acquired through other type of depth cameras [9] [10],
but the main benefit of using Kinect is, that it provides
both color and depth data in a single system at a very low
price. In addition, Microsoft provides a very comprehensive
SDK to access all the functionality of Kinect that makes it
a ubiquitous choice for 3D acquisition.

Kinect, being a consumer grade RGB-D camera, is de-
ployed in a diverse range of applications. Some of the ex-
amples include: Gesture recognition for novel interfaces [11],
human behavior recognition [12], time-coherent 3D anima-
tion reconstruction [13], or head tracking for virtual reality
applications [14]. Additionally, Kinect [8] has emerged as a
standard choice for pose estimation. Since it provides both
RGB and depth data, a single Kinect can be used to estimate
the pose of the human actor [15] [16] [17]. In addition to the
color and depth data, Kinect SDK [8] also allows access to
the real-time pose data. Real-time pose estimation with the
Kinect SDK is one of its main strength, resulting it being
employed in a number of applications ranging from video
games to the controlling of robots [18]. Microsoft has been
constantly improving the Kinect SDK, which can provide
real-time pose estimation of a person in standing or sitting
positions.

There has been a number of methods proposed for pose
estimation using depth cameras [19]. Many of these methods
can be used to get a real-time pose estimation. The benefit
of using Kinect SDK is that it is simple to use, and using
it makes implementing a motion capture system a simplified
process. In contrast to the pose estimation approaches by Wei
et al.[20], Ye et al. [16], Baak et al.[17], Yasin et al. [21],
Shotton et al. [22], Yueng et al. [23], and Dantone et al. [24],
which though may well be more robust, are very difficult
to implement for a general user and their adaption rate for
motion capture application is very low. On the other hand,
pose estimation from Kinect has been employed in a number
of applications in many areas [18].

In general, for all the applications that rely on the skeletal
data from one Kinect, this single view pose estimation is
reliable as long as the user is oriented towards the camera
with minimal occlusions [25]. This type of pose estimation
works most of the time while geared towards the player
facing the television, but it cannot be used for a free-
form motion capture over 360 degrees, where the actor can
move in any direction. One of the main reason for the pose
estimation failure is the occlusion of body parts resulting in
the missing depth information.

A straightforward solution for resolving the occlusions
would be to use more than one Kinect. Recently, a number
of methods have been proposed that make use of multiple
Kinects for the pose estimation problem. Even though this

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_11

(Advance online publication: 10 February 2018)

__

Fig. 1. Flowchart of the proposed method, starting from the acquisition of
depth, RGB, and skeletal data to the unified skeletal animation reconstruc-
tion.

solves the occlusion problem, but recording with more than
one Kinect introduces interference, resulting in the depth
data loss. In principle, this is not a big limitation, because
the depth data missing from one Kinect could be filled in
by the other. Ahmed [26] showed an acquisition system
comprising of six Kinects for the 360 degrees acquisition
and 3D animation reconstruction. Berger et al. [27] employed
four Kinects for unsynchronized marker-less motion capture.
Ye et al. [28] used three hand-held Kinects for marker-
less performance capture, Yueng et al. [23] employed two
Kinects, whereas Caputo et al. [29] employed multiple
Kinects for hand gesture recognition. None of these methods
used the skeletal data provided by Kinect to create the final
pose, but the pose was estimated using an optimization
process based on silhouettes, human template matching, or
skeleton-based constraints. One of the major benefits of
directly using the Kinect-based skeleton is that it does not
require any post-processing and is available in real-time
along with the RGB and depth data. As shown by the study of
Obdrzalek et al. [25], the skeleton data from Kinect compares
favorably with established pose estimation techniques and
can be reliably used in a number of scenarios as long as the
occlusions are minimal, and the actor is facing the camera.
Therefore, in this work, we propose a new method that will
reconstruct a unified pose over 360 degrees only using the
best available joint positions provided by Kinect to maximize
the efficiency.

There are a number of challenges in incorporating multiple

Kinects and fusing their skeleton data over 360 degrees. First,
the Kinect cannot differentiate between the front-facing and
the back-facing person. An incorrect inverted posture for all
joints is returned for the back-facing person. If one captures
an actor over 360 degrees, then there should be a method to
automatically detect and discard the incorrect pose. Secondly,
there should be a way to fuse the data from the joints that are
not occluded as the tracking result from the occluded joints
can be completely wrong. In addition, due to the underlying
algorithm from Kinect, the tracking can fail due to the sensor
noise or very fast motion. Thus there should be a way to fuse
the skeleton data from multiple Kinects in such a way so that
it can rectify these failures using the best available joints.

Therefore, we propose a new method of fusing the skeleton
data from multiple Kinects over 360 degrees. Our method
can automatically detect the correct orientation of the actor
with respect to each camera, and can fuse the joint data
based on our novel non-linear skeletal fusion function that
creates a unified skeletal representation at each frame. Our
method uses the Microsoft Kinect SDK for acquisition and
its implementation is relatively very simple. The result of
our method is a unified human motion measurement in the
form of a skeletal animation over 360 degrees that is free
from the artifacts due to occlusions or tracking failures.
Our work does not estimate the pose from the depth data,
rather it presents a very simple and effective method to
combine the data acquired from multiple low-cost sensors
for a reliable 360 degrees motion capture. An algorithmic
flowchart of our method can be seen in Fig. 1. In the
following sections, we will present each of the algorithmic
steps in detail, starting from the discussion of data acquisition
in the next section. Afterward, the unified skeletal animation
reconstruction algorithm is presented, followed by results and
validation, and conclusions.

II. DATA ACQUISITION

Our acquisition system is comprised of four Kinects placed
at 90 degrees with respect to each other. Our system is not
confined to a fixed camera setup, but can work effectively
for a hand-held acquisition, if required. We use a software-
based synchronization similar to Ye et al. [28] for the multi-
view acquisition. We use the Kinect SDK to acquire RGB,
depth and skeleton data. RGB-D streams from Kinect are
low resolution (640x480) at 30 frames per second. For each
frame, Kinect tracks a skeleton comprising of 20 joints. One
frame from our acquisition system showing, RGB, depth and
the skeleton data can be seen in Fig. 2a, b.

One of the benefits of using the Kinect SDK is that
it circumvents the need of any manual intrinsic camera
calibration. The SDK provides the mapping between RGB,
depth, and skeleton data. It also maps the depth and skeleton
data to a unified three-space coordinate system. Thus, for
every depth value the corresponding RGB value is available.
Additionally, for every joint position we know its depth value
and the mapping to the RGB data. For our work, we only
need the mapping between depth and the skeleton data.

The depth to world coordinate mapping allows us to
resample the depth data in a 3D point cloud. Thus, for each
frame we obtain four 3D point clouds along with their cor-
responding estimated skeleton data in their local coordinate
systems. It is to be noted that we do not simplify the 3D

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_11

(Advance online publication: 10 February 2018)

__

Fig. 2. (a) shows RGB frames from three cameras. Frontal and profile
faces are detected in two cameras. (b) shows the depth data with the
overlaid skeleton from Kinect. (c) shows the unified skeleton from the two
cameras (shown in different shades of grey) towards which the actor’s face
is oriented.

point clouds to remove the noise or outliers [30], rather we
rely on the raw data to speed up the runtime performance.
In addition, the Kinect SDK also provides a tracking state
for the skeleton and each joint. The joint tracking states
are an important part of the error measure while finding
the optimal solution using the non-linear fusion function, as
discussed in the next section. As our experiments use a static
camera setup, we use the same approach as Ahmed [26] for
the extrinsic calibration. In general, a dynamic calibration
approach can be used to perform the extrinsic calibration
at each frame as long as some correspondences between
different cameras can be established. Therefore, our method
is not limited to a fixed camera setup. 3D point clouds,
and their corresponding skeletal data registered in a global
coordinate system can be seen in Fig. 3.

III. UNIFIED SKELETAL ANIMATION RECONSTRUCTION

The fusion of skeleton data from multiple Kinects poses
a number of challenges. First, the skeleton data from the
Kinect is not usable if the actor is not facing the camera.
The Kinect uses the depth data under the assumption that
the actor is facing the camera and returns the incorrect pose
if the actor is not facing the camera, as seen in Fig. 2b(right).
In the first step, for every frame we need to identify which
cameras can be used for reconstructing the unified skeleton.
As the depth data, or the skeleton and joins tracking states
are not helpful in finding the correct orientation of the human
actor, we use one of the standard face detection methods [31]
over the RGB data to determine the front-facing actors. We
use two profiles, one for the frontal face, and one for the
profile face to find out which cameras can be used for the
fusion (Fig. 2a). Face detection is a standard feature provided

Fig. 3. (a) shows unified two point clouds (shown in different shades of
grey), and (b) shows the corresponding two skeletons after the extrinsic
calibration. (c) shows the unified skeleton reconstructed from our method.

in nearly all camera systems, ranging from mobile phones to
high end DSLRs. It is prone to failure if the actor’s face is
occluded. Sometimes it can also detect false positives. We
used simple sanity checks to circumvent these issues, to be
discussed in the Results and Validation section. Additionally,
we could also use the face detection API provided with the
Kinect SDK, which works robustly in practice, but since it is
real-time, we found that it adversely affected the performance
of our acquisition system. In principle, as the Kinect already
provides the head position in the depth image coordinates,
the extrinsic camera parameters can be used to localize the
head position in the RGB space. Using the head position,
some other image processing algorithm can also be used to
detect the front-facing camera.

Once the cameras to be used are identified, we start the
fusion process by selecting the 20 joints from the usable
cameras that result in the correct pose. Identifying the correct
joints can be a challenging problem, and one can opt for a
local solution where each joint is selected individually based
on some confidence score, or opt for a global solution that
takes into account all the joints at the same time. The benefit

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_11

(Advance online publication: 10 February 2018)

__

of a global solution is that it can employ additional properties
of the skeleton, e.g. bone lengths to enforce pose consistency.
Therefore, we formulate a non-linear fusion function that
finds the optimal skeleton in a global solution. Assuming
we are using C usable cameras, and there are T frames in
the sequence. A skeleton St is defined by the 20 joints jct ,
where c=1, ..., C, and t=1, ..., T . It is to be noted that within
a skeleton the choice of the joints is local, i.e., the right
knee joint can only be one of the right knee joints from one
of the usable cameras. Thus, by definition St is always a
valid skeleton, though its pose could be incorrect based on
the choice of the joints. Under these conditions, at any time
frame t, the number of possible valid skeleton configurations
for St are C20. The non-linear fusion function for each frame
is defined as:

f(St) = αΦ(St) + βΨ(St) + γΩ(St) (1)

where Φ(St), Ψ(St), and Ω(St) are the error measures
terms related to the orientation, bone length, and the temporal
smoothness, respectively. These error measures are evaluated
for each configuration of St, and the joint configuration that
results in the minimal value for Eq. 1 is selected as the unified
skeleton at that particular time step. α, β, and γ are weighting
factors summing to 1.0. Empirically, we found the values of
α = 0.46, β = 0.33, and γ = 0.21 (see also the Results and
Validation section for a discussion). In the following sub-
sections, we will describe the each error measure term in
detail.

A. Orientation Measure

The orientation error measure Φ(St) penalizes the skeleton
whose joints are not oriented towards the camera. In order
to calculate this measure, we first need to estimate the
normal N (jct) for each jct . N (jct) is estimated in the global
coordinate system using the unified 3D point clouds that is
obtained using the extrinsic camera calibration Fig 3a. For
each jct , using its three-space position P(jct), the standard
SVD-based plane-fitting algorithm on nearest 20 three-space
points in the unified point cloud is used to obtain N (jct).

The orientation measure ϕ(jct) for each jct is defined as
the dot product of :

ϕ(jct) = N (jct) · V(jct).

where V(jct) is the view vector from P(jct) to the three-
space position of the camera c. Thus, if the joint is com-
pletely oriented towards the camera then ϕ(jct) will be 0,
otherwise its value will increase. The joint is discarded if
ϕ(jct) is less than 0. This is desirable for our error measure,
as the joints that face the camera will result in the lower
error compared to the joints that are not oriented towards
the camera.

Finally for a skeleton St, the orientation error measure
term Φ(St) for the non-linear fusion function (Eq. 1) is
defined as the sum of ϕ(jct) over 20 joints scaled by the
joint confidence term R(jct) and the occlusion term O(jct):

Φ(St) =
20∑
j=1

ϕ(jct) ∗ R(jct) ∗ O(jct) (2)

The two additional terms R(jct) and O(jct) that scale
ϕ(jct) are required to compensate for the shortcomings of
the Kinect’s underlying skeletal estimation algorithm. It is
to be noted that we do not estimate a completely new joint
position using the skeletal data from multiple Kinects, rather
as explained earlier, the best joints from one of the skeletons
is selected to create the unified skeleton. As Kinect estimates
a skeleton in real-time using the depth data, the skeleton
tracking can fail for one more joints due to a number of
reasons. Most common cause for a tracking failure is the
occlusion, fast motion, or sensor noise, resulting in missing
or low quality of the depth data. Microsoft Kinect SDK
provides a joint tracking state for each jct . There are three
possible tracking states that are used to define R(jct) as
follows:

R(jct) =


3 if the joint data is not available,
2 if joint data is calculated from other joints,
1 if the joint data is tracked and available.

If the joint data is tracked and available then there is no
penalty. If the joint data is calculated from other joints or is
simply not available, due to the missing depth information,
then the reliability of the joint data is low and the orientation
error measure for that particular joint is scaled accordingly.
The missing depth information can be due to occlusion, fast
motion, or sensor noise. Thus R(jct) favors the correctly
tracked joints.

In addition to R(jct), we also introduce a complimentary
term O(jct) that specifically checks for joint’s occlusion to
further penalizes the joints that are occluded by some other
body parts. Joint occlusion is one of the most common
reasons for tracking failure for a particular joint. We cannot
rely on the joint tracking state R(jct) to report for occlusion
because its underlying algorithm for the tracking state is
unknown, rather we check for the joint occlusion using our
own algorithm.
O(jct) is calculated by finding if jct is occluded or not

by back projecting its three-space value from the skele-
ton to the depth image, giving its two-space (jct , x, y)back
location in the depth coordinates. A lookup in the depth
image using (jct , x, y)back provides the back projected depth
value Dback(jct). In addition, the Kinect SDK also provides
the actual depth value for each joint in the depth space
DSDK(jct). If jct is not occluded then Dback(jct) should be
equal to DSDK(jct), otherwise it must be occluded. Thus
O(jct) is defined as follows:

O(jct) =

{
2 if Dback(jct) 6= DSDK(jct),

1 if Dback(jct) = DSDK(jct)

There is no penalty if the joint is not occluded otherwise
the error is scaled. The term O(jct) complements R(jct).
For example, in some cases Kinect can estimate a skeleton
that have a higher quality with all joints having a higher
confidence, whereas the actual subject has occlude body parts
from the point of view of the camera. In this scenario, the
occlusion term penalizes the joints that are occluded so that
joints that are not occluded are assigned a higher score.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_11

(Advance online publication: 10 February 2018)

__

B. Bone Length Measure

The bone length error measure Ψ(St), penalizes the skele-
tons configuration that deviate greatly from the ideal bone
lengths. In general, there is no notion for ideal bone length
for a person as they differ for every person. We adopt the
approach similar to [23], and initialize all the bone-lengths
manually within a unified skeleton for the first frame and
classify their lengths as the ideal lengths. This is only done
at the first frame and provides a goodness measure that
will later also be used for the quantitative validation of the
method.

A joint can be associated with one or more bones. Assum-
ing it can be associated with n bones, we define Bi(jct) to be
the bones associated with jct , where i=1...n. The ideal bones
are defined as Bi(j0). Using these definitions, the joint’s bone
length error measure ψ(jct) is defined as:

ψ(jct) =
n∑

i=1

(||Bi(jct)|| − ||Bi(j0)||)2

which is the sum of the square of the difference between
the bone lengths associated with each jct and their corre-
sponding ideal bone length. This error measure will be closer
0 if the bone lengths are closer to the ideal bone lengths,
otherwise its value will increase. It is to be noted that ψ(jct)
is only defined for a valid skeleton, it cannot be calculated
for a joint individually. Therefore, for a skeleton St, the bone
length error measure term Ψ(St) for the non-linear fusion
function (Eq. 1), is defined as:

Ψ(St) =
20∑
j=1

ψ(jct) ∗ R(jct) ∗ O(jct) (3)

Similar to the orientation error measure, the bone length
error measure ψ(jct) is scaled by the joint confidence term
R(jct) and the occlusion term O(jct). These terms as ex-
plained in the previous section, penalize the joints that either
have a lower quality of tracking data or they are occluded
by some other body parts.

C. Temporal Smoothness Measure

The temporal smoothness error measure Ω(St) penalizes
the joints that move abruptly compared to the previous
frame. As we rely on Kinect to reconstruct the skeleton, the
underlying pose estimation algorithm from Kinect estimates
a skeleton at each frame that can behave very differently
from the previous frame due to a number of reasons. As
we fuse the skeleton data from multiple Kinects, the joints
that depict smoother motion should be preferred to the jerky
motion as it can be due to a tracking failure or the limitation
of the underlying algorithm. Given the three-space position
of a joint at the current frame P(jct) and at the previous
frame P(jct−1), its temporal smoothness error measure ω(jct)
is defined as the square of the distance between the two
positions:

ω(jct) = (||P(jct)− P(jct−1)||)2

Please note that Kinect’s coordinate system is in meters,
thus in general the displacement is always small and less
than 1 meter, and this error measure only penalizes very high

Fig. 4. Tracking fails for the right arm in the front-facing camera due
to self-occlusions (a), whereas for the side facing camera the left arm was
not tracked because it was not in the view (b). Our method unified the two
skeletons (shown in different shades of grey) and reconstructed the correct
pose (right).

displacement that results in a sudden jerky motion. As we
use the joint positions provided by the Kinect SDK, ω(jct)
is never 0, rather it penalizes if a joint deviates too much
from the last frame, especially in case of a tracking failure.
Therefore, for a skeleton St, the temporal smoothness error
measure term Ω(St) for the non-linear fusion function (Eq. 1)
is defined as:

Ω(St) =
20∑
j=1

ω(jct) ∗ R(jct) ∗ O(jct) (4)

Similar to the previous error measures it is again scaled
by the joint confidence term R(jct) and the occlusion term
O(jct). Please note that Ω(St) cannot compensate for the
jerkiness if it is present in all skeletons at a particular frame.
We do not estimate a new joint position, rather select the best
joint from the set of available joints from usable cameras.
Even if all joints depict a jerky motion, this term will favor
the one with the smoothest motion.

Given the non-linear fusion function, starting from the
second frame, we estimate the optimal skeleton by selecting
the best 20 joints that minimize Eq. 1 using the dynamic
programming. The reconstructed unified skeleton at each
frame results in a unified skeletal animation that uses best
joints from each Kinect skeleton. The results of our method
along with its validation are discussed in the next section.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_11

(Advance online publication: 10 February 2018)

__

Fig. 5. Three frames of the walking sequence show the fusion of different
cameras over 360 degrees. The cameras are shown in different shades of
grey, and their three-space location is visualized as circles. Depending on
the orientation of the actor, the usable cameras are identified that are used
to create the unified skeleton using the non-linear fusion function.

IV. RESULTS AND VALIDATION

In order to test our method, we used four Kinect sensors to
record three sequences of 200 frames each. The first sequence
shows a fast boxing motion, the second sequence is a normal
walking motion, while the third sequence is the fast rotation
motion of the whole body, while the actor moves the arms
and legs on the spot. The results show that the non-linear
fusion solution selected the 20 best joints at each frame and
managed to reconstruct a unified pose that is free from the
failures of individual cameras. The three error measure terms
ensure that joints with the wrong pose are replaced by the
joints from other cameras that estimate the correct pose, as
can be seen in Fig. 4. More results from two of the sequences
can be seen in Fig. 2c, 3c, 5. It can be observed in the results
that our method can merge the skeleton data from multiple
cameras to reconstruct the unified skeletal animation. Also
note that the boxing sequence is shown with only three
cameras because the actor never turned around to face the
fourth camera. It can be seen in the video that because of the
faster motion, the boxing sequence has a number of tracking
failures, even in the front-facing camera, but our method was
able to reconstruct the correct motion by merging data from
the other cameras. The walking sequence shows a complete
360-degree reconstructed unified motion.

In addition to the qualitative visual evaluation, we also
perform multiple quantitative validations. In general, there
is no ground truth data available for us to compare the
goodness of our method. In addition, this work is not a
direct pose estimation from the depth data [19], rather it uses
the estimated pose from each camera and combines them
together. Therefore, we do not need to quantify the quality
of the individual pose, but need to estimate if the unified

Fig. 6. Skeletal reconstruction comparison with the state-of-the-art method
from Cao et al. [32]. The input image with the occluded right arm is shown
in (a). The result from [32], directly obtained using their source code [33]
is shown in (b). It can be seen that [32] fails badly in this specific situation
where the pose of one of the arm and the leg is not estimated correctly. The
unified skeleton reconstructed by combining the data from three cameras
(shown in different shades of grey) captures the pose correctly, as shown in
(c).

skeleton is better than the individual poses from each camera.
To demonstrate the quality and necessity for a unified

skeletal reconstruction, we compare the results of our method
with the state-of-the-art skeletal reconstruction method from
Cao et al. [32]. In [32], a learning method based on Part
Affinity Fields is used to estimate the skeleton of one or more
person from any camera view. We directly used their publicly
available code [33] to estimate the skeleton on the boxing
sequence. One input frame can be seen Fig. 6a. The results
from [32], directly using their code, can be seen in Fig. 6b.
Whereas, the unified skeleton can be seen in Fig. 6c. As can
be seen in Fig. 6b that even though [32] can work for most
of the cases, but extreme cases with severe occlusion will
still result in the incorrect estimation of the pose. Whereas,
a multi-view non-linear skeletal fusion (Fig. 6c) will give
a better result because it combines the joints with the least
error to get an optimal unified skeleton.

Finally, we use two methods that compare the unified
skeleton with individual skeletons using the bone-length
variation estimation and 3D point cloud overlap to quantify
the goodness of the unified skeleton as explained in the
following sections.

A. Bone-length Variation Estimation

For the first quantitative analysis, we implement the bone-
length variation estimation system that is presented and
employed by Yueng et al. [23]. Similar to [23], we initialize
all the bone-lengths manually for the first frame and classify
them as the ideal lengths. Ideally the bone-lengths of the
reconstructed skeleton at each frame should be as close as
possible to the ideal lengths. Following [23], we compared
bone-lengths at each frame for the unified skeleton and the
front-facing cameras at each frame. For all the sequences
we found the unified skeleton to be the closest to the ideal
lengths compared to individual Kinects.

We computed the bone-length variation statistics for all the
sequences. The most challenging sequence was the boxing
sequence because it is the most challenging sequence with
very fast motion, and with a number of tracking failures for
all the cameras. Similar to [23], we show the statistics of
bone-length variation for a number of bones for the boxing
sequence in Fig. 7, and the walking sequence in Fig. 8.
Table I and Table II show the absolute difference of the
average bone length and the ideal bone-length for individual
Kinects and the unified skeleton for the boxing and walking
sequences, respectively. As can be seen in Fig. 7 and 8 and
Table I and II that over the course of the entire sequence,

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_11

(Advance online publication: 10 February 2018)

__

Fig. 7. The statistics of bone-length variation at different parts of skeleton in the boxing sequence. The ideal bone length is shown as the black dotted
line in the center. The bone-length from individual Kinects and from the reconstructed uniform skeleton are shown over the 200 frames in different patterns
and shades of grey. Kindly note that some Kinects (e.g. Kinect C), depending on the orientation of the person, are not used for all the frames in the
reconstruction process.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_11

(Advance online publication: 10 February 2018)

__

Fig. 8. The statistics of bone-length variation at different parts of skeleton in the walking sequence. The ideal bone length is shown as the black dotted
line in the center. The bone-length from individual Kinects and from the reconstructed uniform skeleton are shown over the 205 frames in different patterns
and shades of grey. Depending on the orientation of the person, not all Kinects are used for all the frames in the reconstruction process.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_11

(Advance online publication: 10 February 2018)

__

TABLE I
ABSOLUTE AVERAGE BONE-LENGTH DIFFERENCE FOR EACH KINECT
(KINECT A, KINECT B, AND KINECT C) AND OUR METHOD (UNIFIED

SKELETON) WITH RESPECT TO THE IDEAL BONE-LENGTH FOR THE
BOXING SEQUENCE.

Bone A B C Unified
Pelvis 0.0078 0.0139 0.0096 0.0006
Spine 0.0088 0.0194 0.071 0.0008
Head 0.1090 0.1767 0.0642 0.0035

Left shoulder 0.0222 0.0300 0.0811 0.0071
Left upper arm 0.0175 0.0047 0.0399 0.0009

Left forearm 0.0304 0.0148 0.0684 0.0050
Left hand 0.0303 0.0208 0.0328 0.0033

Right shoulder 0.0105 0.0052 0.0142 0.0005
Right upper arm 0.0161 0.0338 0.0102 0.0046

Right forearm 0.0062 0.0044 0.0044 0.0019
Right hand 0.0221 0.0383 0.0435 0.0032

Left hip 0.0138 0.0073 0.0610 0.0042
Left upper leg 0.0128 0.0113 0.0639 0.0010
Left lower leg 0.0270 0.0012 0.0120 0.0007

Left foot 0.0135 0.0028 0.0087 0.0015
Right hip 0.0037 0.0134 0.0232 0.0005

Right upper leg 0.0186 0.0813 0.0173 0.0060
Right lower leg 0.0137 0.0324 0.0093 0.0058

Right foot 0.0019 0.0097 0.0193 0.0012

the bone lengths of the unified skeleton are always closest
to the ideal length, when compared to individual Kinects.

B. Bounding-box and Skeleton Overlap Estimation

The bounding-box-based error measure calculates the
overlap of the skeleton and the underlying 3D point cloud.
For each bone in the individual skeleton from Kinects
and the unified skeleton, a bounding box Bi is defined at
the first frame, where i=1, ..., 20 is the bone index. The
size of each bounding box Bi is initialized manually, and
remains consistent throughout the sequence. The orientation
of each bounding box is automatically determined from the
orientation of the bone. The bounding boxes are tracked over
the whole sequence using the skeletal animation. An example
bounding box of a bone at an arbitrary frame can be seen in
Fig. 9.

For each bounding box, the number of overlapping 3D
points are calculated for each skeleton. A normalized error
measure ξt is calculated for a time frame t as follows:

ξt =
count(

⋃
(P(Bi

t)))

count(Pt)
(5)

Where, count(
⋃

(P(Bb
t))) is the count of all unique

points overlapping the bounding boxes of the bones, and,
count(Pt) is the count of all the points in the complete
3D point cloud. As shown in Fig. 9(c and d), the bounding
box from the unified skeleton completely overlaps the correct
region of the merged 3D point clouds, resulting in the higher
value of ξt. In this particular frame, the unified skeleton has
on average 8.95% better quality, compared to the individual
cameras.

To compare the quality of the unified skeleton, we also
estimate the goodness criteria for each individual front facing
camera, ξct . The results of the bounding-box error measure
with respect to ξct can be seen in Table III. Overall, for all
three sequences, we found that on average the goodness of
the unified skeleton ξt was better than the average goodness

Fig. 9. One example of the bounding box based error calculation is
shown. As shown in (a) and (b), the tracking failure causes the complete
mismatch of the right arm’s joints with respect to the underlying merged 3D
point clouds. On the other hand, (c) and (d) show the reconstructed unified
skeleton, where the joints are correctly aligned with the underlying merged
3D point clouds (shown in different shades of grey), thus a large of number
of 3D points are within the bounding box of the right forearm.

of individual front facing cameras ξct by a factor of 9% to
12%. In addition, we also compared the bounding box error
with two multi-view skeletal reconstruction methods from
Yueng et al. [23] and Kitsikidis et al. [34]. The results for
each sequence can be seen in Table III. As can be seen in
Table III that even with a very low level of complexity in
terms of the implementation our method results in a very
similar accuracy for all the methods, especially for the boxing
sequence where the error rate is 0.5% better. The maximum
bounding box error was less than 2% as shown in Table III.

C. Discussion

In order to estimate the weighting factors of the non-linear
fusion function (Eq. 1), α, β, and γ, we make use of the
bone length, and bounding box error measures. As we do not
have any ground truth data available for the sequences, we
estimated the unified skeleton by varying these parameters,
under the constrain that their sum is 1.0. In the end, the values
α = 0.46, β = 0.33, and γ = 0.21, resulted in the unified
skeletal animation where the overall error was minimum for
both error measures. In principal, we can also use a learning
method to improve the initial estimation of the weighting
factors [35] [36] [37]. We would like to explore this in the
future work.

In terms of computing speed our method runs at a
moderate speed, and can estimate 10 frames of uniform
skeletons per second. Ignoring the I/O overhead, it runs at
an interactive frame rate. We tested the method on a 2.4 Ghz
Quad Core i5 system with 4 GB of memory. Our method can
easily be parallelized on a cluster as each frame is processed
individually.

Our method is subject to a couple of limitations. We
employ face detection to find out actor’s orientation with
respect to the camera. Face detection works well in more
than 90% of the frames but it can fail if the face is occluded,
for example, in the boxing sequence. We solve this issue in a
pre-processing step by analyzing the sequence and if a couple
of frames are missing the face. We look at the frames before
and after the missing frames under the assumption that the
frames were skipped due to occlusion. Additionally, we also

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_11

(Advance online publication: 10 February 2018)

__

TABLE II
ABSOLUTE AVERAGE BONE-LENGTH DIFFERENCE FOR EACH KINECT (KINECT A, KINECT B, KINECT C, AND KINECT D) AND OUR METHOD

(UNIFIED SKELETON) WITH RESPECT TO THE IDEAL BONE-LENGTH FOR THE WALKING SEQUENCE.

Bone A B C D Unified
Pelvis 0.0067 0.0074 0.0082 0.0101 0.0004
Spine 0.0091 0.0065 0.0054 0.0075 0.0005
Head 0.0812 0.1293 0.0954 0.1421 0.0029

Left shoulder 0.0412 0.0126 0.0315 0.0523 0.0065
Left upper arm 0.0231 0.0125 0.0154 0.0312 0.0012

Left forearm 0.0201 0.0242 0.0543 0.0249 0.0040
Left hand 0.0201 0.0312 0.0126 0.0243 0.0049

Right shoulder 0.0542 0.0341 0.0287 0.0312 0.0009
Right upper arm 0.0091 0.0112 0.0115 0.0268 0.0031

Right forearm 0.0059 0.0067 0.0031 0.0043 0.0021
Right hand 0.0312 0.0498 0.0397 0.0587 0.0041

Left hip 0.0032 0.0053 0.0051 0.0043 0.0035
Left upper leg 0.0123 0.0209 0.0412 0.0251 0.0031
Left lower leg 0.0154 0.0109 0.0201 0.0119 0.0006

Left foot 0.0398 0.0295 0.0401 0.0393 0.0009
Right hip 0.0098 0.0168 0.0145 0.0195 0.0003

Right upper leg 0.0092 0.0451 0.0212 0.0119 0.0045
Right lower leg 0.0114 0.0216 0.0062 0.0098 0.0041

Right foot 0.0102 0.0125 0.0187 0.0203 0.0010

TABLE III
AVERAGE BOUNDING BOX ERROR MEASURE FOR THE FRONT FACING
SKELETON AND THE UNIFIED SKELETON. FOR EACH SKELETON, THE

PERCENTAGE OF PIXELS THAT ARE OUTSIDE THE BOUNDING BOX ARE
SHOWN. THE UNIFIED SKELETON HAS MOST OF THE POINTS INSIDE THE

BOUNDING BOXES COMPARED TO AN INDIVIDUAL FRONT FACING
SKELETON.

Sequence Front Facing [23] [34] Our Method

Boxing 13.2% 1.89% 1.78% 1.25%

Walking 10.82% 0.86% 0.79% 0.69%

Rotation 11.34% 1.34% 1.23% 1.11%

use the normal of the root joint from the previous frame to
determine if the actor is still oriented towards the camera. For
example, in case face detection has failed, but in the previous
frame the actor was facing the camera, then it is unlikely
that the actor was rotated by 90 degrees in a single frame.
Similarly, face detection can also detect false positives, for
example, some parts in the surroundings can be incorrectly
classified as faces. Again, we make use of the full sequence
to determine the correct size and most likely position of the
face. Incorrect face rectangles with very small or large areas
are immediately discarded.

One can also see some flickering in the video sequences,
where one joint switches between two cameras quickly.
This is due to very similar error measures for different
joint configurations, which can vary according to the normal
orientation if both cameras see the joint clearly. The depth
data from Kinect is very noisy, and we do not compensate
for this noise [30], thus normal orientation can differ slightly
in each frame. Additionally, the pose data from Kinect SDK
is not time coherent and can result in a flicker from frame to
frame, which is not a limitation of our method. In the future,
we want to explore smoothing the 3D point clouds [30],

and smoothing the skeleton data by reconstructing the joint
position from all available cameras by means of learning or
probabilistic methods.

Despite the limitations, we show that our method is able
to reconstruct a unified 360-degree skeletal motion by a non-
linear fusion of skeletal data from multiple Kinects that is
free from the artefacts resulting from the orientation of the
person and occlusion problems if only a single Kinect is
employed for the pose estimation.

V. CONCLUSIONS

We presented a new method to reconstruct a unified
skeletal animation from multiple Kinects. Our method can
merge the skeleton data directly from Kinects by employing
a non-linear fusion function that takes into account the joint’s
orientation, bone lengths, and their temporal smoothness.
We use face tracking to find the cameras towards which
the actor’s face is oriented. Using the skeletal data from
these cameras, the joint configuration that minimizes the non-
linear fusion function is used to create a unified skeleton
at each frame. Our method can reconstruct a unified 360-
degree skeletal animation from multiple Kinects that would
not be possible from a single Kinect due to occlusions and
tracking failures. We also quantified the goodness of the
reconstructed unified skeleton using the bone-length variation
calculation and bounding-box overlap ratio methods. In the
future, we would like to extend the unified skeletal animation
reconstruction algorithm by incorporating a probabilistic
model in the confidence measure. In addition, we would also
like to work on new methods to quantify the goodness of the
reconstructed unified skeleton.

REFERENCES

[1] J. Carranza, C. Theobalt, M. A. Magnor, and H.-P. Seidel, “Free-
viewpoint video of human actors,” ACM Trans. Graph., vol. 22, no. 3,
pp. 569–577, 2003.

[2] C. Theobalt, N. Ahmed, G. Ziegler, and H.-P. Seidel, “High-quality
reconstruction of virtual actors from multi-view video streams,” IEEE
Signal Processing Magazine, vol. 24, no. 6, pp. 45–57, 2007.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_11

(Advance online publication: 10 February 2018)

__

[3] P. E. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin,
and M. Sagar, “Acquiring the reflectance field of a human face,” in
SIGGRAPH, 2000, pp. 145–156.

[4] T. Hawkins, P. Einarsson, and P. E. Debevec, “A dual light stage,” in
EGSR, 2005, pp. 91–98.

[5] E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel, and
S. Thrun, “Performance capture from sparse multi-view video,” ACM
Trans. Graph., vol. 27, no. 3, 2008.

[6] D. Vlasic, I. Baran, W. Matusik, and J. Popovic, “Articulated mesh
animation from multi-view silhouettes,” ACM Trans. Graph., vol. 27,
no. 3, 2008.

[7] N. Ahmed, C. Theobalt, C. Rössl, S. Thrun, and H.-P. Seidel, “Dense
correspondence finding for parametrization-free animation reconstruc-
tion from video,” in CVPR, 2008.

[8] MICROSOFT, “Kinect for microsoft windows and xbox 360.
http://www.kinectforwindows.org/,” November 2010.

[9] Y. M. Kim, D. Chan, C. Theobalt, and S. Thrun, “Design and calibra-
tion of a multi-view tof sensor fusion system,” in CVPR Workshop,
2008.

[10] T. Fujita and T. Yoshida, “3d terrain sensing by laser range finder
with 4-dof sensor movable unit based on frontier-based strategies,”
Engineering Letters, vol. 24, no. 2, pp. 164–171, 2016.

[11] C.-K. Yang and Y.-C. Chen, “A hci interface based on hand gestures,”
Signal, Image and Video Processing, vol. 9, no. 2, pp. 451–462, 2015.
[Online]. Available: http://dx.doi.org/10.1007/s11760-013-0462-1

[12] Y. Wu, Z. Jia, Y. Ming, J. Sun, and L. Cao, “Human behavior
recognition based on 3d features and hidden markov models,” Signal,
Image and Video Processing, vol. 10, no. 3, pp. 495–502, 2016.
[Online]. Available: http://dx.doi.org/10.1007/s11760-015-0756-6

[13] N. Ahmed and S. Khalifa, “Time-coherent 3d animation
reconstruction from rgb-d video,” Signal, Image and Video
Processing, vol. 10, no. 4, pp. 783–790, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s11760-015-0813-1

[14] A. Amamra, “Smooth head tracking for virtual reality applications,”
Signal, Image and Video Processing, vol. 11, no. 3, pp. 479–486, 2017.
[Online]. Available: http://dx.doi.org/10.1007/s11760-016-0984-4

[15] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgibbon,
“Efficient regression of general-activity human poses from depth
images,” in ICCV, 2011.

[16] M. Ye, X. Wang, R. Yang, L. Ren, and M. Pollefeys, “Accurate 3d
pose estimation from a single depth image,” in Proceedings of the
2011 International Conference on Computer Vision, ser. ICCV ’11.
Washington, DC, USA: IEEE Computer Society, 2011, pp. 731–738.

[17] A. Baak, M. Muller, G. Bharaj, H.-P. Seidel, and C. Theobalt, “A
data-driven approach for real-time full body pose reconstruction from
a depth camera,” in ICCV, 2011.

[18] R. Lun and W. Zhao, “A survey of applications and
human motion recognition with microsoft kinect,” International
Journal of Pattern Recognition and Artificial Intelligence,
vol. 29, no. 05, p. 1555008, 2015. [Online]. Available:
http://www.worldscientific.com/doi/abs/10.1142/S0218001415550083

[19] L. Chen, H. Wei, and J. Ferryman, “A survey of human
motion analysis using depth imagery,” Pattern Recogn. Lett.,
vol. 34, no. 15, pp. 1995–2006, Nov. 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.patrec.2013.02.006

[20] X. Wei, P. Zhang, and J. Chai, “Accurate realtime full-body
motion capture using a single depth camera,” ACM Trans. Graph.,
vol. 31, no. 6, pp. 188:1–188:12, Nov. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2366145.2366207

[21] H. Yasin, U. Iqbal, B. Krüger, A. Weber, and J. Gall, “3d pose esti-
mation from a single monocular image,” CoRR, vol. abs/1509.06720,
2015. [Online]. Available: http://arxiv.org/abs/1509.06720

[22] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake, “Real-time human pose
recognition in parts from single depth images,” in Proceedings
of the 2011 IEEE Conference on Computer Vision and Pattern
Recognition, ser. CVPR ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 1297–1304. [Online]. Available:
http://dx.doi.org/10.1109/CVPR.2011.5995316

[23] K.-Y. Yeung, T.-H. Kwok, and C. C. L. Wang, “Improved skeleton
tracking by duplex kinects: A practical approach for real-time applica-
tions,” Journal of Computing and Information Science in Engineering,
vol. 13, no. 04, pp. 041–051, 2013.

[24] M. Dantone, J. Gall, C. Leistner, and L. J. V. Gool, “Human pose
estimation using body parts dependent joint regressors.” in CVPR.
IEEE Computer Society, 2013, pp. 3041–3048.

[25] S. Obdrzalek, G. Kurillo, F. Ofli, R. Bajcsy, E. Seto, H. Jimison, and
M. Pavel, “Accuracy and robustness of kinect pose estimation in the
context of coaching of elderly population,” in Engineering in Medicine
and Biology Society (EMBC), 2012, pp. 1188–1193.

[26] N. Ahmed, “A system for 360 degree acquisition and 3d animation
reconstruction using multiple rgb-d cameras,” in Proceedings of the
25th International Conference on Computer Animation and Social
Agents (CASA), ser. Casa’12, 2012.

[27] K. Berger, K. Ruhl, Y. Schroeder, C. Bruemmer, A. Scholz, and
M. A. Magnor, “Markerless motion capture using multiple color-depth
sensors,” in VMV, 2011.

[28] G. Ye, Y. Liu, Y. Deng, N. Hasler, X. Ji, Q. Dai, and C. Theobalt,
“Free-viewpoint video of human actors using multiple handheld
kinects,” IEEE T. Cybernetics, 2013.

[29] M. Caputo, K. Denker, B. Dums, and G. Umlauf, “3d hand gesture
recognition based on sensor fusion of commodity hardware,” in
Mensch and Computer 2012, 2012.

[30] G. Sanchez, E. Leal, and N. Leal, “A linear programming approach
for 3d point cloud simplification,” IAENG International Journal of
Computer Science, vol. 44, no. 1, pp. 60–67, 2017.

[31] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in CVPR, 2001.

[32] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person
2d pose estimation using part affinity fields,” in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017.

[33] Z. Cao, “https : //github.com/zhec/realtime multi −
person pose estimation,” July 2017.

[34] A. Kitsikidis, K. Dimitropoulos, S. Douka, and N. Grammalidis,
“Dance analysis using multiple kinect sensors,” in 2014 International
Conference on Computer Vision Theory and Applications (VISAPP),
vol. 2, Jan 2014, pp. 789–795.

[35] H. Miyajima and N. Shigei, “Initial setting of effective parameters for
fuzzy modeling,” IAENG International Journal of Computer Science,
vol. 44, no. 3, pp. 375–382, 2017.

[36] M. Langovoy, “Machine learning and statistical analysis for brdf data
from computer graphics and multidimensional reflectometry,” IAENG
International Journal of Computer Science, vol. 42, no. 1, pp. 22–30,
2015.

[37] H. Zhuang, M. Yang, Z. C. Cui, and Q. Zheng, “A method for static
hand gesture recognition based on non-negative matrix factorization
and compressive sensing,” IAENG International Journal of Computer
Science, vol. 44, no. 1, pp. 52–59, 2017.

Naveed Ahmed is an assistant professor at the Department of Computer
Science, University of Sharjah. He received his PhD in computer science
from the University of Saarland (Max-Planck-Institute for Informatics),
Germany, in 2009. He worked as a research and development engineer
at Autodesk in Cambridge, United Kingdom, for 2 years. He is currently
working as an assistant professor at the Department of Computer Science,
University of Sharjah. His research interests include 3-D animation, dynamic
scene reconstruction, vision-based computer graphics, and multi-view video
based modeling and rendering.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_11

(Advance online publication: 10 February 2018)

__

