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Abstract—This paper is concerned with anti-periodic solu-
tions for fuzzy cellular neural networks (FCNNs) with mixed
delays and impulsive effects. Using differential inequality, and
constructing some suitable Lyapunov functional, some condi-
tions are established for the existence and global exponential
stability of anti-periodic solutions of FCNNs with mixed delays
and impulsive effects. These results are new and complementary
to previously known references. Moreover an example is given
to illustrate results established.

Index Terms—exponential stability, anti-periodic solutions,
fuzzy cellular neural networks, mixed delays, impulsive effects.

I. INTRODUCTION

CELLULAR neural networks (CNNs) first introduced by
Chua and Yang [1], [2] have attracted much attention in

recent years. This is mostly because they have the wide range
of promising applications fields such as associated memory,
parallel computing, pattern recognition, signal processing and
optimization problems. CNNs are described by the basic
circuit units and these units are called cells. Each unit
processes several input signals and produces an output signal
which is received by other units connected to it including
itself. In the implementation of a signal or influence traveling
through neural networks, time delays do exist and influence
dynamical behavior of a working network. Recently many
results on the problem of global stability of equilibrium
points and periodic solutions of neural networks have been
reported (see [3], [4], [5], [6], [7], [8], [9]). Besides delay ef-
fects, it has been observed that many evolutionary processes,
including those related to neural networks, may exhibit im-
pulsive effects. In these evolutionary processes, the solutions
of system are not continuous but present jumps which could
cause instability of dynamical system. Consequently, many
neural networks with impulses have been studied extensively,
and a great deal of literatures are focused these problems
on the existence and stability of an equilibrium point and
periodic solutions (see, for example [10], [11], [12], [13],
[14], [15], [16], [17], [18]).

It is well-known that Yang and Yang [19], [20] first in-
troduced another type cellular neural networks model called
fuzzy cellular neural networks (FCNNs). These models com-
bined fuzzy operations (fuzzy AND and fuzzy OR) with
cellular neural networks. However, it is worth noting that
T-S fuzzy neural networks are different from FCNNs [21].
T-S fuzzy neural networks are based a set of fuzzy rules to
describe nonlinear system. Recently researchers have found
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that FCNNs are useful in image processing, and some results
have been reported on stability and periodicity of FCNNs
(see [22], [23], [24], [25]).

In applied sciences, the existence of anti-periodic solutions
plays a key role in characterizing the behavior of nonlinear
differential equations. The signal transmission process of
neural networks can often be described as an anti-periodic
process. In recent years the anti-periodic problem of neural
networks has been studied by many authors (see [26], [27],
[28], [29], [30], [31], [32], [33] and references therein).
Shao [26] studied the existence and exponential stability
of the anti-periodic solutions of recurrent neural networks
with time-varying and continuous distributed delays. Shi
and Dong [27], applying inequality technique and Lyapunov
functional theory, studied the existence and global exponen-
tial stability of anti-periodic solution for delayed Hopfield
neural networks with impulsive effects. However, to the best
of our knowledge, few authors have considered the problem
of anti-periodic solutions for FCNNs with time-varying de-
lays or distributed delays and impulsive effects. Zhang, Yang
and Liu [34] studied the existence and global exponential
stability of anti-periodic solutions for fuzzy Cohen-Grossberg
neural networks with impulsive effects on time scales.

Motivated by the above discussion, it is worth continuing
the investigation of existence and stability of anti-periodic
solutions for FCNNs with mixed delays and impulsive ef-
fects. This paper is concerned with the following model

x′
i(t) = −ai(t)xi(t) +

∑n
j=1 dij(t)fj(xj(t− τij(t)))

+
∧n

j=1 αij(t)
∫ t

−∞ kij(t− s)gj(xj(s))ds

+
∨n

j=1 βij(t)
∫ t

−∞ kij(t− s)gj(xj(s))ds

+Ei(t)] , t ≥ 0, t ̸= tk

xi(t
+
k ) = (1 + Iik)xi(tk), k = 1, 2, · · · ,

xi(t) = φi(t), t ∈ [−τ, 0], i = 1, 2, · · · , n.
(1)

where n corresponds to the number of units in a neural
network. xi(t) is the activations of the i-th neuron at the
time t. ai(t), dij(t), αij(t), βij(t), Ei(t), fj(t), gj(t), τij(t)
are continuous functions on R. ai(t) represents the ampli-
fication function and ai(t) > 0. dij(t) denotes the synaptic
connection weight of the unit j on the unit i at time t. αij(t)
and βij(t) are elements of fuzzy feedback MIN template
and fuzzy feedback MAX template, respectively.

∧
and

∨
denote the fuzzy AND and fuzzy OR operation, respectively.
Ei(t) denotes the i-th component of an external input source
introduced from outside the network to the ith cell. τij(t) is
time-varying delay satisfying 0 ≤ τij(t) ≤ τ, τ is a positive
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constant. fj(·) and gj(·) are the activation functions. The
delay kernel kij : R+ → R+ are real valued nonnegative
continuous functions satisfying

∫∞
0

kij(s)ds = k+ij . k+ij is a
positive constant.

The rest of this paper is structured as follows. In next
section, we introduce some definitions and lemmas. In Sect.
3, applying differential inequality, constructing suitable Lya-
punov functional, we shall derive new sufficient conditions
for the global exponential stability of anti-periodic solutions
of system (1). An example is given to demonstrate the
effectiveness of our results in Sect. 4. Finally a general
conclusion is drawn in Sect. 5.

II. PRELIMINARIES

For the sake of convenience, we introduce some notations

dij = sup
t∈R

|dij(t)|, αij = sup
t∈R

|αij(t)|, βij = sup
t∈R

|βij(t)|.

Ei = sup
t∈R

|Ei(t)|, a−i = min
t∈R

|ai(t)|, τ = sup
t∈R

max
1≤i,j≤n

{τij(t)}.

Throughout this paper, we make the following assumptions

(A1) For i, j = 1, 2, · · · , n, k = 1, 2, · · · , dij , αij , βij , Ei :
R → R, ci, τij : R → R+ are continuous functions, and
there exist ω > 0 such that for v ∈ R

ai(t+ ω) = ai(t), dij(t+ ω)fj(−v) = −dij(t)fj(v),

Ei(t+ ω) = −Ei(t), τij(t+ ω) = τij(t),

αij(t+ ω)

∫ t+ω

−∞
kij(t− s+ ω)gj(vj)ds

= −αij(t)

∫ t

−∞
kij(t− s)gj(vj)ds

βij(t+ ω)

∫ t+ω

−∞
kij(t− s+ ω)gj(vj)ds

= −βij(t)

∫ t

−∞
kij(t− s)gj(vj)ds

(A2) The sequence of times {tk}(k ∈ N) satisfies tk <
tk+1, limk→+∞ tk = +∞, and −2 ≤ Iik ≤ 0 for i ∈
{1, 2, · · · , n}, k ∈ N.
(A3) For i, j = 1, 2, · · · , n, k = 1, 2, · · · , there exists a
positive integer q such that

Ii(k+q) = Iik, tk+q = tk + q.

(A4) fj(·), gj(·) ∈ C(R,R), and there exist positive num-
bers Mf ,Mg, µj , νj(j = 1, 2, · · · , n) such that, for u, v ∈ R,

fj(0) = 0, |fj(u)| ≤ Mf , |fj(u)− fj(v)| ≤ µj |u− v|,

gj(0) = 0, |gj(u)| ≤ Mg, |gj(u)− gj(v)| ≤ νj |u− v|.

Remark 2.1 In assumption (A4), the activation functions
fj , gj , j = 1, 2, · · · , n, are typically assumed to be bounded
and Lipchtiz continuous and need not to be differentiable.

Let x(t) = (x1(t), x2(t), · · · , xn(t))
T ∈ Rn,

where T denotes the transposition. We define |x| =
(|x1|, |x2|, · · · , |xn|)T and ∥x∥ = max1≤i≤n |xi|. Obviously,
the solution x(t) = (x1(t), x2(t), · · · , xn(t))

T of (1) has
components xi(t) piece-wise continuous on (−τ,+∞), x(t)

is differentiable on the open intervals (tk−1, tk) and x(t+k )
exists.
Definition 2.1 A solution x(t) of system (1) is said to be ω
anti-periodic solution, if

x(t+ ω) = −x(t), t ̸= tk.

x(tk + ω)+ = −x(t+k ), k = 1, 2, · · · ,

and the smallest positive number ω is called ω anti-periodic
of function x(t).

Definition 2.2 Let x∗(t) = (x∗
1(t), x

∗
2(t), · · · , x∗

n(t))
T

be an anti-periodic solution of (1) with initial value
φ∗(t) = (φ∗

1(t), φ
∗
2(t), · · · , φ∗

n(t))
T . If there exist constants

λ > 0,M > 1 such that for every solution x(t) =
(x1(t), x2(t), · · · , xn(t))

T with an initial value φ(t) =
(φ1(t), φ2(t), · · · , φn(t))

T ,

|xi(t)− x∗
i (t)| ≤ M∥φ− φ∗∥e−λt, for all t > 0.

where ∥φ − φ∗∥ = sup−τ≤s≤0 max1≤i≤n |φ(s) − φ∗
i (s)|.

Then x(t) is said to be globally exponentially stable.
Lemma 2.1 [19] Let u and v be two states of system (1),
then we have∣∣∣∣∣∣

n∧
j=1

αij(t)gj(u)−
n∧

j=1

αij(t)gj(v)

∣∣∣∣∣∣ ≤
n∑

j=1

|αij(t)||gj(u)−gj(v)|,

and∣∣∣∣∣∣
n∨

j=1

βij(t)gj(u)−
n∨

j=1

βij(t)gj(v)

∣∣∣∣∣∣ ≤
n∑

j=1

|βij(t)||gj(u)−gj(v)|.

Lemma 2.2 Let (A1) − (A4) hold, Suppose that x(t) =
(x1(t), x2(t), · · · , xn(t))

T is a solution of system (1) with
initial conditions

xi(s) = φi(s), |φi(s)| < η, s ∈ [−τ, 0], (2)

where i = 1, 2, · · · , n. Then

|xi(t)| < η, |φi(s)| < η, t ≥ 0, (3)

where

η >
Θ

a−i
,Θ =

n∑
j=1

aijMf +
n∑

j=1

(αij +βij)k
+
ijMg +Ei. (4)

Proof. For any given initial condition, assumption (A4)
guarantees the existence and uniqueness of x(t), the solution
to (1) in [−τ,+∞).

By way of contradiction, suppose that (4) does not hold.
Notice that xi(t

+
k ) = (1 + Iik)xi(tk) and assumption (A2),

then

|xi(t
+
k )| = |(1 + Iik)xi(tk)| ≤ |xi(tk)|.

If |xi(t
+
k )| ≥ η, then |xi(tk)| ≥ η. Thus we may assume that

there must exist i ∈ {1, 2, · · · , n} and t∗ ∈ (tk, tk+1] such
that for all t ∈ (−τ, t∗),

|xi(t
∗)| = η, |xj(t

∗)| < η. (5)
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where j = 1, 2, · · · , n. By directly computing the upper right
derivative of |xi(t)|, together with the assumptions (4), (5),
(A4) and Lemma 2.1, we get that

0 ≤ D+|xi(t
∗)| ≤ −ai(t

∗)xi(t
∗)

+

∣∣∣∣∣∣
n∑

j=1

dij(t
∗)fj(t

∗ − τij(t
∗))

+

n∧
j=1

αij(t
∗)

∫ t∗

−∞
kij(t

∗ − s)gj(xj(s))ds

+

n∨
j=1

βij(t
∗)

∫ t∗

−∞
kij(t

∗ − s)gj(xj(s))ds+ Ei(t
∗)

∣∣∣∣∣∣
≤ −ai(t

∗)xi(t
∗)

+

∣∣∣∣∣∣
n∑

j=1

dij(t
∗)[fj(t

∗ − τij(t
∗))− fj(0)]

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n∧

j=1

αij(t
∗)

∫ t∗

−∞
kij(t

∗ − s)gj(xj(s))ds

−
n∧

j=1

αij(t
∗)

∫ t∗

−∞
kij(t

∗ − s)gj(0)ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
n∨

j=1

βij(t
∗)

∫ t∗

−∞
kij(t

∗ − s)gj(xj(s))ds

−
n∨

j=1

βij(t
∗)

∫ t∗

−∞
kij(t

∗ − s)gj(0)ds

∣∣∣∣∣∣+ |Ei(t
∗)|

≤ −ai(t
∗)xi(t

∗)

+

n∑
j=1

|dij(t∗)||fj(t∗ − τij(t
∗))− fj(0)|

+

n∑
j=1

|αij(t
∗)|

∣∣∣∣∣
∫ t∗

−∞
kij(t

∗ − s)gj(xj(s))ds

−
∫ t∗

−∞
kij(t

∗ − s)gj(0)ds

∣∣∣∣∣
+

n∑
j=1

|βij(t
∗)|

∣∣∣∣∣
∫ t∗

−∞
kij(t

∗ − s)gj(xj(s))ds

−
∫ t∗

−∞
kij(t

∗ − s)gj(0)ds

∣∣∣∣∣+ |Ei(t
∗)|

≤ −ai(t
∗)xi(t

∗)

+
n∑

j=1

|dij(t∗)||fj(t∗ − τij(t
∗))|+ |Ei(t

∗)|

+
n∑

j=1

|αij(t
∗)|

∫ t∗

−∞
|kij(t∗ − s)||gj(xj(s))|ds

+

n∑
j=1

|βij(t
∗)|

∫ t∗

−∞
|kij(t∗ − s)||gj(xj(s))|ds

≤ −a−η +
n∑

j=1

dijMf +
n∑

j=1

(αij + βij)k
+
ijMg + Ei

< 0

which is a contradiction and implies that (4) holds. This

completes the proof.

III. MAIN RESULT

In this section, we derive some sufficient conditions of
existence and global exponential stability of anti periodic
solution of system (1).
Theorem 3.1 Assume that (A1)−(A4) hold, if the following
assumption is satisfied
(A5): There exist constants γ > 0, λ > 0, i, j = 1, 2, · · · , n,
such that

(λ− a−i ) +
n∑

j=1

(dijµj + (αij + βij)k
+
ijνj) < −γ < 0 (6)

Let x∗(t) = (x∗
1(t), x

∗
2(t), · · · , x∗

n(t))
T be a solution of (1)

with initial value φ∗(t) = (φ∗
1(t), φ

∗
2(t), · · · , φ∗

n(t))
T , and

x(t) = (x1(t), x2(t), · · · , xn(t))
T be a solution of (1) with

initial value φ(t) = (φ1(t), φ2(t), · · · , φn(t))
T . Then x∗(t)

is said to be globally exponentially stable.
Proof. Let yi(t) = xi(t)− x∗

i (t), i = 1, 2, · · · , n. Then

y
′

i(t) = −ai(t)(xi(t)− x∗
i (t))

+
∑n

j=1 dij(t)(fj(xj(t− τij(t)))

−fj(x
∗
j (t− τij(t))))

+
∧n

j=1 αij(t)
∫ t

−∞ kij(t− s)

×(gj(xj(s))− gj(x
∗
j (s)))ds

+
∨n

j=1 βij(t)
∫ t

−∞ kij(t− s)

×(gj(xj(s))− gj(x
∗
j (s)))ds

yi(t
+
k ) = (1 + Iik)yi(tk), k = 1, 2, · · · ,

(7)

Define a Lyapunov functional as

Vi(t) = |yi(t)|eλt, i = 1, 2, · · · , n. (8)

It follows from (6), (7) and (8) that

D+Vi(t)

= D+(|yi(t)|)eλt + λ|yi(t)|eλt

≤ (λ− a−i )|yi(t)|e
λt

+

 n∑
j=1

|dij(t)||fj(xj(t− τij(t)))− fj(x
∗
j (t− τij(t)))|

+

n∑
j=1

|αij(t)|
∫ t

−∞
|kij(t− s)||gj(xj(s))− gj(x

∗
j (s))|ds

+
n∑

j=1

|βij(t)|
∫ t

−∞
|kij(t− s)||gj(xj(s))− gj(x

∗
j (s))|ds


≤ (λ− a−i )|yi(t)|e

λt +

n∑
j=1

dijµj |yj(t− τij(t))|eλt

+

n∑
j=1

(αij + βij)k
+
ijνj |yj(t)|e

λt, t ̸= tk. (9)
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and

Vi(t
+
k ) = |yi(t+k )|e

λtk = |xi(t
+
k )− x∗

i (t
+
k )|e

λtk

= |(1 + Iik)yi(tk)|eλtk (10)

where i = 1, 2, · · · , n. Let M > 0 denote an arbitrary real
number and set

∥φ− φ∗∥ = sup
−τ≤s≤0

max
1≤j≤n

|φj(s)− φ∗
j (s)| > 0.

By (8), we have for all t ∈ (−∞, 0], i = 1, 2, · · · , n,

Vi(t) = |yi(t)|eλt < M∥φ− φ∗∥.

Thus we can claim that, for all t ∈ (−∞, t1], i = 1, 2, · · · , n,

Vi(t) = |yi(t)|eλt < M∥φ− φ∗∥. (11)

Otherwise, there must exist i ∈ {1, 2, · · · , n} and δ0 ∈
(−τ, t1] such that

Vi(δ0) = M∥φ− φ∗∥, Vj(t) < M∥φ− φ∗∥, (12)

for all t ∈ [−τ, τ0), j = 1, 2, · · · , n. Combining (9), (10)
with (11), we have

0 ≤ D+Vi(τ0) ≤ (λ− a−i )|yi(τ0)|e
λτ0

+
n∑

j=1

dijµj |yj(τ0 − τij(τ0))|eλτ0

+
n∑

j=1

(αij + βij)k
+
ijνj |yj(τ0)|e

λτ0

= (λ− a−i )|yi(τ0)|e
λτ0

+
n∑

j=1

dijµj |yj(τ0 − τij(τ0))|eλ(τ0−τij(τ0))eλτij(τ0)

+
n∑

j=1

(αij + βij)k
+
ijνj |yj(τ0)|e

λτ0

≤ (λ− a−i )M∥φ− φ∗∥+
n∑

j=1

dijµjM∥φ− φ∗∥eλτ

+

n∑
j=1

(αij + βij)k
+
ijνjM∥φ− φ∗∥

=

(λ− a−i ) +

n∑
j=1

dijµj

+
n∑

j=1

(αij + βij)k
+
ijνj

M∥φ− φ∗∥.

Then

(λ− a−i ) +
n∑

j=1

dijµj +
n∑

j=1

(αij + βij)k
+
ijνj > 0.

Which is contradiction with (A5). So (11) holds true. From
(11), we have

Vi(t1) = |yi(t1)|eλt1 < M∥φ− φ∗∥, i = 1, 2, · · · ,

and i = 1, 2, · · · ,

Vi(t
+
1 ) = |1+ Ii1||yi(t1)|eλt1 ≤ |yi(t1)|eλt1 < M∥φ−φ∗∥.

Therefore, for t ∈ [t1, t2], we can repeat the above procedure
and have

Vi(t) = |yi(t)|eλt1 < M∥φ− φ∗∥, t ∈ [t1, t2], i = 1, 2, · · · .

Similarly, it follows that

Vi(t) = |yi(t)|eλt1 < M∥φ− φ∗∥, t > 0, i = 1, 2, · · · .

Namely,

|xi(t)− x∗
i (t)| = |yi(t)| < M∥φ− φ∗∥, t > 0.

Now the proof is completed.

Theorem 3.2 Assume that (A1)−(A5) hold, then system (1)
has exactly one ω-anti-periodic solution which is globally
exponentially stable.

Proof. Let x(t) = (x1(t), x2(t), · · · , xn(t))
T be a solution

of system (1) with initial conditions

xi(s) = φi(s), |φi(s)| < η, s ∈ [−τ, 0], i = 1, 2, · · · , n.
(13)

From Lemma 2.2, it follows that the solution x(t) is bounded
and

|xi(t)| < η, t ∈ R, i = 1, 2, · · · , n. (14)

For any natural number p, it follows from system (1) that

((−1)p+1xi(t+ (p+ 1)ω))′

= (−1)p+1 {−ai(t+ (p+ 1)ω)xi(t+ (p+ 1)ω)

+

n∑
j=1

dij(t+ (p+ 1)ω)

×fj(xj(t+ (p+ 1)ω − τij(t+ (p+ 1)ω)))

+

n∧
j=1

αij(t+ (p+ 1)ω)

×
∫ t+(p+1)ω

−∞
kij(t+ (p+ 1)ω − s)gj(xj(s))ds

+

n∨
j=1

βij(t+ (p+ 1)ω)

×
∫ t+(p+1)ω

−∞
kij(t+ (p+ 1)ω − s)gj(xj(s))ds

+Ei(t+ (p+ 1)ω)}
= −ai(t)(−1)p+1xi(t+ (p+ 1)ω)

+
n∑

j=1

dij(t)fj((−1)p+1xj(t+ (p+ 1)ω − τij(t)))

+
n∧

j=1

αij(t)

∫ t

−∞
kij(t− s)gj(xj(s))ds

+
n∨

j=1

βij(t)

∫ t

−∞
kij(t− s)gj(xj(s))ds

+Ei(t), t ̸= tk, (15)

and

(−1)p+1xi((tk + (p+ 1)ω)+)

= (−1)p+1(1 + Ii(k+(p+1)q))xi(t+ (p+ 1)ω)

= (−1)p+1(1 + Iik)xi(t+ (p+ 1)ω)

= (1 + Iik)((−1)p+1xi(t+ (p+ 1)ω), (16)
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where i = 1, 2, · · · , n, k = 1, 2, · · · . Thus (−1)p+1x(t+(p+
1)ω) is the solution of system (1). From Theorem 3.1, there
exists a constant M > 1 such that

|(−1)p+1xi(t+ (p+ 1)ω)− (−1)pxi(t+ pω)|
≤ Me−λ(t+pω) sup

−∞≤s≤0
max
1≤i≤n

|xi(s+ ω) + xi(s)|

≤ 2e−λ(t+pω)Mη, (17)

and

|(−1)p+1xi((tk + (p+ 1)ω)+)

−(−1)pxi((tk + pω)+)|
= |xi((tk + (p+ 1)ω)+) + xi((tk + pω)+)|
= |1 + Iik||xi(tk + (p+ 1)ω) + xi(tk + pω)|
≤ 2Mηe−λ(tk+pω), (18)

where k ∈ N, i = 1, 2, · · · , n. Therefore, for any natural
number q, we have

(−1)q+1xi(t+ (q + 1)ω)

= xi(t) +

q∑
k=0

[(−1)k+1xi(t+ (k + 1)ω)

−(−1)kxi(t+ kω)], t ̸= tk. (19)

It follows that

|(−1)q+1xi(t+ (q + 1)ω)|

≤ |xi(t)|+
q∑

k=0

|(−1)k+1xi(t+ (k + 1)ω)

−(−1)kxi(t+ kω)|, t ̸= tk, (20)

and

|(−1)q+1xi((tk + (q + 1)ω)+)|
= |(1 + Iik)(−1)q+1xi(tk + (q + 1)ω)|
≤ |(−1)q+1xi(tk + (q + 1)ω)|, (21)

where i = 1, 2, · · · , n. It follows from (17)-(21) that
(−1)q+1xi(t+ (q + 1)ω) is a fundamental sequence on any
compact set of R. Obviously, {(−1)qx(t + qω)} uniformly
converges to a piece-wise continuous function x∗(t) =
(x∗

1(t), x
∗
2(t), · · · , x∗

n(t))
T on compact set of R.

Now we show that x∗(t) is an ω-anti-periodic solution of
system (1). Since

x∗(t+ ω) = lim
q→∞

(−1)qx(t+ ω + qω)

= − lim
q+1→∞

(−1)q+1x(t+ (q + 1)ω)

= −x∗(t), t ̸= tk,

and

x∗((t+ ω)+) = lim
q→∞

(−1)qx((t+ ω + qω)+)

= − lim
q+1→∞

(−1)q+1x((t+ (q + 1)ω)+)

= −x∗(t+k ), k = 1, 2, · · · .

Namely, x∗(t) is ω-anti-periodic.
Next we show that x∗(t) is a solution of system (1). Noting

that the right-hand side of (1) is piece-wise continuous.
(15) and (16) imply that {((−1)p+1x(t + (q + 1)ω))′}
uniformly converges to a piece-wise continuous function on

any compact subset of R. Let p → ∞ on both sides of (15)
and (16), we can obtain

ẋ∗
i (t) = −ai(t)x

∗
i (t)

+
∑n

j=1 dij(t)fj(x
∗
j (t− τij(t)))

+
∧n

j=1 αij(t)
∫ t

−∞ kij(t− s)gj(x
∗
j (s))ds

+
∨n

j=1 βij(t)
∫ t

−∞ kij(t− s)gj(x
∗
j (s))ds

+Ei(t)] , t ≥ 0, t ̸= tk

x∗
i (t

+
k ) = (1 + Iik)x

∗
i (tk), k = 1, 2, · · · , i = 1, 2, · · · , n.

(22)
Thus x∗(t) is a solution of system (1). Applying Theorem
3.1, we can obtain that x∗(t) is globally exponentially stable.
The proof of Theorem 3.2 is completed.
Remark 3.1 In compared with the results published, the
assumptions (A1)-(A5) which can assure the existence and
exponential stability of system (1), have relation to the
parameters of system and impulsive operators. The results
published [24,25,26,32] can not be applied in this paper.
Therefore the results obtained are new and complementary
to previously known publication.

IV. AN ILLUSTRATIVE EXAMPLE

In this section, an example is given to show effectiveness
of results obtained.
Example 4.1 Consider the following FCNNs with mixed
delay and impulsive effects.

x′
i(t) = −ai(t)xi(t) +

∑2
j=1 dij(t)fj(xj(t− τij(t)))

+
∧2

j=1 αij(t)
∫ t

−∞ kij(t− s)gj(xj(s))ds

+
∨2

j=1 βij(t)
∫ t

−∞ kij(t− s)gj(xj(s))ds

+Ei(t), t ̸= kπ
2 , k = 1, 2, · · · ,

xi(t
+
k )) = (1 + Iik)xi(tk), i = 1, 2,

(23)
where a1(t) = 2 + | sin t|, a2(t) = 2.4 + | cos t|, fj(x) =
gj(x) = 1

2 (|x + 1| − |x − 1|)(j = 1, 2), kij(s) = 1, k+ij =
1, τij(t) = 0.5| sin t|.

(dij(t))2×2 =

(
1/4| cos t| 1/8| sin t|
1/6| sin t| 1/3| cos t|

)
,

(αij(t))2×2 =

(
1/8| sin t| 1/6| cos t|
1/6| cos t| 1/8| sin t|

)
(βij(t))2×2 =

(
1/16| cos t| 1/4| sin t|
1/4| sin t| 1/16| cos t|

)
,

(Ei(t))2×1 =

(
1/4 sin t
1/3 cos t

)
then, we can easily check that µj = νj = 1, a−1 = 2, a−2 =
2.2, and

(dij)2×2 =

(
1/4 1/8
1/6 1/3

)
, (αij)2×2 =

(
1/8 1/6
1/6 1/8

)
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(βij)2×2 =

(
1/16 1/4
1/4 1/16

)
Let γ = 0.1, λ = 0.8. Then

(λ− a−1 ) +
2∑

j=1

(d1jµj + (α1j + β1j)k
+
ijνj)

= (0.8− 2) + (
1

4
+

1

6
+

1

8
+

1

6
+

1

16
+

1

4
)

= −0.18 < −0.1

(λ− a−2 ) +
2∑

j=1

(d2jµj + (α2j + β2j)k
+
ijνj)

= (0.6− 2.2) + (
1

8
+

1

3
+

1

6
+

1

8
+

1

4
+

1

16
)

= −0.34 < −0.1

It is easy to conclude that system (23) satisfies all condi-
tion of Theorem 3.2, Thus system (23) has exactly one π-
anti-periodic solutions which is globally exponentially stable
(see Fig.1).

0 20 40 60 80 100
−10

0

10

t

x
1

0 20 40 60 80 100
−10

0

10

t

x
2

Fig.1: Numerical solution (x1(t), x2(t)) of systems (23)
with initial value (6,−7).

V. CONCLUSION

In this paper, the existence and globally exponential
stability of anti-periodic solution for fuzzy cellular neural
networks with mixed delays and impulsive effects are con-
sidered. With the aid of differential inequality techniques,
some sufficient conditions set up here are easily verified
and these conditions are correlated with parameters of the
system (1). The obtained criteria can be applied to design
globally exponential stability of anti-periodic fuzzy cellular
neural networks.
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