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Abstract—Maximum flow problem is one of the most funda-
mental network optimization problems. Recently, experimental
observations showed that an amoeboid organism, Physarum
polycephalum, contains a tube network by means of nutrients
and signals circulating through the body. The tube network
can sense and adopt to local shear stress difference in its
own body until the shortest tubes of connecting two food
sources (placed at two exits of a maze) keep alive while
longer tubes vanish eventually. Unlike to the global optimization
algorithm Physarum solver, we develop a mathematical model
of a dynamical system which capture the local control behavior
of Physarum when searching for foods. With this new model, a
novel adaptive amoeba algorithm for maximum flow problem
is proposed, which can be used to solve shortest path problem
as Physarum solver. Furthermore,we firsts apply this model to
solve maximum flow problem, where its convergence is proved
in this paper as well. Additionally, numerical results demon-
strate the validity and efficiency of the proposed algorithm to
solve maximum flow problem.

Index Terms—maximum flow problem, bio-inspired algorith-
m, network optimization, physarum solver.

I. INTRODUCTION

ETWORK flow problems form a large class of op-

timization problems and are central problems in op-
erations research, computer science, civil engineering and
combinatorial optimization [1], [2], [3], [4], [5]. Among
them, one of the most famous problems is maximum flow
problem, which has many applications in transportation,
logistics, telecommunications, and scheduling etc. The max-
imum flow problem was first formulated by Ted Harris
and F. S. Ross when they studied a simplified model of
Soviet railway traffic flow in 1954 [6] as follows. Consider
a rail network connecting two cities by way of a number
of intermediate cities, where each link of the network has a
number assigned to it representing its capacity. Assuming a
steady state condition, the flow is maximal from one given
city to other this moment.

To the best of our knowledge, the existing algorithms
for maximum flow problem can be classified in two major
classes. One is the classical augmenting path method. Ford
and Fulkerson devised the first algorithm of feasible flow
by working with augmenting path incrementing the flow at
every iteration [7]. This algorithm is based on the fact that
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a flow is maximum if and only if there is no augmenting
path. It repeatedly finds an augmenting path and augments
along it until no augmenting path exists anymore. The other
is the preflow algorithm. A preflow is a flow that seems
violate the restriction that the incoming flow and outgoing
flow should be balanced. The push-relabel algorithm is a
representative of this type which is efficient both theoretically
and empirically [8]. A comprehensive discussion of such
algorithms and applications can be found in [9]. Note that
max flow problem is a fundamental problem. Numerous
efficient algorithms for this problem have been proposed to
reduce the runtime or time complexity. However, for general
cases, only small improvements have been made. In this
paper, we try our best to solve maximum flow problem from
other perspective, that is, is there a different type of method
for maximum flow problem other than the the two classical
algorithms?

Recently, studies of Physarum polycephalum (P. poly-
cephalum) have attracted huge attention. The plasmodium of
P. polycephalum is a large amoeba-like organism with great
intelligence. Studies have shown that it has the ability to
solve a complex maze [10], [11] and other graph theoretical
problems [12], [13], [14], [15]. When food sources (FSs)
placed at two exits are presented to a starved P. poly-
cephalum, it covers FSs to absorb nutrients and constructs
a tube network by means of which nutrients and signals
circulate through the body. Later, only a few short tubes re-
main which means effectiveness for transportation. Tero et al.
develop a mathematical model Physarum solver to describe
the above adaptation process of the tube network [16]. The
insight essence of Physarum solver is rhythmic oscillation
which is exactly described by positive feedback mechanism
between the thickness of each tube and internal protoplasmic
flow. Physarum solver has been applied in many fields [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27]. In
the dissertation [28], Wang is the first to apply physarum
solver to solve maximum flow problem. Wang claims that
her developed algorithm is easy to implement, and more
importantly, it can obtain maximum flow and minimum cut
sets simultaneously.

Even though significant progress has been made, it remains
challenging to achieve novel methods to solve maximum
flow problem. In this paper, we are motivated to develop a
biologically inspired algorithm for maximum flow problem
based on Physarum solver. As we know, it is the first
time that Physarum solver is developed to solve maximum
flow problem. It is very interesting to see how this new
amoeba model works when solving a classical network flow
problem. Second, we also note that the adaptation principle
of Physarum solver follows the property of collaborating
simultaneously and globally. However, it is observed in
experiment that P. polycephalum adapts tube diameters in
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response to wall shear stress [16], [18]. Based on these facts,
we simulate the adaptation process of P. polycephalum and
develop a similar but novel mathematical model where a
dynamical system works quite like Physarum but responses
to local information. Third, the proposed model is proved
to efficiently solve maximum flow problem by testing on
instances with relatively large size when compared with
Physarum solver [16].

The rest of the paper is organized as follows. In Section 2,
some definitions and preliminary descriptions are introduced.
Section 3 describes the proposed mathematical model and ap-
plies it to solve maximum flow problem. Section 4 gives the
short proof of the adaptive amoeba algorithm’s correctness.
We use a simple example to show how the algorithm works
and several large-size instances to test the efficiency of the
proposed algorithm, in Section5. Finally, concluding remarks
are given in Section 6.

II. PRELIMINARIES

In this section we introduce some basic knowledge about
maximum flow problem and the well-known theorem, “Max-
flow Min-cut Theorem”.

A. Maximum Flow Problem

The maximum flow problem is defined on a capacitated
directed network G = (N, M, L, C) with a set of n nodes
and m directed edges. Specifically, M;; denotes the edge
with a direction from node ¢ to node j. Its length is written
as L;;. C;; denotes the capacity of edge M;;, which is always
nonnegative. For edge M;;, the lower bound of the feasible
flow is zero and an upper bound on flow is Cj;. In such a
network, the maximum flow problem is to send maximum
possible flow from a source s to a sink ¢. Let f represents
the amount of flow in the network. Then, the maximum flow
problem may be expressed as follows,

mazximize f (D)

subjecting to

ay—> xp={ 0 ifitsort, (2
j=1 j=1 —f ifi=t,

where 0 < z;; < Cyy, 4,5 = 1,2,...,n. The sums and
inequalities are taken over all edges in the network. Every
feasible flow f must satisfy the above capacity constraint
and flow conservation constraint.

B. Max-flow Min-cut Theorem

Let two mutually exclusive subsets S,7 in N, that is,
S, T C N, SUT =N and SNT = (). Considering any two
nodes p € S and g € T, the cut [S, T is defined as

[S,T] ={epg € Mlp€ S,qe T} 3)
and the capacity of cut [S, T is defined as
C(S,T) = Z C.. “4)
eeM

The following is the well-known max-flow min-cut theorem.
We introduce this theorem here for later use when proving
the correctness of the proposed algorithm.

Theorem 2.1: The maximum value of |f]| is equal to the
minimum capacity of cut [S, T, that is, |f| = C(S,T).

III. AN ADAPTIVE AMOEBA ALGORITHM

Given a resistance network (G, a particle is assumed
with one unit of energy which enters at the starting node
s. This particle traverses through the network and leaves
from the sink node ¢. Each node has an ability of storing
particles temporarily. The number of particles stored in a
node indicates the energy level of this node’s current state.
These particles flow to nodes with lower energy levels and
leave from the sink node ¢. Furthermore, we define energy
flow Ej;; transferred from node ¢ to node j as
Lij/Dij  Lij
where ®; is the energy level of node 4, L;; length of edge
M;;, and D;; is the conductivity of edge M;;. L;j/D;; can
be regarded as the energy resistance. Due to non-negativity
of both L;; and D;;, the direction of the energy flow F;; is
determined by the sign of ®; — ®;. If ®; > ®;, the energy
flows from node 7 to node j, otherwise it goes to the opposite
direction.

For the source s, particles enter at a rate of I, and
disappear at the sink node with equal rate. The total particle
flow I is a fixed constant in our model. In order to describe
the positive feedback behavior of the system, the conductivity
D;; varies in response to energy drop with time according
to the following evolution equation,

d

dt

where f(FE;;) is the driving power that incurs in energy

propagation and satisfies f(0) = 0. In this paper, we set

f(E) = E. Then, the semi-implicit scheme of evolution
equation can be expressed as

t+1 t

¢, —

ot

where dt is a time mesh size and the upper index ¢ denotes
a time step. As energy inflow and outflow incur in each time
step, the amount of energy stored in each node is updated as

et =@+ Y EL @®)
eeM;

Eij =

(@i — @), ®)

Dij = f(Eij) — Dj (6)

ot t+1
= Eij - Dij @)

where M; is the set of adjacent edges of node 1.

In a word, the network full of particles can be viewed as a
system of energy propagation on the basis of aforementioned
defined rules. So far, we describe a mathematical model for
a dynamical system in response to local information (node
energy difference). Similar to Physarum solver, the proposed
model can solve shortest path problem [26]. However, our
model adopts to energy level difference between each pair of
nodes while the flows in Physarum solver are computed by
solving a systems of linear equation. The time complexity
of solving it is O(n?), but our model computes the flows in
O(m) at each iteration.

IV. SOLVING MAXIMUM FLOW PROBLEM

In this section, we apply the above mathematical model
to solve maximum flow problem. First, a new network G’ is
constructed by adding a dummy node v and two virtual edge
My, and M,,. Such additional path s—v—t is longer than any
other possible path between s and ¢ by setting Lg, = Lyt =
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nmax(L)/2, where maz(L) is the length of the longest edge
among M. The capacities of edges My, and M, are Cy, =
Cyt = max( Y. C.). The total inflow Iy is equal to Cs,

and C,;. On etig[i)asis of the positive feedback between the
energy flow E;; and the energy conductivity D;;, we want
to the flow converges to the edges in G as much as possible
by complying with some certain constraint conditions below.
For an unsaturated edge, the flow should follow Eq. (5). The
maximum flow of a saturated edge should be lower than Cj;.
As a consequence, the energy flow Eq. (5) is rewritten as

Dij
By = { L (%= ®;), My <Cy,

€))
Cij; M;; = Cy;.
Consequently, the conductivity of edge M;; evolves ac-
cording to the equation as

dDij | Eij — Di;, 0< By <Cy,
dt Cij — Dyj, By > Cyy.
In order to ensure flow tracing the virtual edges mostly at

the first iteration, the conductivity D;;(0) of each edge in G’
initialize as

(10)

2L 4, Cso ) — ) —
m, t=vorjy=mov,
Dij(0) = { rnthece) (11)
1, otherwise,

where mij\l/l[(LeCe) is the minimum value of the length of
€

each ecfges in M times its capacity, respectively. Later, the
flow will converge to the path from s to ¢ in the network G
as much as possible. When the flow in the G’ is steady, the
maximum flow is obtained.

V. PROOF

In this section, we prove that the flow in the network G
is the maximum flow when the dynamical system is stable.

Let 7 be the stabilization time. The stabilization of the
system means Vt > 7,dD};/dt = 0.

Lemma 5.1: In an equilibrium point, if E;; = 0, then ®;—
CI)j < Lij; if 0 < Eij < Cij, then ®; — (I)j = Lij; if
Eij = Cij’ then ®; — (bj > LZJ

Proof: If ¥t > 7, Ef; = 0 and D}; # 0, by Eq. (10), D}
decreases with time, which is inconsistent with the default
assumption. As a consequence, dej /dt < 0. According to
Egs. (9) and (10), we get dDj;/dt = Ej; — Dj; = ((®! —
®!)/L;j — 1)D;; < 0. Thus, we get ! — @fj < L. If

0 < Ef; < Cjj, there is dD};/dt = 0. Based on Egs. (10)

and (9), it can be seen that l%fj = Dj;. Then we get ®! —
<I)§ = L;;. By solving the lower differential equation of (10)
when Ef; = Cjj, we have lim Dj; = lim (Cj; + (DJ; —
t—o00 t—o00
Cij) exp(—t)) = Cyj. By Eq. (9), there is ®' — <I>j_ > Lij.
|
Lemma 5.2: In an equilibrium point, ®;—®, = L, + L.
Proof: According to Lemma 5.1, if the total flow I is
large enough to ensure the flow on the virtual edges satisfy
0 < E;; < Cyj, we will have &, — &, = (&, — ®,) + (P, —
®,) = Lgy + Lyt. Generally speaking, the maximum flow in
the network G is lower than the value of total incoming flow
Iy we set above. [ |
Lemma 5.3: Assume a path from s to ¢
(s, Nk, Ni,,...Ng,,t) in the G in an equilibrium point.
Then, there exists at least one saturated edge.

Fig. 1. Given a directed network with 11 nodes and 19 edges, L;; = 1, for
all 7, j. The upper capacity bounds of edges are listed beside, i.e., C12 = 5.
By connecting a dummy node v with both s and ¢, we have a new network.

Proof: According to Lemma 5.2, we have &, — ¢, =
((I)s — (I)kl) + ((I)kl — (I)k2) + ...+ (q)k7 — (I)t) = Loy + Lys.
Due to L, + Ly is larger than any path from s to ¢ in G, so
&, — Oy > Lgg, + Ly, + ... + Li,;¢. Therefore, there must
be at least one edge that satisfies ®; — ®; > L;;. It means
that there is a saturated edge M;;, that is, F;; = Cj;. For
edge Mj;, in turn, there is ®; — ®; < —Lj;. By Eq. (10),
we get Fj; = 0. ]
Let [S,T] is a cut of G from a source node s to a sink
node t. Then, we have

[S,T] = {eij\eij e M,r € S,j S T},
[T,S] = {eij\eij eM,ieT,je S}

Theorem 5.4: In an equilibrium point, for e;; € [S,T],
each edge is saturated; for e;; € [T, 5], e;; is empty.
Proof: According to Lemma 5.3, both saturated edges
and empty ones can be cut off. So these edges include a cut
of G. Furthermore, all saturated edges are from S to T" and
all the empty edges are in the opposite direction. ]
According to Theorem 2.1, the flow in the network G is
obviously equal to the maximum flow when the dynamical
system is at equilibrium state.

VI. SIMULATION EXPERIMENT
A. A simple example

For Fig. 1, node 1 and node 11 are set as the source s
and the sink ¢, respectively. The dummy node v is added to
squeeze the flow into the original network. The total input
flow is set as Iy = C1, = Cy11 = 25. and the length of the
virtual edge is Ly, = L,y = 5.5. As illustrated in Fig. 1(b),
most part of the flow traces among the virtual path s—v—t at
the beginning. Afterwards, the value of flow on virtual path
decreases and converges to 2 in the equilibrium point. Flows
on edges Mo, M 3andM,y are increasing and converge to
some fixed value after a certain amount of time. As a result,
the value of maximum flow in Fig. 1(a) is obtained Iy —2 =
23, which is the correct maximum flow that the network
could have.

B. Large-scale Instances

In order to test the efficiency of the proposed algorithm, we
adopt large max flow problems instances. The instances were
generated by G. Skorobohatyi using the program RMFGEN
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Fig. 2. Flows change of edges from beginning until convergence.

and containing instances of grids-on-pipe graphs [29]. The
details about the datasets are shown in the following table I.

TABLE 1
THE BASIC TOPOLOGICAL FEATURES OF THE SIX REAL NETWORKS. n
AND m ARE THE TOTAL NUMBERS OF NODES AND LINKS,
RESPECTIVELY. s AND ¢t DENOTE THE ENTERING NODE AND LEAVING
NODE. C' IS THE CAP CITY OF EDGES OR ARCS

t C
96 -
96 -

Networks n m s
elist96 96 187 1
elist96d 96 528 1
elist160 160 285 1 160 -
elist160d 160 912 1 160 -
elist200 200 483 1 200 -
1
1
1
1
1

elist200d 200 1340 200 -
elist500 500 1040 500 -
elist500d 500 3975 500 -
elist640 640 3037 640 -
elisto40d 640 12608 640 -

We next present computational results for the iterative
solutions method discussed in the above. The computational
experiments are performed on a PC with Intel Core I7-
4720HQ and 16 GB of memory, running Windows 10.
The algorithms are implemented in Matlab programming
language of version 2015a. To make a comparison, we
also revise the original physarum solver model to solve
max flow problems. And furthermore, we also compare
our algorithm with the famous linear programming method,
“simplex method”. We call it LP in the following parts

In table II, the computational results are listed. Clearly,
for instances elist96 and elist96d, the PS algorithm reach to
suboptimal solution with a relatively large gap to the optimal
solution. However, our proposed algorithm AA can always
reach the optimal solution without any gap with even less
computational time. Note that, instances with same number
of nodes but different number of edges could lead to an
significant different computation time. More edges could
affect the performance of the PS in a large extent. From the
other instances’ computational results, we can generally say
that more edges lead to more runtime. This is because the
particles traverses the networks and need more time to reach
the end. FF and LP methods perform much better than PS and
AA in the computational speed. We are not surprised by the

TABLE 1T
COMPARISON BETWEEN PHYSARUM SOLVER(PS), THE PROPOSED
ADAPTIVE AMOEBA (AA) ALGORITHM, SIMPLEX METHOD BY LINEAR
PROGRAMMING (LP) AND FORD-FULKERSON ALGORITHM (FF). NOTE
THAT THE LAST THREE ALGORITHMS’ GAP ARE ALL ZEROS. SO WE DO
NOT LIST THEM FOR WASTING SPACE.

PS AA LP FF
Instances Gap Time | Time | Time | Time
elist96 8.2 49.2 353 2.1 0.3
elist96d 8.4 55.5 36.1 1.3 0.2
elist160 9.5 70.0 40.0 44 0.6
elist160d 9.3 54.8 31.6 35 1.2
elist200 11.5 102.4 75.3 5.2 1.3
elist200d 10.2 120.6 54.2 34 1.6
elist500 11.1 200.3 80.9 6.6 2.6
elist500d 9.6 180.7 99.3 7.3 2.7
elist640 12.3 331.6 140.6 8.1 32
elist640d 12.8 340.3 157.9 8.3 34

longer runtime of PS because solving the flow conservation
constraint is truly to solve a system of linear equations. It can
be solved by O(n?) by using Gaussian elimination method.

VII. CONCLUSIONS

In this paper, we have proposed a novel adaptive amoeba
algorithm for maximum flow problem. The insight essence of
this algorithm is the positive feedback mechanism between
the particle flow E and the conductivity D: greater conduc-
tivity results in great flow, and this increases conductivity
in turn. Distinct from preflow algorithms, the algorithm
observes the restriction on the balance of the incoming flow
and the outgoing flow into each internal node (other than
source and sink nodes). In addition, this model has compu-
tational complexity O(m), lower than O(n?®) in Physarum
Solver [16]. In terms of space complexity, it takes O(m) in
our model, also lower than O(n?) in Physarum Solver [16].
We will do research on the time complexity of the iterations
in the near future.

As the numerical results illustrate, the proposed algorithm
obtains the maximum flow in a continuous manner, which
is quite consistent with actual situation. When working with
dynamically changing environment, i.e., the cost of transfer-
ring goods may change dynamically because of weather or
other unexpected factors. The continuous process allow the
model to quickly adapt to external variation and recompute
the experimental results. In a word, the algorithm is flexible
and quite effective.

When comparing with the other two traditional methods
for maximum flow problem, the runtime is quite longer.
That’s because Physarum solver is modeled based on the
solving a systems of linear equations on every iteration.
It takes definitely more time to solve. But as we mention
from beginning, the adaptivity of the proposed algorithm
has never been shown or developed to solve maximum flow
problem. Maybe parallel computing would help accelerate
the algorithm.
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