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Abstract—Dynamic memory allocator is critical for native
(C and C++) programs (malloc and free for C; new and delete
for C++). Current memory allocator adopts a common design
that organizes memory into several bins of fixed sizes to achieve
fast memory allocation and de-allocation. This paper shows that
this design would essentially introduce large ratio of memory
fragmentation and thus lead to memory waste and degraded
performance, especially for allocation intensive applications.
To address this problem, we introduce a dynamic strategy to
create customized bins of special sizes. Unlike the standard
bins in previous general memory allocators, the customized
bins created in our memory allocator can better fit allocations
of special sizes and reduce memory fragmentation and usage,
thus improve performance and space efficiency. Experimental
results show that our new memory allocator can achieve up to
1.7x speedup (averagely over 18.8%) over the state-of-the-art
memory allocator Hoard with 22% less memory usage.

Index Terms—Dynamic memory allocator, Customized, Frag-
mentation, Better performance, Space efficiency.

I. INTRODUCTION

C and C++ programs heavily rely on dynamic memory
allocation [1]–[5] and the related key functions have

been an essential part of standard libraries (malloc and free
for C programs, new and delete for C++ programs) [1]–[5].
Figure 1 shows a common case of using dynamic memory
allocation in C/C++ programs (the malloc at line 3 and line
7). Memory allocators (e.g. tcmalloc in glibc) provide this
neat interface (malloc and free) to ease programming with
allocation of dynamic memory and mask all the memory
management details. However, studies show that memory
allocator greatly impacts the efficiency of programs [1], [2]
in terms of performance and memory space, especially when
the memory allocation and de-allocation are performed in an
intense way (e.g. performed in a loop as shown at line 7 in
Figure 1). More efficient memory allocators are in constant
need for various situations.

Dynamic memory allocation has always been a hot area
of research and there raised a lot of different allocation
strategies focused on time (allocation performance) or space
efficiency (less fragments) [1]–[4]. In recent decades, new
allocation strategies have been raised to focus on parallel
allocation [1], with the prevalence of multi-core architecture
and multi-threaded applications. Popular memory allocators
or allocator frameworks such as Hoard [1], Heaplayers [2],
jemalloc [3], and Tcmalloc [4] all exhibit good performance
as well as good scalability when executing with multiple
threads. However, as we will show in this paper, after
entering into the new era of 64 bits systems and with the
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widely adoption of big memory applications (or allocation
intensive applications) [6], the fragmentation problem [7]
which has not drawn much attention in allocator design is
emerging to be a severe problem that will degrade both space
and time efficiency.

More specifically, current memory allocators all focus on
serving memory allocating and de-allocation at a fast speed
and they all adopt a common mechanism that organizes
virtual memory into several bins of fixed sizes. For example,
the Hoard memory allocator [1] has bins of 32, 64, 128, 256,
512 bytes and so on. If we want to allocate a space of 33
byes, it will give us 64 bytes from the 64 bytes bin. Easily
we can tell that this memory allocation mechanism is fast but
there are 64-33=31 bytes wasted. Also, if we want to allocate
a space of 100 bytes, the memory allocator will give us 128
bytes from the 128 bytes bin and leads to a waste of 28
bytes (128 bytes 100 bytes). This design behaves fine in the
past for applications that allocate small amount of memory.
However, if we have an allocation intensive application that
allocates a lot of small objects like this, the waste is huge.
This huge waste not only leads to poor space efficiency,
but most importantly, it introduces virtual memory explosion
and thus introduces much more TLB (Translation Lookaside
Buffer) miss [8]–[10] which will greatly hinder performance
(see details in Section 2).

Facing this new problem, this paper introduces a new
heap or memory allocator design that focuses on reducing
the fragmentation. We focus on intense memory allocations
and giving them the exact size they want to reduce the
fragmentation and thus reduce the related TLB miss to
improve performance. To maintain a fast allocation speed,
we introduce a mechanism to predict the allocation sizes of
future allocations thus we can prepare bins of the exact size
in advance for allocation. Experiments show that for big-
memory-footprint benchmarks which allocate a lot of objects,
our new memory allocator design can gain performance
benefit of up to 1.7x (averagely over 18.8%) with less

1: int main(…){
2:    …
3:    some_struct * p = (some_struct *)malloc(sizeof(some_struct));
4:    …//operate on p
5:    free(p);
6:    …
6:    for(…){
7:        void* tmp = malloc(…//various sizes);
8:        …//operate on tmp
9:        free(tmp)
10:    }
11:}

Fig. 1. Use Case of Dynamic Memory Allocation
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memory usage (22%) compared with the state-of-the-art
allocator Hoard [1], exhibiting great potential to be adopted
widely. Our memory allocator is a general memory allocator
that could be used widely in many fields such as scientific
computing [11], image processing [12], and logic control
programs.

In the rest of this paper, we first introduce the common
design in current memory allocators and its fragmentation
problem (Section 2). Then we give our optimized design to
reduce fragmentation to achieve better performance (Section
3). We conduct experiment in Section 4 and conclude in
Section 5.

II. FRAGMENTS IN MEMORY ALLOCATOR

Memory allocator is generally a runtime system that
offers interfaces to help upper applications perform dynamic
memory allocation. It normally pre-allocates several large
memory blocks (superblock called in Hoard [1]) from the
underlying operating system via system calls such as mmap
in Linux [13] or VirualAlloc in Windows [14] and then serves
subsequent allocations from upper applications (malloc and
free). As shown in Figure 2, most memory allocators adopt
a bin-based mechanism which organizes superblocks into
several classes of fixed sizes to support fast small objects
allocation. For example, if in this case an upper application
calls malloc(33), then the memory allocator will find and
return a 64 byes free space in the 64-byte bin. Organizing
and searching for space of fixed size could be done very
efficiently based on this design. However, as the upper
application will only use the 33 bytes of the allocated
space, the rest 31 bytes is left unused and thus wasted.
This consumes more virtual and physical memory. This
problem, we call fragmentation, can be easily noticed in
some allocation intensive applications.

Figure 3 shows the fragmentation ratio in Hoard [1],
a state-of-the-art memory allocator for multi-threaded pro-
grams when running with some allocation intensive bench-
marks [1], [2] (Here we define the fragmentation ratio to
be the actual memory amount allocated to programs divided
by the memory amount required by programs, as discussed
above to indicate the waste situation). Taking the benchmark
shbench for an example, it allocates more than 12,000,000

Background bins

…

32 bytes

32 bytes

32 bytes

64 bytes

64 bytes

…
…

128bytes

…

32 bytes 
bin

64 bytes 
bin

128bytes 
bin

Fig. 2. Heap Management

objects and most objects are of size between 64-180 bytes.
These objects will all be allocated in the 128 and 256 bytes
bins and will cause a huge waste of averagely 90 bytes per
object. The result is that shbench uses about 3 times more
memory than it requires. This 3 times more virtual memory
usage will cause much more TLB (Translation Lookaside
Buffer) miss due to the paging mechanism [8]–[10] and
impact performance hugely (see details in Section 4).

III. EFFICIENT MEMORY ALLOCATOR DESIGN

It is a common view that customized memory allocator
is the best performance choice over all general memory
allocators [1]. In most performance-critical programs, the
programmers always choose to write their own memory
allocators instead of using the standard ones (e.g. glibc or
Hoard). This is because the programmers know the memory
usage patterns of upper allocations. For example, in the
shbench benchmark, if the programmers know in advance
that it will allocate a lot of objects of 70 bytes, they will then
design the memory allocator to have a bin of 70 bytes instead
of 128 bytes (bins shown in Figure 4). In this case the 70-byte
bin design could effectively reduce memory usage and TLB
miss and thus outperforms the 128-byte bin design. Above
all, the key point to design an efficient general memory
allocator is to try to analyze and predict the upper allocation
patterns. We will introduce our method in this section.

First, we need to focus on intense memory allocations,
especially those allocations in loops. There have been a lot
of studies showing that most allocations in the same loop all
tend to be the same sizes [15]. Our goal is to tackle these
allocations well. For example, in the benchmark shbench, a
lot of its memory allocation is in loops and most of them
fall into the same size groups (70 bytes). According to this
we need to create a special bin for the special size instead
of the standard bins (shown in Figure 2). It also allocates
some objects outside loops. However, as these objects only
account for a small part and are not the main source of
fragmentation, we just ignore them and leave them to be
served in the standard bins (shown in Figure 2).

A. Intense Memory Allocation Detection

Intense memory allocation usually happens in loops. Loop
detection is an old topic and there have been a lot of
tools to achieve this [16]. However, the mainstream methods
for loop detection all require the source code of programs
for static code analysis [16], [17]. The adoption of these
static mechanisms may compromise the practicability of our
memory allocator. Instead, we introduce a simple threshold-
based mechanism to detect intense memory allocation at
runtime. The memory allocation process is shown in Figure
5. When serving each memory allocation, we first record
and get the number of how many times this certain size has
been allocated. Then we test if the number exceeds a certain
threshold. If not, which means memory allocation of this size
is not intense and thus it does not require special attention,
then this memory allocation is served by the standard routine
(standard malloc in Figure 5, the standard memory allocator
contains bins just like Figure 5). Otherwise, we need to
construct new special bin for this special size of allocation to
reduce the memory fragmentation (malloc from new bin in

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_19

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



0

0.5

1

1.5

2

2.5

3

3.5

frag ratio

Fig. 3. Fragment Ratio

Figure 5). Currently the threshold is set to be 100 according
to our experiment tests, which means if one objects of a
certain size is allocated more than 100 times, it is most
likely to be allocated in a loop and this represents an intense
memory allocation situation. According to our test, averagely
if the same size of object is allocated more than 100 times,
we can start to gain performance benefit by creating a new
special bin.

B. Context-based Allocation

Memory allocations from different loops may allocate
objects of same size. In order to be more precise to predict
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Fig. 4. Customized Heap Management

1: void * malloc(size_t sz){
2:  int n;
3:   int context_id = backtrace();  //get the current context
4:  n = record_the_sz(sz, context_id);  //record and get the number of how many 
5:  //times this sized object is allocated under this context
6:  if(n >= threshold || is_intense(context_id))
7:  return standard_malloc(sz);
8:  else
9:  return malloc_from_new_bin(sz);
10:}
11:
12:void * malloc_from_new_bin(size_t sz){
13:  bin b = get_bin_with_size(sz);
14:  if(!b)
15:  create_new_bin(sz);
16:  return malloc_from_bin(b, sz);
17:} 

Fig. 5. Code of Memory Allocation

the memory allocation pattern, we introduce a context-based
method to distinguish different allocation contexts. That is,
when serving each memory allocation (malloc in Figure
5), we record the allocation size information along with
the current execution context. We can get the execution
context by back-tracing the running stacks (e.g. backtrace in
glibc). By doing this we are able to distinguish allocations
from different execution functions and thus achieve better
accuracy when predicting intensive allocations. To better map
execution context to certain records, we built a hash table
and use the addresses of the caller functions as the hash
keys. More, we give each context a special id to identify
that context. The code is shown in Figure 5.

C. Optimization

The context-based allocation scheme can be used further
to help adjust the threshold (currently fixed to be 100) as
introduced in Section III-A. If in a certain execution context
we have found that a certain sized object is allocated for
more than 100 times, we then mark this execution context as
intense context, for it may contain loops to make intense
memory allocations. Then next time if we re-enter this
execution context and do memory allocations again, the
threshold is set accordingly to be 1, which means we start
to create special bins for special sizes immediately (the line
6 shown in the code in Figure 5). As we can know from the
history that this execution context will do intense memory
allocations. With this dynamic scheme we can start our
customized memory allocation early and thus we are likely
to get some performance benefit.

Overall, our memory allocator is implemented based on
the general memory allocator Hoard which contains a run-
time analysis part and a special part for intense memory
allocation. If we find the memory allocation is not intense,
we fall back to standard memory allocation with the standard
bins shown in Figure 2. Otherwise we create new special
bins to try to reduce the memory fragments and thus achieve
better performance.
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IV. EXPERIMENT

A. Methodology

In this paper we propose an efficient memory allocator to
try to reduce memory fragments and achieve better perfor-

mance. In this section we will mainly show the performance
and space benefit of our memory allocator compared with
the state-of-the-art memory allocator Hoard [1].

We conduct our experiment on a server with Intel proces-
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Fig. 9. Normalized Execution Time

0

0.5

1

1.5

2

2.5

3

N
or

m
al

iz
ed

 T
LB

 M
is

s

Hoard

LF

LF-opt

Fig. 10. Normalized TLB Miss

sor E3 e1230 v3 equipped with 32GB of physical memory.
The benchmarks we selected are all allocation intensive
benchmarks with default input [1]. We built our memory
allocator based on Hoard (version number 3.101). The oper-
ating system kernel is Linux 3.10.

B. Results

First we test our work without the optimization of dynamic
adjustment introduced in Section III-C. The experimental
results are shown in Figure 6 - 8.

Figure 6 shows the fragmentation ratio of our work (LF for
low fragmentation) compared with Hoard (Here we define the
fragmentation ratio to be the actual memory amount allocated
to programs divided by the memory amount required by
programs). We can see that our LF can greatly reduce the
fragmentation and thus reduce the memory usage, especially
for the benchmark shbench. In the benchmark shbench,
Hoard allocates 3 times more memory than it actually uses
while our LF only allocates less than 30% more. Also for
the benchmark espresso, p2c, larson, and threadtest, we
can see obvious improvements that our LF achieves over
Hoard. For the benchmark ghostscript and barnes-hut, LF

and Hoard achieve similar result. This is because the origin
fragmentation problem in these two benchmarks is not so
severe.

About the previous experiment on fragmentation, we dis-
cuss that for a memory allocator to introduce less fragments,
it is key that the memory allocation strategy matches the
upper allocation needs of applications. For example, Hoard
always uses standard allocation bins of 64, 128, 256, etc.
Thus it will behave good with applications that only make
allocations of these standard sizes (like the benchmark
ghostscript and barnes-hut do, thus Hoard performs well on
these two benchmarks as shown in Figure 6.). Our work
LF uses standard allocation bins at first and adjusts itself to
the allocations of special sizes made by upper applications,
thus it behaves well in all cases (as shown in Figure 6). We
show that this is the key that our work LF can outperform
traditional memory allocators.

Figure 7 shows the normalized TLB miss Hoard introduces
over our LF. We can see the TLB miss is highly related to
the memory fragmentation ratio. For the benchmark shbench,
Hoard introduces about 2.5 times more TLB miss than
our LF. Also for the benchmark espresso, p2c, larson, and
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threadtest, our LF shows obvious advantage of less TLB
miss than Hoard. For the benchmark ghostscript and barnes-
hut, Hoard achieves similar result with our LF (1 and 1.03,
respectively.). In theory, if an application is using more
memory, it will put more pressure on TLB for address
translation (which is because the limited TLB slot cannot
cache all the memory footprint of the application). When a
TLB miss happens, it impacts the performance accordingly,
for more time will be spent on searching the page table
to perform virtual-physical address translation. Thus, much
memory fragment in an application which will lead to more
consumption of memory is bad in terms of both time and
space efficiency. Thus it is crucial for a memory allocator
to try to reduce the memory fragment and thus reduce the
memory consumption and improve performance.

Figure 8 shows the normalized execution time. We can
see or LF achieves an obvious improvement on performance
for most benchmarks, especially in the shbench, Hoard is
1.7 times slower than our LF. This is mainly due to the
more fragments and more TLB miss it introduces. For the
benchmark ghostscript, our LF is slower than Hoard, this is
due to the management overhead and the runtime analysis
overhead in LF. We point out that the main performance
overhead comes from more time spent on dealing with
TLB miss, which is caused by more memory consumption
introduced by memory allocators.

From the Figure 7 and 8 we can tell that the overall per-
formance of applications is highly coupled with the overall
tlb miss the applications may incur. The overall performance
is determined by the tlb miss. Thus to improve performance,
it is key to reduce tlb miss. A step forward, we can tell from
the Figure 6 and 7 that the tlb miss is determined by the
overall fragmentation situation introduced during memory
allocation. Thus to draw a conclusion here, controlling the
memory fragmentation is the key for a memory allocator to
perform well in terms of space and time efficiency. This is
the key finding and guiding idea of this paper.

Second, we show the improvement that our optimization
(introduced in Section III-C) of dynamic adjustment could
achieve.

Figure 9 shows the result of execution time. We can
see that our optimization (LF-opt) could effectively improve
the overall performance. Averagely, LF-opt achieves 3.3%
performance improvement over LF, and 18.8% over Hoard.
We argue that this improvement mainly comes from the early
construction of customized bins for memory allocations in
intensive execution contexts. By marking certain execution
contexts as intense, we are able to accelerate the further
memory allocations in such contexts and thus achieve im-
proved performance. The corresponding results about nor-
malized tlb miss is shown in Figure 10, our optimized scheme
achieves better result on TLB miss (averagely 9% less than
LF and 39% less than Hoard).

In all, a good memory allocator will achieve less memory
fragmentation, which brings benefit for both time and space
efficiency. Our memory allocator achieves better performance
(up to 1.7x, averagely over 18.8%) and at the same time
uses less memory (22%), which shows great potential to
be a directly drop-in replacement of current state-of-the-
art memory allocators, especially for allocation intensive
applications.

V. CONCLUDE

This paper introduces an efficient memory allocator that
achieves better performance and at the same time consumes
less memory. We focus on intensive memory allocation and
introduce a dynamic strategy to create customized bins for
memory allocation of special sizes. Unlike the standard bins
in previous general memory allocators, the customized bins
created in our memory allocator can better fit intensive
memory allocation and reduce memory fragmentation. By
reducing the memory usage, we can reduce the TLB miss
and thus achieve better performance. Experimental results
show that our new memory allocator can achieve up to
1.7x speedup (averagely over 18.8%) over the state-of-the-art
memory allocator Hoard with 22% less memory usage, which
shows great potential to be a directly drop-in replacement
of current state-of-the-art memory allocators, especially for
allocation intensive applications. Our future work includes
adopting and testing our memory allocator to modern large
data base systems.
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