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Abstract—Enumerating structural features common to large
tree-structured data is difficult with respect to time. Decreasing
the input size by structurally compressing large tree-structured
data without loss of information leads to a reduction in the
running time needed to extract structural features. Since tree-
structured data can be described by an edge-labelled ordered
tree, we first introduce a compression tree, which is a hypertree,
as a compressed representation of an edge-labelled ordered tree
T obtained by structurally compressing T on the basis of a
Lempel-Ziv compression scheme. Then, we define a compact
coding Code(T ) of T as a sequence consisting of a coding of
a list of edge-labels, a coding of dictionaries and a succinct
representation of a compression tree for T . Second, given
a compact coding Code(T ) of T as an input, we present
an enumeration algorithm, called ENUFREQMAXPATH, for
finding all frequent maximal paths as characteristic paths
in T without decompressing Code(T ). For a set S of edge-
labelled ordered trees, let Code(S) be the set of compact
codings of all edge-labelled ordered trees in S. Then, third,
given Code(S) as an input, we present an enumeration algo-
rithm, called ENUFREQSUBTREE, for enumerating all frequent
subtrees as characteristic subtrees appearing in S without
decompressing Code(S). Finally, we implement the proposed
algorithms ENUFREQMAXPATH and ENUFREQSUBTREE on a
computer, explain the experimental results obtained by applying
ENUFREQMAXPATH to a compact coding of a synthetic edge-
labelled ordered tree and ENUFREQSUBTREE to a compact
coding of a set of synthetic edge-labelled ordered trees and
provide discussion on evaluations of ENUFREQMAXPATH and
ENUFREQSUBTREE.

Index Terms—Enumeration algorithm, Structurally com-
pressed edge-labelled ordered tree, Succinct representation

I. INTRODUCTION

Tree-structured data, such as Web documents,
LATEX sources, and parse trees of natural languages,
can be described by edge-labelled ordered trees. An edge-
labelled ordered tree is a rooted tree whose edges have
labels and whose internal nodes have ordered children. Due
to the rapid progress made on networks and information
technology, the amount of such tree-structured data increases
daily. To find structural features common to large tree-
structured data, time- and memory-efficient graph mining
algorithms are needed.

To reduce the memory required to store an ordered tree,
succinct data structures for ordered trees have been proposed
[2], [3], [4], [5], [7], [10], [11], [13]. Specifically, a depth-
first unary degree sequence (DFUDS) used as a succinct
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representation of an ordered tree was proposed [10], [12]. For
an ordered tree T , a DFUDS of T is a string of parentheses
constructed in the depth-first traversal of T , in which the k-
th ( and its subsequent ) are output if the index of a node

is k. By taking ( to be “0” and ) to be “1”, the DFUDS
of an ordered tree can be handled as a bit string.

Itokawa et al. [7] proposed a structural compression
algorithm for effectively compressing tree-structured data
without loss of information that is based on a Lempel-Ziv
(LZ) compression scheme. In an LZ compression scheme
[17] for strings, such as LZSS [15], previously seen text
is used as a dictionary, and phrases in the input text
are replaced with references to the dictionary to achieve
compression. For an edge-labelled ordered tree T and its
subgraph f having an edge-labelled ordered-tree structure,
the first occurrence of f in the depth-first traversal of T is
used as an entry of a dictionary, and the subgraphs in T
that are isomorphic to f are replaced with a reference to the
entry of the dictionary to achieve compression. First, in this
paper, we introduce a compression tree t for an edge-labelled
ordered tree T such that t is an edge-labelled ordered tree
obtained by structurally compressing T on the basis of
an LZ compression scheme. We then define a succinct
representation of a compression tree by extending the
DFUDS of an ordered tree. In Fig. 1, we give a compression
tree t for the edge-labelled ordered tree T and a DFUDS
of t as a succinct representation of t as an example. The
compression tree t uses the subtree f induced by the edge
set {(8, b, 10), (10, a, 11), (8, a, 14), (14, b, 16), (16, a, 17),
(14, b, 18), (8, b, 19)} as an internal dictionary. The edge-
labelled ordered tree T in Fig. 1 is obtained by replacing 3
hyperedges represented by the squares 23, 31 and 40 and
all incident edges with the subtree f . Moreover, we define
a compact coding Code(T ) of an edge-labelled ordered tree
T as a sequence consisting of a coding of a list of edge
labels, a coding of a dictionary and a succinct representation
of a compression tree for T . In Fig. 1, we give a compact
coding of the edge-labelled ordered tree T as an example.

For an edge-labelled ordered tree T and an integer k (k ≥
1), a path p is k-frequent if p appears in T k times or
more. A k-frequent path p is maximal if there exists no
k-frequent path that has p as a subpath. Second, given a
compact coding Code(T ) for an edge-labelled ordered tree
T and an integer k (k ≥ 1), we present an efficient algorithm,
called ENUFREQMAXPATH, for enumerating all k-frequent
maximal paths in T without decompressing Code(T ). EN-
UFREQMAXPATH finds k-frequent paths from each node
toward the root on a level-wise strategy with respect to
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Fig. 1. Edge-labelled ordered tree T , compression tree t obtained by structurally compressing T , DFUDSs of T and t and compact coding of T . Grey
regions in T show repeated occurrences of isomorphic subtrees. Grey region in t shows entry of its dictionary. In DFUDSs of T and t, numbers in circles
in T and t represent node ID that is index on DFUDSs of T and t, numbers in squares in t represent port list ID that is an index on DFUDSs of T and
t and “P” in t denotes reference (8, 11, 18, 19).

the length of a path. Since a succinct representation of a
given compression tree is provided by using its DFUDS,
ENUFREQMAXPATH can naturally use the succinct data
structures in implementations that use the succinct data struc-
ture library (SDSL) [14]. Hence, ENUFREQMAXPATH is
time- and memory-efficient for enumerating all k-frequent
paths from a given compression tree of an edge-labelled
ordered tree.

In this paper, for an edge-labelled ordered tree T , a
subgraph of T having a tree structure is called a subtree
of T . For a set S of edge-labelled ordered trees, we define
a compact coding Code(S) of S as a sequence consisting
of a coding of a list of edge labels in S, a coding of a
dictionary and a coding of a list of DFUDSs of all edge-
labelled ordered trees in S. For a set S of n edge-labelled
ordered trees and a real number σ (0 < σ ≤ 1.0), a
subtree t is said to be σ-frequent if t appears in ⌈n × σ⌉
edge-labelled ordered trees or more in S. Third, when a
compact coding Code(S) of a set S of edge-labelled ordered
trees and a real number σ (0 < σ ≤ 1) are given as
input, using a rightmost expansion strategy [1], [18], we
present an efficient algorithm, called ENUFREQSUBTREE,
for enumerating all σ-frequent subtrees in S without de-
compressing Code(S). Finally, using experimental results
obtained by applying the implemented ENUFREQMAXPATH
and ENUFREQSUBTREE on a computer to a large synthetic
structurally compressed edge-labelled ordered tree and a
large synthetic structurally compressed set of edge-labelled
ordered trees, respectively, we discuss the efficiencies of

ENUFREQMAXPATH and ENUFREQSUBTREE and show the
advantage of enumerating all frequent paths and all frequent
subtrees without decompression in structurally compressed
edge-labelled ordered trees.

This paper is organized as follows. In Sec. II, we in-
troduce a compression tree obtained by structurally com-
pressing an edge-labelled ordered tree on the basis of
an LZ compression scheme. We also define a succinct
representation of a compression tree. In Sec. III, we
give a formal definition of FREQMAXPATHENU-PROBLEM
and present an algorithm ENUFREQMAXPATH for solving
FREQMAXPATHENU-PROBLEM. This section is a complete
version of the paper in reference [6]. In Sec. IV, we
give a formal definition of FREQSUBTREEENU-PROBLEM
and present an algorithm ENUFREQSUBTREE for solving
FREQSUBTREEENU-PROBLEM. In Sec. V, we explain the
experimental results obtained by applying ENUFREQMAX-
PATH and ENUFREQSUBTREE to synthetic large data and
discuss the efficiencies of ENUFREQMAXPATH and EN-
UFREQSUBTREE. In Sec. VI, we conclude this paper. This
paper is an extended and complete version of our paper in
reference [6].

II. PRELIMINARIES

In this section, we introduce a compression tree that is
a hypertree obtained from an edge-labelled ordered tree by
replacing repeated occurrences of subtrees with hyperedges
labelled with references to entries in a dictionary. A dictio-
nary is a list of first occurrences of repeated subtrees in the
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tree’s depth-first traversal. Moreover, we define a succinct
representation of a compression tree by extending the depth-
first unary degree sequence (DFUDS)[10], [12] for an edge-
labelled ordered tree.

A. Compression Tree

Let Λ be a finite alphabet. An edge-labelled ordered tree T
is a rooted tree whose internal nodes have ordered children
and whose edges have labels. The node and the edge sets of
T are denoted as V (T ) and E(T ), respectively. We denote an
edge e ∈ E(T ) as e = (u, a, v) such that the two endpoints
of e are nodes u and v and the label of e is a ∈ Λ. Hereafter,
a tree means an edge-labelled ordered tree since we deal
with only edge-labelled ordered trees in this paper. For a
set S, we denote the number of elements in S as |S|. Let
w = w1, w2, ..., wn be a sequence, L = (ℓ1, ℓ2, . . . , ℓk) a
list, and |w| and |L| denote the numbers of elements, in w
and L, respectively, i.e., |w| = n and |L| = k. Moreover,
for i, j (1 ≤ i ≤ n, 1 ≤ j ≤ k), w[i] and L[j] denote the
elements at i and j on w and L, respectively, i.e., w[i] = wi

and ℓ[j] = ℓj .
For a tree T and its internal node u, we denote a subgraph

consisting of all descendants of u as T [u]; that is, T [u] is
the subtree of T having u as its root. For a subset U ⊆
V (T ), we denote the subgraph induced by U as T [U ]; that
is, T [U ] = (U, {e | both endpoints of e ∈ E(T ) are in U}).
For an internal node u and a descendant v of u, we denote
the path between u and v as Pu,v . Note that Pu,v is only
one node if u and v are the same node. For a tree T , a
reference of T is a list (v, v1, v2, . . . , vn) of nodes satisfying
the following conditions.
(1) For each i (1 ≤ i ≤ n), vi is a descendant of an internal

node v of T .
(2) For any i, j (1 ≤ i, j ≤ n), vi is not a descendant of vj

and vice versa.
(3) For any i, j (1 ≤ i < j ≤ n), vj appears after vi in the

depth-first traversal of T .
We denote the set of all references of T as RT . For a
reference L = (v, v1, v2, . . . , vn) of T , we denote a subgraph
induced by the node set

∪
w∈W V (Pv,w) as T ⟨L⟩, called a

reference tree, where W is the set of leaves such that any
leaf w ∈ W appears from v1 up to vn in the depth-first
traversal of T but is not included in V (T [vi])−{vi} for any
1 ≤ i ≤ n. In Fig. 1, for reference (10, 13, 20, 21),
we give the reference tree t⟨(10, 13, 20, 21)⟩ =(
{10, 12, . . . , 21}, {(10, b, 12), (12, a, 13), . . . , (10, b, 21)}

)
.

A subset DT of RT is called a dictionary of T if for
any two distinct references L1 = (u, u1, u2, . . . , uℓ) and
L2 = (v, v1, v2, . . . , vr) of DT , (V (T ⟨L1⟩) − {u}) ∩
(V (T ⟨L2⟩) − {v}) = ∅ holds. For example, in Fig. 1, for
references (10, 13, 20, 21), (10, 25, 50, 65), (29, 32, 39, 40),
and (50, 53, 61, 63) in T , the reference trees
T ⟨(10, 13, 20, 21)⟩, T ⟨(10, 25, 50, 65)⟩, T ⟨(29, 32, 39, 40)⟩,
and T ⟨(50, 53, 61, 63)⟩ are isomorphic.

Let T be a tree. A list (u, L, u1, u2, . . . , uk) is called a
port list of T if u is an internal node of T , u1, u2, . . . , uk are
consecutive children of u and L is a reference of T such that
|L| = k+1 holds. For a port list h = (u, Lh, u1, u2, . . . , uk),
u is called a parent port of h, and each node ui (1 ≤
i ≤ k) is called a child port of h. Two port lists h =

(u, Lh, u1, u2, . . . , uk) and h′ = (v, Lh′ , v1, v2, . . . , vℓ) of
a tree T are said to be disjoint if the following conditions
are satisfied.

(1) {u1, u2, . . . , uk} ∩ {v1, v2, . . . , vℓ} = ∅.
(2) If u and v are the same node, uk is older than v1 or u1

is younger than vℓ.

Definition 1. (Hypertree) Let T = (VT , ET ) be a tree, HT a
set of disjoint port lists of T , and DT a dictionary of T such
that Λ∩DT = ∅. Then, a triplet t = (Vt, Et,Ht) is called a
hypertree obtained from T, HT and DT , where Vt, Et and
Ht are defined as follows.

(1) Vt = VT，
(2) Et = ET −

∪
(v0,L,v1,...,vr)∈HT

{(v0, a1, v1), ..., (v0, ar, vr)},

and the label of each edge e ∈ ET is preserved in Et.
(3) Ht = HT .

By modifying the LZ77 compression scheme for strings
to a hypertree, a compression tree is a hypertree defined as
follows.

Definition 2. (Compression Tree) A compression tree of a
tree T is a hypertree obtained from T by replacing repeated
occurrences of subgraphs having ordered-tree structures with
hyperedges labelled with the reference to the first occurrence
of repeated occurred subgraphs.

Fig. 1 shows the compression tree t = ({3, 8, . . . , 49},
{(3, a, 8), (8, b, 10), . . . , (3, a, 49)}, {(8, P, 25, 36, 47),
(27, P, 32, 33, 34), (36, P, 41, 43, 45)}) of the tree T , where
P is the reference (8, 11, 18, 19).

B. Compact Codings of Tree and Set of Trees

The DFUDS for an ordered tree T of n nodes is defined
recursively as follows [10], [12]. The DFUDS of an ordered
tree consisting of only one node is ( ) . The DFUDS of an
ordered tree T that has k subtrees T1, . . . , Tk is a sequence
of parentheses constructed by concatenating k + 1 ( s, one

) and k DFUDSs of T1, . . . , Tk in this order (the initial

( of the DFUDS of each subtree has been removed). The
resultant DFUDS is a sequence of balanced parentheses of
length 2n. It is known that the information-theoretic lower
bound to represent an arbitrary tree of n nodes is 2n− o(n)
bits. Hence, we can see that a DFUDS encoding of a tree
is asymptotically close to the lower bound. The sequence
of parentheses, that is, a DFUDS, can be interpreted as the
result of visiting all nodes in preorder and outputting k ( s

for each node, whose degree is k, following the one ) . The
DFUDS is a succinct representation of an ordered tree with
no edge labels.

However, since ) occupies the rightmost position for
each node in the DFUDS, we can modify the DFUDS of
an ordered tree to the DFUDS of an edge-labelled ordered
tree by using a hash function that returns the label of the edge
incident to the node corresponding to each ) . To provide
a succinct representation of a compression tree, we consider
an underlying tree for a compression tree. For a compression
tree t = (Vt, Et,Ht), an underlying tree of t is a tree
obtained from t by applying the following replacements to all
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port lists of t. A port list h = (u, Lh, u1, u2, . . . , uk) ∈ Ht

is replaced with a tree in the following way.
(1) Remove h from t.
(2) Construct a tree s = ({u′, v, u′

1, u
′
2, . . . , u

′
k}, Es) de-

fined as follows. (a) The node u′ is the parent of v,
and u′

1, u
′
2, . . . , u

′
k are the children of v that are in this

order. (b) The edge between u′ and v is labelled with
the reference Lh of h, and any edge between v and its
child is labelled with the special symbol “$”.

(3) Identify the parent port u and each child port ui (1 ≤
i ≤ k) with the root u′ of s and each leaf u′

i(1 ≤ i ≤ k),
respectively.

Definition 3. (Succinct Representation) The succinct rep-
resentation of a compression tree t is the DFUDS of the
underlying tree of t, which is denoted as DFUDS(t).

In Fig. 1, we give the DFUDS of the tree T and a succinct
representation of the compression tree t, i.e. the DFUDS of
t, as examples.

By using a succinct representation of a compression tree
of a tree T , we can give a compact coding for a structured-
compression of T as follows.

Definition 4. (Compact Coding) Let T be a tree. Let ELT

and DT be the codings of the lists of all edge labels and all
references in T , which are sorted by occurrence order in the
depth-first traversal of T , respectively. For a compression tree
t of T , we define a coding of t, denoted as CT , as follows.
For each index i (0 ≤ i < nt),

CT [i] =


0 if Dt[i] = “(”,
−1 if Dt[i] = “$”,
−|Ind(DT , Dt[i]) + 2| if Dt[i] is a reference,
|Ind(ELT , Dt[i]) + 1| if Dt[i] is in Λ,

where nt is the number of nodes in the compression tree
of T , Dt = DFUDS(t) and, for a list Seq of sequences
and a sequence α, Ind(Seq, α) is a function that returns
the first index k with Seq[k] = α if it exists, otherwise
“⊥”. Then, a compact coding of T is given by a se-
quence of ELT ◦“!”◦DT ◦“!”◦CT , denoted as Code(T ) =
⟨ELT , DT , CT ⟩, where ◦ is an operator that concatenates
two sequences.

Since we create ELT , DT and CT on the basis of the depth-
first traversal of T , we can easily create hash functions
that return the edge label or reference for each edge or
hyperedge in the compression tree t of T . Let Code(T ) =
⟨ELT , DT , CT ⟩ be a compact coding of T . A length of
Code(T ), denoted as |Code(T )|, is defined as the length
of the sequence ELT ◦“!”◦DT ◦“!”◦CT . Fig. 1 shows the
compact coding of the tree T .

III. ENUMERATION ALGORITHM FOR FINDING ALL
FREQUENT MAXIMAL PATHS

For a tree T and an integer k (k ≥ 1), a path p in T is
k-frequent if p appears in T k or more times. Such an integer
k is called a minimum occurrence. A k-frequent path p in
T is maximal if there is no k-frequent pathp′ in T such that
p′ has p as a subpath. We define an enumeration problem,
denoted as FREQMAXPATHENU-PROBLEM, for extracting
all k-frequent maximal paths in a given compact coding of
a tree as follows.
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Fig. 2. Tree expressing numeration process of k-frequent paths

FREQMAXPATHENU-PROBLEM

Instance: Compact coding Code(T ) of a tree T and mini-
mum occurrence k (k ≥ 1).

Problem: Enumerate all k-frequent maximal paths in T
without decompressing Code(T ).

In Algorithm 1, we present our enumeration al-
gorithm, denoted as ENUFREQMAXPATH, for solving
FREQMAXPATHENU-PROBLEM. For a sequence S of length
n on alphabet Λ, a character c in Λ and an integer i (0 ≤
i ≤ n − 1), the two functions rank and select used in
ENUFREQMAXPATH are defined as follows.
(1) rankc(S, i) returns the number of occurrences of c in

the subsequence from index 0 to index i of S.
(2) selectc(S, i) returns the i-th position of c from the

beginning of S.
By using the Succinct Data Structure Library (SDSL) [14],
we can compute rank and select in constant time. When
a compact coding Code(T ) of a tree T and a minimum
occurrence k are given, ENUFREQMAXPATH enumerates all
k-frequent maximal paths in T from each node toward the
root of T on a level-wise strategy with respect to the length of
a k-frequent maximal path without decompressing Code(T ).
ENUFREQMAXPATH uses a trie structure to manage enu-
merated k-frequent paths from T . In Fig. 2, we give a tree
expressing the enumeration process of k-frequent paths using
ENUFREQMAXPATH as an example.

ENUFREQMAXPATH (Algorithm 1) has three proce-
dures: GENOCCPOINT (Procedure 1), MAKECANDFREQ-
PATH (Procedure 2) and MAXIMALCHECK described later.
For an edge e, parent(e) returns the parent edge of e, and
function childrank(e) returns the index i such that e is the
i-th child edge of the parent edge of e. By using the SDSL,
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Algorithm 1 ENUFREQMAXPATH

Require: A compact coding ⟨ELT , DT , CT ⟩ of a tree T
and a minimum occurrence k (k ≥ 1).

Ensure: The set FM of all k-frequent maximal paths in T .
1: Z1 = GENOCCPOINT(⟨ELT , DT , CT ⟩, k)
2: P1 = {a | (a, i, OPi) ∈ Z1}
3: CFM = P1 and ln = 1
4: while Pln ̸= ∅ do
5: Pln+1 = ∅
6: Wln+1 = MAKECANDFREQPATH(Zln, Pln, P1)
7: for all p ∈ Pln and a ∈ P1 do
8: if

∑
(p◦a,i,OPi)∈Wln+1

|OPi| ≥ k then
9: Pln+1 = Pln+1 ∪ {p ◦ a}

10: Zln+1 = Zln+1 ∪ {(p ◦ a, i, OPi)}
11: end if
12: end for
13: CFM = CFM ∪ Pln+1

14: ln++
15: end while
16: FM = MAXIMALCHECK(CFM)
17: return FM

Procedure 1 GENOCCPOINT
Require: The compact coding ⟨ELT , DT , CT ⟩ and a mini-

mum occurrence k (k ≥ 1).
Ensure: The set Z1 of all path-count triplets of k-frequent

paths whose length is 1.

1: Z1 = ∅ and W1 = ∅ and OPi = ∅ for i (0 ≤ i < |CT |)
2: for all i (0 ≤ i < |CT |) do
3: if CT [i] ∈ ELT then
4: OPi = OPi ∪ {i}
5: end if
6: if CT [i] ∈ DT then
7: for all an edge j of reference tree T ⟨CT [i]⟩ do
8: OPj = OPj ∪ {i}
9: end for

10: end if
11: end for
12: for all i (0 ≤ i < |CT |) such that CT [i] ∈ ELT do
13: W1 = W1 ∪ {(CT [i], i, OPi)}
14: end for
15: for all a ∈ ELT do
16: if

∑
(a,i,OPi)∈W1

|OPi| ≥ k then
17: Z1 = Z1 ∪ (a, i, OPi)
18: end if
19: end for
20: return Z1

these operations on a compression tree can be executed in
constant time.

To count the number m of paths, which are isomorphic
to a path p and are obtained by appending the edge at an
index i of CT , ENUFREQMAXPATH uses a triplet (p, i, OPi),
where OPi is a multi-set of indexes in the interval [0, |CT |)
and satisfies |OPi| = m. Such a triplet is called a path-count
triplet at index i. Given a compact coding ⟨ELT , DT , CT ⟩ of
a tree T and a minimum occurrence k (k ≥ 1), ENUFREQ-
MAXPATH first generates the set Z1 of path-count triplets of
k-frequent edges from all indexes between 0 and |CT |. Then,

Procedure 2 MAKECANDFREQPATH

Require: A set Zln of path-count triplets, each of which
has a path with length ln, a set Pln of k-frequent
paths whose lengths are ln and a set P1 of k-
frequent edges.

Ensure: The set Wln+1 of path-count triplets, each of
which has a path with length ln+ 1.

1: OP ′
i = ∅ for i (0 ≤ i < |CT |)

2: U = ∅ and Wln+1 = ∅
3: for all p ∈ Pln do
4: for all (p, i, OPi) ∈ Zln do
5: if (rank(i) + 1, v1, ...vk) ∈ DT then
6: for all w ∈ OPi do
7: u = parent(w)
8: if CT [u] = −1 then
9: /* case 1 */

10: du = DT [|CT [parent(u)] + 2|]
11: q = du[childrank(u)]
12: U = U ∪ {q}
13: OP ′

q = OP ′
q ∪ {parent(u)}

14: else
15: /* case 2 */
16: U = U ∪ {u}
17: OP ′

u = OP ′
u ∪ {u}

18: end if
19: end for
20: else if CT [parent(i)] = −1 then
21: /* case 3 */
22: for all w ∈ OPi do
23: j = parent(i)
24: dj = DT [|CT [parent(j)] + 2|]
25: u = dj [childrank(j)]
26: U = U ∪ {u}
27: OP ′

u = OP ′
u ∪

∪
w∈OPi

{parent(j)}
28: end for
29: else
30: /* case 4 */
31: e = parent(i)
32: U = U ∪ {e}
33: OP ′

e = OP ′
e ∪OPi

34: end if
35: end for
36: end for
37: for all w ∈ U do
38: Wln+1 = Wln+1 ∪ {(p ◦ CT [w], w,OP ′

w)}
39: end for
40: return Wln+1

it constructs the set P1 of all k-frequent edges from Z1. That
is, P1 is the set of all k-frequent paths, and the length of each
is 1. Second, by using Procedure MAKECANDFREQPATH,
ENUFREQMAXPATH recursively generates the set Wln+1

of all path-count triplets having candidate paths, and the
length of each is ln + 1 from the set P1 and the set
Pln, each of which has a path whose length is ln. From
Wln+1, ENUFREQMAXPATH constructs the set Pln+1 of k-
frequent paths, and the length of each is ln + 1 and set
Zln+1 = {(p, i, OPi) ∈ Wln+1 | p ∈ Pln+1}.

Third, ENUFREQMAXPATH constructs the set CFM of

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_25

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



Fig. 3. Illustration of four cases of extending paths

all k-frequent paths appearing in T from t. Next, ENUFRE-
QMAXPATH obtains the set FM of all k-frequent maximal
paths from CFM by applying MAXIMALCHECK described
later to CFM . Finally, ENUFREQMAXPATH returns FM
and terminates.

In Procedure MAKECANDFREQPATH, when we construct
a candidate path whose length is ln+1 by extending the k-
frequent path whose length is ln, four cases are considered
(see Fig. 3). If we try to extend a path by appending an edge
to the edge e incident to the root of a reference tree, we
must consider two cases in which the label of parent(e) is
“$” (case 1) or is included in ELT (case 2). Otherwise, if
e is not incident to the root of any reference tree, we must
also consider two cases in which the label of the parent edge
parent(e) is “$” (case 3) or is included in ELT (case 4).

For example, in the compression tree t of Fig. 1, we con-
sider the path from index 44 (the edge (43, a, 44)) to index 3
(the root of t). Since a reference having index 44 as the first
argument does not exist in DT , we determine whether or not
DFUDS(t)[parent(44)] is “$”. From parent(44) = 43,
DFUDS(t)[parent(44)] = DFUDS(t)[43] =“$”. We
can see that the extension of the path from the edge at
index 44 is case 3. Hence, we obtain j = 43, dj =
DT [|CT [parent(43)] + 2|] = DT [|CT [40] + 2|] = DT [0] =
(8, 11, 18, 19), u = P [childrank(43)] = P [2] = 18
and OP ′

18 = OP ′
18 ∪ {40}, where P is the reference

TRIE TRIER

Fig. 4. TRIE and TRIER constructed by MAXIMALCHECK as data
structures

(8, 11, 18, 19). This is the extension of case 1, because
parent(14) is the root of the reference tree corresponding
to DFUDS(t)[40] = “P” and DFUDS(t)[parent(40)] =
DFUDS(t)[36] =“$”. By applying this extension to the
path, we obtain u = 36, du = DT [|CT [parent(36)] +
2|] = DT [|CT [23] + 2|] = DT [0] = (8, 11, 18, 19), q =
P [childrank(36)] = P [2] = 18 and OP ′

18 = OP ′
18 ∪ {23},

where “P ”= DFUDS(t)[parent(36)] = DFUDS(t)[23].
Finally, we can obtain the path “ababaa” from index 44 to
the root.

For a sequence w = w1, w2, . . . , wk, the reverse sequence
of w is denoted as wR = wk, . . . , w2, w1. For a set W =
{p1, p2, . . . , pn} of sequences, let WR = {pR1 , pR2 , . . . , pRn }.
To manage extracted frequent paths, Algorithm ENUFRE-
QMAXPATH uses a data structure that is represented by a
tree, called TRIE. If a path p whose length is less than k is a
subpath of a path w whose length is k, there exists a subpath
x and y of w such that w = xpy and |x|+ |y| > 0 hold. In a
TRIE storing the set CFM , a path stored in a leaf of TRIE
is not always maximal. If a path p is a subpath of a path
w = py (y ∈ Λ+), the node storing p is on the path from the
node storing w to the root; that is, the node storing p is not
a leaf of TRIE. However, if a path p is a subpath of a path
w′ = xp (x ∈ Λ+), the node storing p may not be on the path
from the node storing w′ to the root of TRIE; that is, the node
storing p and the node storing w′ may be leaves in TRIE.
Hence, Procedure MAXIMALCHECK constructs a set of all
frequent maximal paths from CFM as follows. Procedure
MAXIMALCHECK makes the set, denoted as PATH , of all
paths stored in leaves of TRIE and constructs a trie, denoted
as TRIER, that manages the set PATHR. Then, Procedure
MAXIMALCHECK selects all frequent maximal paths by
gathering all paths stored in leaves of TRIER and outputs
the set FM of all frequent maximal paths. For example, we
consider TRIE managing a set {a, b, ab, ba, aba, bab, baba}
of paths in Fig. 4. Since PATH = {aba, baba} is ob-
tained from TRIE, we can see that TRIER in Fig. 4 can
be constructed to manage PATHR = {aba, abab}. Then,
Procedure MAXIMALCHECK outputs the set {baba} of the
reverse sequence of the path “abab” stored in the leaf g′4 of
TRIER.

We explain ENUFREQMAXPATH for when a compression
tree t in Fig. 1 and the minimum occurrence k = 5 are
given. In line 1 of ENUFREQMAXPATH, Procedure GENOC-
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CPOINT generates the following set Z1.

Z1 =



(a, 8, {8}), (a, 11, {11, 23, 31, 40}),
(a, 14, {14, 23, 31, 40}), (a, 17, {17, 23, 31, 40}),
(a, 44, {44}), (a, 48, {48}), (a, 49, {49}),
(b, 10, {10, 23, 31, 40}), (b, 16, {16, 23, 31, 40}),
(b, 18, {18, 23, 31, 40}), (b, 19, {19, 23, 31, 40}),
(b, 27, {27})


.

Moreover, ENUFREQMAXPATH generates P1 = {a, b}
as the set of 5-frequent paths whose length is 1. By
recursively applying Procedure MAKECANDFREQPATH,
ENUFREQMAXPATH generates the path-count triplets Z4 =
{(baba, 8, {8}), (baba, 11, {23, 23}), (baba, 14, {23, 23})}
and P4 = {baba}. Since t has no 5-frequent path
whose length is 5, by selecting 5-frequent maximal
paths from the set CFM = {a, b, ab, ba, aba, bab, baba},
ENUFREQMAXPATH terminates after outputting the
FM = {baba} of all 5-frequent paths in t.

IV. ENUMERATION ALGORITHM FOR FINDING ALL
FREQUENT SUBTREES

For a set S of trees and a real number σ (0 < σ ≤ 1),
a tree T is σ-frequent with respect to S if the number of
trees in S having T as subgraphs is greater than or equal
to ⌈|S| × σ⌉. Such a real number σ is called a minimum
support rate. For a set S of trees, a corresponding tree for
S is a tree TS whose root has the root of each tree in S as
a child and whose edge from the root of TS to the root of
each tree in S is labelled with the special symbol ε not in Λ.
Then, a compact coding of S is defined as a compact coding
Code(TS) = ⟨ELTS

, DTS
, CTS

⟩ of TS . In Fig. 5, we give
a corresponding tree TS for the set S = {T1, T2, T3} as an
example of a corresponding tree.

We define an enumeration problem, denoted as
FREQSUBTREEENU-PROBLEM, for extracting all σ-
frequent trees in a compact coding for a given set of
trees.

FREQSUBTREEENU-PROBLEM

Instance: Compact coding Code(S) for a set S of trees
and a real number σ (0 < σ ≤ 1).

Problem: Enumerate all σ-frequent trees with respect to
S without decompressing Code(S).

In Algorithm 2, we present an algorithm, denoted
as ENUFREQSUBTREE, for solving FREQSUBTREEENU-
PROBLEM. Using the rightmost expansion strategy [9], [1],
[18] for trees, ENUFREQSUBTREE enumerates all σ-frequent
trees appearing in an input compact coding Code(S) without
decompressing Code(S). The rightmost expansion strategy
is a strategy that makes a candidate tree whose length is k+1
from a σ-frequent tree T by expanding a new edge from a
node on the rightmost path of T . ENUFREQSUBTREE uses a
trie structure to manage enumerated σ-frequent trees on the
basis of the rightmost expansion strategy. In Fig. 6, we give
a trie describing the enumeration process of σ-frequent trees
with ENUFREQSUBTREE as an example.

From the definition of the frequency of a subtree in
a set S of trees on FREQSUBTREEENU-PROBLEM, to
determine the frequency of a subtree t appearing at an index
i (0 ≤ i < |CTS

|) in a coding CTS
of a compression tree

of TS such that Code(TS) = ⟨ELTS
, DTS

, CTS
⟩ holds, it

T1 T2 T3

21

22 24

27

28 29

33

34

41

42

36

39

43

30

TS

t

Fig. 5. Compression tree t of corresponding tree TS for set S =
{T1, T2, T3}

is not necessary to count the number of subtrees that are
isomorphic to t and that appear at index i in CTS

, and
it is only necessary to decide whether or not t appears
at index i in CTS

. Therefore, ENUFREQSUBTREE uses
a triplet (p, i, OPi), called an occurrence point of p in
CTS

, which means that, for each k ∈ OPi, if k = i, the
rightmost leaf of the subtree p appears at index i in CTS

;
otherwise, the rightmost leaf of the subtree p appears at
index i in the reference tree corresponding to the reference
CTS

[k]. For example, the subtree f7 in Fig. 6 appears in
the compression tree t in Fig. 5 at indexes 12, 26, 28
and 37. Hence, the occurrence points of f7 in CTS

are
(f7, 12, {22}), (f7, 26, {26}), (f7, 28, {28}), (f7, 37, {37}).
ENUFREQSUBTREE (Algorithm 2) has two procedures:
GENOCCPOINTSUBTREE (Procedure 3) and
MAKECANDFREQSUBTREES (Procedure 4). Given
an input set Zln of occurrence points of σ-frequent
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Algorithm 2 ENUFREQSUBTREE

Require: A compact coding ⟨ELTS
, DTS

, CTS
⟩ of a set

S of trees and an integer σ (0 < σ ≤ 1.0).
Ensure: The set F of all σ-frequent trees in S.

1: Z1 = GENOCCPOINTSUBTREE(⟨ELTS
, DTS

, CTS
⟩, σ)

2: P1 = {p | (p, i, OPi) ∈ Z1}
3: F = P1 and ln = 1
4: while Pln ̸= ∅ do
5: Pln+1 = ∅
6: Wln+1 = MAKECANDFREQSUBTREES(Zln, Z1)
7: for all z = (p, i, OPi) ∈ Wln+1 do
8: if p is σ-frequent then
9: Pln+1 = Pln+1 ∪ {p}

10: Zln+1 = Zln+1 ∪ {z}
11: end if
12: end for
13: F = F ∪ Pln+1

14: ln++
15: end while
16: return F

Procedure 3 GENOCCPOINTSUBTREE
Require: The compact coding ⟨ELT , DT , CT ⟩ and a mini-

mum support rate σ (0 < σ ≤ 1.0).
Ensure: The set Z1 of all occurrence points of σ-frequent

edge.

1: Z1 = ∅ and W1 = ∅ and OPi = ∅ for i (0 ≤ i < |CT |)
2: for all i (0 ≤ i < |CT |) do
3: if CT [i] ∈ ELT then
4: OPi = OPi ∪ {i}
5: end if
6: if CT [i] ∈ DT then
7: for all an edge j of reference tree T ⟨CT [i]⟩ do
8: OPj = OPj ∪ {i}
9: end for

10: end if
11: end for
12: for all i (0 ≤ i < |CT |) such that CT [i] ≥ 2 do
13: W1 = W1 ∪ (p, i, OPi)

/* p is a tree consisting of an edge with label
ELT [CT [i]] */

14: end for
15: for all z = (p, i, OPi) ∈ Wln+1 do
16: if p is σ-frequent then
17: Zln+1 = Zln+1 ∪ {z}
18: end if
19: end for
20: return Z1

subtrees in TS whose sizes are ln and an input set
Z1 of occurrence points of σ-frequent edges in TS ,
MAKECANDFREQSUBTREES returns the set Zln+1 of all
occurrence points of σ-frequent subtrees whose sizes are
ln + 1. In Procedure MAKECANDFREQSUBTREES, when
we construct the set Zln+1 from Zln and Z1 on the basis
of the rightmost expansion strategy, for an occurrence point
(p, i, OPi) ∈ Zln+1 and k ∈ OPi in TS , the following four
cases with respect to indexes j and i of the expanded edge
e and its parent edge must be considered, respectively.

F

Fig. 6. TRIE F describing enumeration process of 2
3

-frequent subtrees.
Symbol described in node denotes 2

3
-frequent subtree detected by path from

node to root. Some subtrees and their DFUDSs are described around nodes
managing them.

Case 1: Index k is not equal to i; that is, index i is in the
reference tree corresponding to the reference CTS

[k],
and index j is in a reference tree different from
CTS

[k].
Case 2: Index k is not equal to i, and there exist no reference

trees in which CTS
[j] is.

Case 3: Index k is equal to i, and there exists a reference
tree in which CTS

[j] is.
Case 4: Index k is equal to i and CTS

[j] is in Λ, or there
exists a reference tree in which CTS

[i] and CTS
[j]

are.
These four cases are illustrated in Fig. 7. In MAKECAND-
FREQSUBTREES, for a reference L = (v0, v1, . . . , vn) and
an index i, Arg(L, i) = k if vk = i (0 ≤ k ≤ n); otherwise,
Arg(L, i) = −1.

When a candidate tree t that has ln+1 edges is generated
from a frequent tree s that has ln edges by the procedure
MAKECANDFREQSUBTREES, we can see that the DFUDS
of t can be made by inserting ( into an appropriate
index and appending the edge label to the end of the
DFUDS of s. To manage all frequent subtrees enumerated,
ENUFREQSUBTREE use a trie structure, denoted as TRIE,
which stores each frequent subtree in a path of TRIE. As an
example of TRIE, we give an ordered tree F describing the
enumeration process of 2

3 -frequent subtrees. For example,
in Fig. 6, the edge label (2, b) of the edge between the
nodes f1 and f3 means that the DFUDS “(((#ab” of the
subtree f3 drawn near the node f3 is obtained from the
DFUDS “((#a” of the tree f1 by inserting ( at index
2 and appending “b” to the end of “((#a”. TRIE F
stores the frequent subtree f3 in the path from the root
whose DFUDS is “(((#ab” to the node f3. We explain the
enumeration process of σ-frequent subtrees obtained by
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Procedure 4 MAKECANDFREQSUBTREES

Require: The set Zln of occurrence points of σ-frequent subtrees whose lengths are ln and the set Z1 of occurrence points
of σ-frequent edges.

Ensure: A set Wln+1 of occurrence points of candidate subtrees whose lengths are ln+ 1.

1: for all f ∈ Pln do
2: /* Pln is the set of σ-frequent subtrees whose

lengths are ln */
3: OP ′

i = ∅ for i (0 ≤ i < |CT |)
4: U = ∅
5: for all (f, i, OPi) ∈ Zln do
6: for all w ∈ OPi do
7: for all Pathf

w 上の辺 e do
8: /* Pathf

w is the rightmost path from the
edge at the index w to the edge corre-
sponding to the root */

9: if e = w then index = 0, otherwise
index = childrank(c)+ 1 end if

10: /* c is the child of e on Pathf
w */

11: for r = index to r < degree(e) do
12: u = child(e, r)
13: if ∃L ∈ DT s.t. Arg(L, i) ≥ 1 then
14: dollar = child(w,Arg(L, i))
15: for r′ = 0 to r′ < degree(dollar) do
16: u′ = child(dollar, r′)
17: if CT [u

′] < −1 then
18: /* case 1 */
19: dw = DT [|CT [w] + 2|]
20: p = dw[0]
21: for r” = 0 to r” < degree(p) do
22: u” = child(p, r”)
23: U = U ∪ {(f ′

e, u”)}
/* f ′

e is a subtree obtained by
the rightmost expansion at the
index e */

24: OP ′
u” = OP ′

u” ∪ {u′}
25: end for

26: else
27: /* case 2 */
28: U = U ∪ {(f ′

e, u
′)}

29: OP ′
u′ = OP ′

u′ ∪ {u′}
30: end if
31: end for
32: else
33: if CT [u] < −1 then
34: /* case 3 */
35: dw = DT [|CT [w] + 2|]
36: p = dw[0]
37: for r′ = 0 to r′ < degree(p) do
38: u′ = child(p, r′)
39: U = U ∪ {(f ′

e, u
′)}

40: OP ′
u′ = OP ′

u′ ∪ {u}
41: end for
42: else
43: /* case 4 */
44: U = U ∪ {(f ′

e, u)}
45: if i ̸= w then OP ′

u = OP ′
u ∪ {w},

otherwise OP ′
u = OP ′

u ∪ {u} end if
46: end if
47: end if
48: end for
49: end for
50: end for
51: end for
52: for all (f ′, w) ∈ U do

Wln+1 = Wln+1 ∪ {(f ′, w,OP ′
w)} end for

53: end for
54: return Wln+1

applying a compact coding Code(S) = ⟨ELS , DS , CS⟩
of S = {T1, T2, T3} in Fig. 5 to ENUFREQSUBTREE
as a running example. Let t be the compression tree of
Code(S) in Fig. 5. We set σ to 2

3 . Let F be a trie, denoted
by TRIE, having only one node labelled with ⊥. In line
1 of Algorithm ENUFREQSUBTREE, when the compact
coding Code(S) = ⟨ELS , DS , CS⟩ and the minimum
support rate σ are given, GENOCCPOINTSUBTREE
outputs the set of the occurrence points of all 2

3 -
frequent subtrees whose size is one as follows. By
executing the for loop from lines 2 to 11 of Procedure
GENOCCPOINTSUBTREE, for each index i (0 ≤ i < |CS |),
GENOCCPOINTSUBTREE creates the set OPi of indexes
that represent subtrees consisting of one edge. That is,
OP6 = ∅, OP9 = {9}, OP10 = {10, 22, 32}, . . . , OP16 =
∅, . . . , OP39 = {39}. Let f1 and f2 be subtrees consisting
of one edge labelled with a or b, respectively. Next,
by executing the for loop from 12 to 14 of Procedure
GENOCCPOINTSUBTREE, for each index i (0 ≤ i < |CS |),
GENOCCPOINTSUBTREE creates the set W1 of occurrence
points of all subtrees consisting of one edge. That is, W1 =

{(f1, 9, {9}), (f1, 12, {12, 22, 32}), . . . , . . . , (f2, 39, {39})}.
Here, we remark that (f2, 10, {10, 22, 32}) in W1. Since
the edge (9, a, 10) is in the reference tree referenced
by the reference (9, 13), indexes 22 and 32 of the port
lists having the reference (9, 13) in the DFUDS of t are
added to the occurrence point (f2, 10, {10}). In the same
way as the edge (9, b, 10), for the edges (9, a, 12) and
(12, b, 13), we also remark that (f1, 12, {12, 22, 32}) and
(f2, 13, {13, 22, 32}) in W1. Then, by executing the for
loop from 15 to 19 of Procedure GENOCCPOINTSUBTREE,
from W1, GENOCCPOINTSUBTREE creates the set Z1 of
all occurrence points of the rightmost leaves of 2

3 -frequent
subtrees f1 and f2. That is,

Z1 =


(f1, 9, {9}), (f1, 12, {12, 22, 32}),
(f1, 26, {26}), (f1, 28, {28}), (f1, 37, {37}),
(f1, 38, {38}), (f2, 10, {10, 22, 32}),
(f2, 13, {13, 22, 32}), (f2, 17, {17}),
(f2, 20, {20}), (f2, 27, {27}), (f2, 39, {39})

 .

As a result, GENOCCPOINTSUBTREE outputs Z1. To man-
age 2

3 -frequent subtrees f1 and f2 in P1 by TRIE, EN-
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Fig. 7. Illustration of four cases of expanding subtrees

UFREQSUBTREE appends two edges (⊥, (1, a), f1) and (⊥
, (1, b), f2) from the node ⊥ in TRIE. For each edge label
α ∈ {a, b}, the DFUDS “((#α” of the tree f in Fig. 6 is
generated by inserting ( into index 1 of DFUDS “(#” and
appending the edge label α to the end of DFUDS “((#”.
Hence, the nodes f1 and f2 in TRIE correspond to the
subtrees f1 and f2 whose DFUDSs are “((#a” and “((#b”
by using the edge labels (1, a) and (1,b), respectively.

Next, by using a running example on the compression
tree t of corresponding tree TS in Fig. 5 and TRIE F in
Fig. 6, we explain the making process of the set Z2 of
occurrence points of all 2

3 -frequent subtrees with two edges
obtained from Z1 by executing the while loop from lines
4 to 15 in Algorithm ENUFREQSUBTREE. In line 6 of
ENUFREQSUBTREE, MAKECANDFREQSUBTREES creates
the set W2 of occurrence points of all subtrees generated
by applying the rightmost expansion to each subtree in P1

in the following way. Let U be a set of pairs, each of which
consists of a candidate frequent subtree f and an index at
which the rightmost leaf of f occurs.

As an example of the rightmost expansion in Case 4, con-
sider the rightmost expansion of f1 appearing at index 12 of
t for the occurrence point (f1, 12, {12, 22, 32}) ∈ Z1. Since
edge 9 has no child as the next sibling of edge 12 but edge
12 has child 13, the pair (f5, 13) is added to U , where f5 is
a tree isomorphic to the subtree TS [{(9, a, 12), (12, b, 13)}]

of TS . Moreover, since index 12 is in the reference tree
corresponding to the reference (9, 13) at indexes 22 and 32,
the occurrence point (f5, 13, {13, 22, 32}) is added to W2.

As an example of the rightmost expansion in Case 2,
consider the rightmost expansion of f2 appearing at index
13 of t for the occurrence point (f2, 13, {13, 22, 32}) in Z1.
Since the edge at index 13 has no child but index 13 is
in the reference tree corresponding to the reference (9, 13)
at indexes 22 and 32, the pairs (f7, 26) and (f7, 37) are
added to U , and the occurrence points (f7, 26, {26}) and
(f7, 37, {37}) are added to W2, where f7 is a tree isomorphic
to the subtree TS [{(24, b, 27), (27, a, 28)}] of TS .

As an example of the rightmost expansion in Case 3,
consider the rightmost expansion of f2 appearing at index
20 of t for the occurrence point (f2, 20, {20}) ∈ Z1. Since
the edge at index 20 has the edge at index 22 that is
labelled with the reference (9, 13) as a child, the pair (f8, 10)
is added to U , and the occurrence point (f8, 10, {22}) is
added to W2, where f8 is a tree isomorphic to the subtree
TS [{(24, b, 27), (27, b, 29)}] of TS .

By applying the rightmost expansions for other occurrence
points in Z1, ENUFREQSUBTREE finally obtains U = {
(f3, 27), (f3, 39), (f4, 12), . . . , (f5, 13), . . . , (f7, 26), (f7, 37),
. . . , (f8, 10), . . . , (f8, 39), (f

′, 28)}
and W2 = {(f3, 27, {27}), (f3, 39, {39}), (f4, 12, {12}),
. . . , (f5, 13, {13, 22, 32}), . . . , (f7, 26, {26}), (f7, 37, {37}),
. . . , (f8, 10, {22}), . . . , (f8, 39, {39}), (f ′, 28, {28})},
where f ′ is the subtree isomorphic to the subtree
TS [{(21, a, 24), (21, a, 30)}] in TS in Fig. 5 and
f3, f4, f5, f6, f7 and f8 are the subtrees corresponding
to the nodes f3, f4, f5, f6, f7 and f8 described in F in
TRIE F in Fig. 6, respectively. By executing the for loop
from lines 7 to 12 in ENUFREQSUBTREE, we obtain
P2 = {f3, f4, . . . , f8} and Z2 = W2 − {(f ′, 28, {28})}
because the subtree f ′ is not 2

3 -frequent.
In the same way as the construction of Z2, for each i (i ≥

3), ENUFREQSUBTREE recursively constructs the set Zi of
occurrence points of all 2

3 -frequent subtrees with i edges.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we discuss the efficiencies of ENUFRE-
QMAXPATH and ENUFREQSUBTREE by explaining the
experimental results obtained by applying ENUFREQMAX-
PATH and ENUFREQSUBTREE implemented on a PC to
synthetic large data, which were randomly generated.

A. Experimental Environments and Synthetic Data Set

We implemented ENUFREQMAXPATH and ENUFREQ-
SUBTREE on a computer with macOS 10.12 Sierra, and
32 GB of memory and a 4 GHz Intel Core i7 by using C++.
In implementing ENUFREQMAXPATH and ENUFREQSUB-
TREE, we used the SDSL [14] to implement operations on
succinct data structures for compression trees.

Let Code(T ) = ⟨ELT , DT , CT ⟩ be a compact coding
of a tree T . A compression ratio of Code(T ) is de-

fined as
|Code(T )|

|T |
, where |T | denotes the length of the

DFUDS of T . Moreover, a compression tree size of Code(T )
is defined as the half length of CT , i.e.,|CT |/2. Let N
be an integer in {1000, 2000, 3000, 4000, 5000, 6000, 7000},
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r a compression ratio in (0, 1.0] and K an integer in
{100, 200, 300, 400, 500}. For each i (1 ≤ i ≤ 100),
we randomly created the compact codings Code(Ti) =
⟨ELTi

, DTi
, CTi

⟩ satisfying the following conditions (1)-(4).
(1) The compression tree size of Code(Ti) is about N .
(2) A compression ratio of Code(Ti) is about r.
(3) The number of edge-labels of Ti is 3, i.e., |ELTi

| = 3.
(4) The number of references in Code(Ti) is at most 5, i.e.,

|DT | ≤ 5.
Then, in the experiments, the set Cr(N) =
{Code(T1), Code(T2), . . . , Code(T100)} was used as
synthetic data. Moreover, D(Cr(N)) denotes the set of 100
trees obtained from Cr(N) by decompressing all compact
codings in Cr(N).

Let S = {T1, T2, . . . , TK} be a set of K trees. A

compression ratio of S is defined as
|Code(S)|∑K

k=1 |DFUDS(Tk)|
.

We randomly created a compact coding Code(TS) =
⟨ELTS

, DTS
, CTS

⟩ of a corresponding tree TS for S such
that TS satisfies the following conditions (1)-(4).
(1) The number of nodes in TS is about N ×K + 1.
(2) A compression ratio of Code(TS) is about r.
(3) The number of edge-labels in TS is just 3, i.e.,

|ELTS
|=3.

(4) The number of references in DTS
is at most 5×K.

To clearly show K, r and N , Code(TS) is denoted as
CodeKr (N) = ⟨ELS , DS , CS⟩, and TS is denoted as
D(CodeKr (N)).

B. Experimental Results of ENUFREQMAXPATH for Solving
FREQMAXPATHENU-PROBLEM

We measured the running times needed to solve
FREQMAXPATHENU-PROBLEMS for C100

50 (N)
and D(C100

50 (N)) by using the implemented
ENUFREQMAXPATH while varying the value of a
compression tree size N from 1000 to 7000, respectively.
The number of nodes in T is called a decompression size of
Code(T ). Figs. 8, 9 and 10 show experimental results with
respect to the following three items (a)-(c) for a compact
coding d ∈ C100

50 (N).
(a) The running times vs. the compression tree size and

decompression size of d.
(b) The running time vs. the number of occurrence points

of all frequent paths appearing in the tree obtained by
decompressing d.

(c) The running time vs. the number of all frequent maxi-
mal paths in the tree obtained by decompressing d.

Because, in this experimental setting, if the compression
tree size N increased, both the decompression size of each
compact coding and the number of occurrence points of all
frequent paths increased in general, Figs. 8, 9 and 10 show
that the running times were proportional to the compression
tree sizes N . Moreover, ENUFREQMAXPATH was faster
when given a compact coding d ∈ C100

50 (N) than when
the tree corresponding to d was given, and a difference
in running time appeared as the compression tree size N
increased. Since the compression ratio was fixed to 50, if the
compression tree size N of a compact coding in C100

50 (N)
increased, the size of the reference trees in the compact
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Fig. 8. Running times vs. compression tree size and decompression size
given by numbers of nodes
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Fig. 9. Running time vs. number of occurrence points of frequent paths
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Fig. 10. Running time vs. number of frequent maximal paths

coding increased. Moreover, since a frequent path appearing
in a reference tree appeared in all subtrees represented by
port lists having the same reference as a label, as the com-
pression ratio increased, the number of occurrence positions
of the frequent paths in the compact coding decreased.
This lead to a reduction in memory usage and increase in
enumeration speed of all frequent maximal paths. Therefore,
these experimental results show that ENUFREQMAXPATH
has the advantage of extracting all frequent maximal paths
from large trees having repeated subtrees.

C. Experimental Results of ENUFREQSUBTREE for Solving
FREQSUBTREEENU-PROBLEM

We measured the running times needed to solve
FREQSUBTREEENU-PROBLEMS for Code100r (1000),
CodeK50(1000) and Code10060 (1000) by using the implemented

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_25

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



ENUFREQSUBTREE while varying the compression ratio r
from 0.2 to 0.8, the number K of compact codings from
100 to 500 and the minimum support rate from 1.0 down to
0.4, respectively.

First, Fig. 11 shows the difference between the running
times of ENUFREQSUBTREEs for Code100r (1000) and for
D(Code100r (1000)) as inputs for when the compression ratio
r was set from 0.2 to 0.8 and the minimum support rate was
set to 1.0. From Fig. 11, we can see that, as the compression
ratio r increased higher and higher, the difference in the
running times of ENUFREQSUBTREEs started to quickly ex-
pand because the higher the compression ratio, the greater the
difference between the numbers of nodes of the compression
tree of Code100r (1000) and D(Code100r (1000)).

Second, Fig. 12 shows the difference in the running times
between ENUFREQSUBTREEs for CodeK50(1000) and for
D(CodeK50(1000)) for when the number K of trees was
varied from 100 to 500 and the minimum support rate was
set to 1.0. Due to the fixed compression ratio, the sizes of
reference trees in the input compact coding increased as the
number of trees increased. With the enumeration method
used in ENUFREQSUBTREE, the running time depends on
the number of occurrence points of subtrees whose frequency
must be checked. Therefore, from Fig. 12, we can see that
the expansion of the difference in the running time was due
to the expansion of the differences in the number of nodes
and in the number of occurrence points in CodeK50(1000).

Finally, Fig. 13 shows the running time of ENUFREQ-
SUBTREE for Code10060 (1000) for when the minimum support
rate was varied from 1.0 down to 0.4. Because the number
of subtrees whose frequency must be checked increased
extremely as the minimum support rate became smaller, the
running time of ENUFREQSUBTREE became longer, and
the difference between the running times of ENUFREQ-
SUBTREEs for Code10060 (1000) and for D(Code10060 (1000))
expanded.

These experimental results clearly show the advantage
of enumerating all frequent paths and all frequent subtrees
without decompression in structurally compressed trees.

VI. CONCLUSION

We introduced a compression tree that is obtained by
replacing repeated occurrences of subgraphs having ordered
tree structures with references to the first occurrence point
on the basis of an Lempel-Ziv compression scheme, and
we presented a succinct representation of a compression
tree by using DFUDS. We considered problems, denoted as
FREQMAXPATHENU-PROBLEM and FREQSUBTREEENU-
PROBLEM, for enumerating all frequent maximal paths from
a given compression tree without decompression and enu-
merating all frequent subtrees from a given set of com-
pression trees without decompression, respectively. Then, by
using SDSL [14], we presented time- and memory-efficient
algorithms, denoted as ENUFREQMAXPATH and ENUFREQ-
SUBTREE, for solving FREQMAXPATHENU-PROBLEM and
FREQSUBTREEENU-PROBLEM, respectively. We discussed
the efficiency of the proposed algorithms ENUFREQMAX-
PATH and ENUFREQSUBTREE by using experimental results
that were obtained by applying the algorithms to randomly
generated synthetic large data.
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Fig. 11. Running time vs. compression ratio
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Fig. 12. Running time vs. number of trees
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Fig. 13. Running time vs. minimum support rate

For future work, we will apply the proposed algorithms
to real-world large data. Moreover, we have plans to extend
the pattern matching algorithms proposed by Itokawa et al.
[8] and Suzuki et al. [16] for edge-labelled ordered trees to
pattern matching algorithms for compression trees. That is,
by extending the proposed algorithms ENUFREQMAXPATH
and ENUFREQSUBTREE to the pattern matching algorithms
for compressed trees, we will propose time- and memory-
efficient enumeration algorithms for extracting all charac-
teristic term tree patterns [16] having structured variables
common to given compressed trees without decompression.
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