
Assis - Cicerone Robot With Visual Obstacle
Avoidance Using a Stack of Odometric Data

Mateus Mendes†∗, A. Paulo Coimbra†, and Manuel M. Crisóstomo†

Abstract— Modern research has shown that intelligent be-
haviour is, to a great extent, strongly supported on the use of
a sophisticated memory. Additionally, vision is the main source
of information for the average human. Constant increase of
sensing and processing power and constant decrease of the cost
of memory have made vision-based approaches in robotics more
attractive. ASSIS is a prototype of an assistant robot which
uses vision and memory-based navigation, including intelligent
obstacle avoidance. ASSIS uses a parallel implementation of a
Sparse Distributed Memory to store images and use them later
for localisation and navigation. Obstacle avoidance is achieved
using a stack-based method and odometric data. Users can
command the robot through a web-based interface. ASSIS
implements behaviours such as courier or cicerone.

Index Terms—ASSIS, Autonomous Navigation, Obstacle
Avoidance, SDM, Vision-based Localization, Vision-Based Nav-
igation.

I. INTRODUCTION

DEVELOPMENT of intelligent robots is an area of
intense and accelerating research. Different models

for localization and navigation have been proposed. The
present approach uses a parallel implementation of a Sparse
Distributed Memory (SDM) as the support for vision and
memory-based robot localization and navigation, including
obstacle avoidance [1]. The SDM is a type of associative
memory suitable to work with high-dimensional Boolean
vectors. It was proposed in the 1980s by P. Kanerva [2]
and has successfully been used before for vision-based robot
navigation [3], [4]. Simple vision-based methods, such as
implemented by Matsumoto [5], although sufficient for many
environments, in monotonous environments such as corridors
may present a large number of errors. Cristóforis et. al [6]
used a similar approach, of “teach and follow” navigation
based on monocular vision. On their method the teaching
process is simplified when a detectable path is available. The
path is determined from landmark features using the SURF
method. During the learning phase the robot is guided to map
the environment. The map is described as a set of segments
enriched with automatically detected features. To navigate
autonomously, the robot must start at the beginning of a
known segment. During the autonomous navigation phase,
the robot retrieves relevant landmarks from the map and
estimates their position in the current view. Based on the
estimated displacement, the robot adjusts its heading.

∗ESTGOH, Polytechnic Institute of Coimbra, Portugal. E-mail:
mmendes@estgoh.ipc.pt.
†ISR - Institute of Systems and Robotics, Dept. of Electrical and

Computer Engineering, University of Coimbra, Portugal. E-mail: acoim-
bra@deec.uc.pt, mcris@isr.uc.pt.

A. Cicerone robots

Rhino was perhaps the first cicerone robot [7]. Rhino
was built for the purpose of being a robot tour guide,
operating at the Deutsches Museum Bonn, Germany. Based
on the Rhino’s experience, the same group built Minerva,
a second generation museum tour guide robot [8]. Minerva
is an autonomous robot that operates in the large area of
the Smithsonian’s National Museum of American History,
United States of America. Minerva is equipped with cameras,
laser range finders and ultrasound sensors. It is able to
map and navigate through large areas, even if they are
crowded with visitors, relying on previously learnt maps of
the building views and ceiling. Minerva interacts with people
and offers tours through the exhibitions, through a simple
interface which mimics some emotional states like happiness
or frustration. In Rhino, user interface was less sophisticated.
As for mapping and localisation, Rhino relied on a manually
derived map, while Minerva has the ability to learn maps
from scratch. Both robots provide remote web interfaces,
though Rhino offers only a limited set of 13 locations for
the remote user, while Minerva’s location is arbitrary.

Indigo is another cicerone robot proposal, operating at the
Cultural Centre Hellenic Cosmos, in Greece. Indigo intends
to mimic human behaviour in a biologically inspired way
[9]. Language generation and motion follow human models.
The robot tracks human faces and movements using images
and laser range finders. Other service robots include REEM
[10] and Care-O-bot [11].

B. Vision-based navigation

For most human beings, vision provides 80% of the
sensory inputs [12]. The human eyes provide a wealth of
information which the human brain processes quickly and
effectively, in a natural way. Therefore, vision-based meth-
ods for robot navigation are appealing for being biologically
inspired.

Modern computer vision hardware and software can
achieve impressive performances, unthinkable decades ago.
Simple vision-based methods for robot navigation, such as
implemented by Matsumoto [13], are sufficient for many
environments. They consist in simply storing views and
retrieve them later for robot localisation. In monotonous
environments such as corridors the method may present
a large number of errors. When the database of images
becomes large it is also difficult to process in real time. This
method, while relying on visual information, does not try to
mimic the workings of the human brain for image processing.

Robust navigation will also require an algorithm to avoid
collisions. Collision avoidance relies on detecting objects
and estimating distance between the robot and the object,

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_26

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



planning a collision-safe path or halting the robot in time
to prevent the robot from hitting the obstacle. A popular
approach is based on potential field models, where the
obstacles exert repelling forces on the robot, keeping it away
at safe distance [14]. Distance to objects is measured using
laser range finders, ultrasounds, stereo or even monocular
vision [15]. ASSIS relies on both ultrasound and infrared
(IR) sensors.

C. ASSIS’ memory-based navigation

ASSIS is a prototype of an assistant robot that uses vision
for localisation and navigation. The robot learns new paths
during a supervised learning stage. While learning, the robot
captures and stores views of the surrounding environment,
and stores them in an SDM, with some odometric and
additional information.

The SDM is a type of associative memory suitable to
work with high-dimensional boolean vectors. It was proposed
by Pentti Kanerva in the 1980s [2] and has successfully
been used before for vision-based robot navigation [4], [16].
It has also been implemented in parallel using a Graphics
Processing Unit [17].

In autonomous navigation, ASSIS captures updated views
and uses the memory to search for the closest image, using
the image’s additional information as basis for localization
and navigation. Memory search is performed in parallel in a
Graphics Processing Unit (GPU).

Still during the autonomous navigation mode, the envi-
ronment is scanned using sonar and infra-red sensors (IR).
If obstacles are detected in the robot’s path, an obstacle-
avoidance algorithm takes control of navigation until the
obstacle is overcome. In straight paths, the algorithm creates
a stack of odometric data that is used afterwards to return
to the original heading, when vision-based navigation is
resumed.

Section II briefly describes the SDM. Section III presents
the key features of the experimental platform used. The prin-
ciples for vision–based navigation are explained in Section
IV. Section V describes two of the navigation algorithms
implemented in the robot. It also presents the results of the
tests performed with those algorithms. In Section VI, the
obstacle avoidance algorithms are described, along with the
validation tests. The results are discussed in Section VII.
Conclusions and future work are presented in Section VIII.

II. SPARSE DISTRIBUTED MEMORY

The properties of the SDM are inherited from the prop-
erties of high-dimensional binary spaces, as originally de-
scribed by P. Kanerva [2]. Kanerva proves that high-
dimensional binary spaces exhibit properties in many aspects
related to those of the human brain, such as naturally learning
(one-short learning, reinforcement of an idea), naturally
forgetting over time, ability to work with incomplete infor-
mation and large tolerance to noisy data.

A. Original SDM model

Fig. 1 shows a minimalist example of the original SDM
model. The main structures are an array of addresses and an
array of data counters. The memory is sparse, in the sense
that it contains only a minuscule fraction of the locations of

Fig. 1. Diagram of an SDM, according to the original model, showing an
array of bit counters to store data and an array of addresses.

the addressable space. The locations which physically exist
are called hard locations. Each input address activates all the
hard locations which are within a predefined access radius (3
bits in the example). The distance between the input address
and each SDM location is computed using the Hamming
distance, which is the number of bits in which two binary
numbers are different. A quick way to compute the Hamming
distance is to count the number of ones resulting from an
exclusive OR operation, as represented in Equation 1, where
xi is the ith bit of vector x, and yi is the ith bit of vector y.

hd(x, y) =

i=n∑
i=0

xi ⊕ yi (1)

Data are stored in the bit counters. Each location contains
one bit counter for each bit of the input datum. To write
a datum in the memory, the bit counters of the selected
locations will be decremented where the input datum is zero
and incremented where the input datum is one. Reading is
performed by sampling the active locations. The average of
the values of the bit counters is computed column-wise for
each bit, and if the value is above a given threshold, a one
is retrieved. Otherwise, a zero is retrieved. Therefore, the
retrieved vector may not be exactly equal to the stored vector,
but Kanerva proves that most of the times it is, based on the
statistical properties of boolean spaces.

B. Simplified arithmetic SDM model

The original SDM model, using bit counters, has some
drawbacks which have been studied and lead to further
improvements. One problem is that it has a low storage rate,
of about 0.1 data bits per bit of physical memory. Another
problem is that the counters slow down the system in real
time, specially if they are implemented in conventional serial
processors. Yet another problem is that data encoded using
the natural binary code are sensitive to the positional value
of the bits [18], and that negatively affects the performance
of the system. In order to overcome some of the drawbacks
described, other SDM models have been proposed [18], [19],
[20]. Fig. 2 shows a model based on Ratitch et al.’s approach
[19], which groups data bits as integers and uses the sum
of absolute differences instead of the Hamming distance to
compute the distance between an input address and location
addresses in the memory. That has been the model used
in the present work. It was named “arithmetic SDM,” and
its performance has been superior to the original model in
vision-based robot navigation [4].

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_26

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



Fig. 2. Arithmetic SDM model, which uses decimal integers instead of bit
counters.

Fig. 3. Data structures of the SDM implemented in the CPU and in the
GPU.

C. Parallel SDM implementation

The arithmetic SDM model, as described in II-B, was first
implemented in a CPU, using linked lists as depicted in the
upper part of Fig. 3. Each element of the linked list contains a
memory item, represented as a pair of data and corresponding
address, along with the pointer for the next element of the
list. The list grows when new items (new paths) are stored
into the memory, thus increasing the search time required to
find an element in the memory.

As the volume of data required to process in real time
increased, it became clear that the system could benefit from
a parallel implementation of the search procedure. Part of
the SDM was then implemented in parallel, in a GPU, using
CUDA architecture, as shown in the lower part of Fig. 3.

During the learning stage of the robot, the linked list is
built, using only the CPU and central RAM memory. After
the learning step is complete, the list contents are copied to
an array of addresses and to an array of data in the GPU’s
memory. Later, when necessary to retrieve any information
from the SDM, multiple GPU kernels are launched in parallel
to check all memory locations and get a quick prediction. The
parallel implementation is described in more detail in [17],
where the results also show significant improvements in the
search speed compared to the original serial implementation.

III. ASSIS EXPERIMENTAL PLATFORM

ASSIS is based on an X80Pro robot, controlled by a laptop
running all the software and providing a web based user
interface.

A. Hardware

The robot used is an X80Pro, as shown in Fig. 4. It is a
differential drive vehicle equipped with two driven wheels,
each with a DC motor, and a rear swivel caster wheel, for

Fig. 4. ASSIS cicerone robot carrying a small load on its tray.

stability. The robot has a built-in digital video camera and
an integrated WiFi communications module using 802.11g
protocol. It also offers the possibility of communication and
control by USB or serial ports. For object detection, it has
six ultrasound sensors and seven infra-red sensors with a
sensing range of respectively 2.55 m and 0.80 m. In the
present implementation only ultrasound sensors were used
for collision avoidance, due to the larger area covered.

The robot is controlled in real time from a laptop with a
2.40 GHz Intel Core i7 processor, 6 Gb RAM and a NVIDIA
GPU with 2 Gb of memory and 96 CUDA cores.

The robot was enhanced with a light wooden body which
supports a tablet for the user interface. This wooden structure
also confers on it the possibility of carrying small objects
over a wooden tray.

B. Control Software

Fig. 5 shows the interactions between the different soft-
ware modules developed and the robot. The laptop is carried
on board and connected to the robot through a serial port. The
serial port was chosen because it provides faster and more
reliable control than the integrated WiFi communication,
which relies on network connectivity and quality of the
wireless signal.

The “SDM” module is where the navigation information
is stored and processed, so it is the most important module.

The “path learning” module is used for supervised learning
of the paths. It controls the robot during supervised learning
and feeds the relevant information to the SDM module.

The “autonomous run” module takes control of the robot
during the autonomous run mode. It is in this module that the
navigation algorithms described in Section V are deployed.
They rely on sensory information provided from the motor
and sensor control module, and on memories retrieved from
the SDM to make decisions. This autonomous run module
requires the obstacle avoidance module, which is activated
when an obstacle is sensed in close proximity to the robot.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_26

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



Fig. 5. Interactions between software modules and the robot.

Fig. 6. Interactions between all system components and the user.

C. User interaction

Fig. 6 illustrates the overall system. The control software
described in Section III-B runs on a laptop which is carried
by the robot itself. That control software provides a socket
interface, from where the user interface application can take
control. The user interface is web based. It is a PHP appli-
cation, which stores state, mission and users’ information on
a MySQL database.

Since the user interface is web based, it can be accessed
remotely using any common web browser. Nonetheless, for
direct control of the robot, the wooden structure carries
a standard tablet running a web browser. The interface
application provides different profiles, for the remote and
local users, as well as session control, so that one user can
only take control of the robot after the previous mission was
completed. The only exception is for administrators, who can
unlock the robot and take control at any moment.

The interface application allows the administrators to teach
and manage different paths and different missions. Standard
users can store and manage their missions. Anonymous users
will be able to choose destinations and execute missions
locally using the tablet carried by the robot.

IV. VISION-BASED NAVIGATION

ASSIS’ localization and navigation are based on visual
memories, which are stored into the SDM during the super-
vised learning stage and used later in the autonomous run
mode.

A. Supervised learning

In the supervised learning stage, the user drives the robot
along a path, issuing steering and moving commands using
the remote user interface. During this process, the robot
acquires pictures in BMP format with 176×144 resolution,
at about 10 frames per second, using its in-built digital video

camera. The images are then converted to Portable Grey
Map (PGM) format, which is more appropriate to store and
manipulate in the SDM. All the captured images are saved in
the disk, along with additional tagging data, and later stored
into the SDM.

Each path has a unique sequence number and is described
by a sequence of views, where each view is also assigned a
unique view number. Hence, the images are used as addresses
for the SDM and the data vectors stored into the SDM are
in the following format, where di is data vector i:

di =< Sj , imi, vri, vli > (2)

The sequence number is Sj , and the number of the image
in Sj is imi. The angular velocity of the right and left wheels
is, respectively, vri and vli. This information is sufficient for
describing the robot’s localisation and motion. To localise
and navigate the robot during the autonomous run, an image
im will retrieve the position of the robot in the sequence Sj ,
and also the velocities < vri, vli > of the wheels when the
robot was at that point during the learning stage.

B. Autonomous running

When the robot starts the autonomous run mode, it will
capture an image and use it for localisation. It will query
the SDM to obtain the most similar image in memory. If the
distance of the current view to the most similar view stored
in the SDM is less than the SDM access radius the place is
recognised and the robot assumes it is in a known position
of sequence Sj . The robot will then search for all the goal
points which can be reached from its current position and
show a list of possible goals to the user.

After a destination is chosen, the robot starts the process
of navigating towards the goal point. During navigation,
the robot consecutively uses its current view as address to
the SDM and thus retrieve the associated data vector di
as described in Equation 2. From the di the robot infers
its probable location and the most probably correct motion
commands < vri, vli >. Thus, in the autonomous run
mode the robot continually locates itself in the sequence of
images previously learnt and tries to mimic the same motor
commands that lead it to the goal during the supervised
learning stage.

In order to reduce drifts and errors in the trajectory and
orientation of the robot, the images are improved and the
navigation process is monitored as explained below.

C. Image filtering and pre-processing

To improve the tolerance of the system to illumination
changes, all images are equalized once they are acquired
from the camera. That leads to a significant performance
improvement under different illumination conditions [4].

To decrease memory requirements, improve speed and
minimize chances of confusion between stored images, only
images which are considered relevant are selected to be
stored into the disk and loaded into the SDM during the
learning stage. An image is considered irrelevant if the
difference to the previous stored image, computed using the
SDM’s similarity calculation method, is less than the SDM’s
access radius. This procedure leads to filtering many images

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_26

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



of corridors and other long monotonous scenarios, without
impacting the performance of the system. In practice, during
the autonomous run mode the robot will be guided by some
images for a longer period of time, thus saving significant
amounts of memory. This process automatically adjusts the
sampling rate as needed for each scenario.

D. Lateral drift correction

Since the robot is following the paths based essentially on
following the same commands executed during the learning
stage, small drifts inevitably occur. In order to prevent
those drifts from accumulating a large error, a correction
algorithm was also implemented, following Matsumoto et
al.’s approach [8], as described in more detail in [2]. Once
an image has been predicted, a block-matching method is
used to determine the horizontal displacement between the
robot’s current view and its view during the learning stage.
If a difference is found, the robot’s heading is adjusted by
proportionally decreasing wheel velocities vr or vl, in order
to compensate the lateral drift.

Lateral drift correction is only turned on during straight
segments of the paths. It is turned off during curves to prevent
long correction loops, as well as during obstacle avoidance
deviations.

E. Sequence disambiguation

During the autonomous run mode, the data associated with
each image that is retrieved from the memory is checked
to determine if the image belongs to the sequence (path)
that is being followed. Under normal circumstances, the
robot is not expected to skip from one sequence to another.
Nonetheless, under exceptional circumstances it may happen
that the robot is actually moved from one path to another, for
unknown reasons. Possible reasons include slippage, manual
displacement, mismatch of the original location, among many
others. Such problem is commonly known as the “kidnapped
robot,” for it is like the robot is kidnapped from one point
and abandoned at another point, which can be known or
unknown.

To deal with the “kidnapped robot” problem and similar
difficulties, ASSIS uses a short term memory of n entries
(50 was used in the experiments). This short term memory
is used to store up to n of the last sequence number Sj

that were retrieved from the memory. If ASSIS is following
sequence Sj , then Sj should always be the most popular in
the short term memory. If an image from sequence Sk is
retrieved, it is ignored, and another image is retrieved from
the SDM, narrowing the search to just entries of sequence Sj .
Nonetheless, Sk is still pushed onto the short term memory,
and if at some point Sk becomes more popular in the short
term memory than Sj , the robot’s probable location will be
updated to Sk. This disambiguation method showed to filter
out many spurious predictions while still solving kidnapped
robot-like problems.

F. Use of a sliding window

When the robot is following a path, it is also expected
to retrieve images only within a limited range. For example,
if it is at the middle of a long path, it is not expected to

get back to the beginning or right to the end of the path.
Therefore, the search space can be truncated to a moving
“sliding window,” within the sequence that is being followed.
For a sequence containing a total of z images, using a
sliding window of width w, the search space for the SDM
at image imk is limited to images with image number in the
interval {max(0, k− w

2 ),min(k+ w
2 )}. The sliding window

in the SDM is implemented by truncating the search space,
a method similar to Jaeckel’s selected coordinate design
[21]. In Jaeckel’s method, coordinates which are de1emed
irrelevant to the final result are disregarded in the process
of calculating the distance between the input address and
each memory item, so computation can be many times
faster. In the present implementation, however, the selected
coordinates are used just to select a subset of the whole
space. The subset is then used for computing the distance
using all the coordinates.

The sliding window may prevent the robot from solving
the kidnapped robot problem. To overcome the limitation,
an all-memory search is performed first and the short-term
memory retains whether the last n images were predicted
within the sliding window or not, as described in Section
IV-E. This means that the sliding window actually does not
decrease the total search time, since an all-memory search is
still required in order to solve the kidnapped robot problem.
The sliding window, however, greatly reduces the number of
momentary localisation errors (MLE). A momentary local-
isation error is counted when the robot retrieves from the
memory a wrong image, such as an image from a wrong
sequence or from the wrong place in the same sequence.
When a limited number of MLE occur the robot does not
get lost, due to use of the sliding window and the sequence
disambiguation procedures.

V. COMPARISON OF NAVIGATION ALGORITHMS

Different navigation algorithms were implemented and
tested. The two most relevant of them are described in the
following subsections: the simplest and the most robust.

A. Basic algorithm

The first navigation algorithm is called “basic,” for it
performs just the simplest search and navigation tasks, as
well as a very basic filtering technique to filter out possibly
wrong predictions.

Image search, for robot localisation, is performed in all
the memory. Detection of possibly wrong predictions (MLEs
in the same sequence) is based on the number of the
image, balanced by the total size of the sequence. If the
distance between image imt, predicted at time t, and image
imt±1, predicted at time t ± 1, is more than 1

3z, for a
path described by z images, imt±1 is ignored and the robot
continues performing the same motion it was doing before
the prediction. The fraction 1

3z was empirically found for the
basic algorithm.

The performance of this basic algorithm was tested indoors
in the corridors of the Institute of Systems and Robotics of
the University of Coimbra, Portugal. The robot was taught
a path about 22 meters long, from a laboratory to an office,
and then instructed to follow that path 5 times. Fig. 7 shows
the sequence numbers of the images that were taught and

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_26

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



Fig. 7. Image sequence numbers of the images predicted by the SDM following the path from a laboratory to an office (approx. 22 m). The graph shows
the number of the images that are retrieved from the memory as the robot progresses towards the goal.

retrieved each time. The robot never got lost and always
reached a point very close to the goal point.

In a second test, the robot was taught a path about 47
meters long. The results are shown in Fig. 8. As the figure
shows, the robot was not able to reach the goal, it got lost at
about the 810th prediction in the first run and at the 520th

in the second run.
The results obtained in the second test show that the basic

algorithm is not robust enough, at least for navigating in
long and monotonous environments such as corridors in the
interior of large buildings.

B. Improved autonomous navigation with sliding window
Many of the prediction errors happen where the images are

poor in patterns and there are many similar views in the same
path or other paths also stored in the memory. Corridors, for
example, are very monotonous and thus prone to prediction
errors. The use of a sliding window to narrow the acceptable
predictions improves the results, but it is not enough. The
improved sliding window algorithm with the other principles
described in Section IV-F worked in all situations that it was
tested.

Fig. 9 shows the result obtained with this navigation
algorithm when the robot was made to follow the same
path used for Fig. 8 (second test path). A sliding window
40 images wide was used. As the graph shows, the sliding
window filters out all the spurious predictions which could
otherwise compromise the ability of the robot to reach the
goal. Close to iterations number 200 and 1300, some of the
most similar images retrieved from the memory are out of the
sliding window, but those images were not used for retrieving
control information (because of them being out of the sliding
window).

C. Patrol mode
To make the robot able to carry out patrol missions, a

special navigation mode was developed, which is called “the

patrol mode.”
The patrol mode uses a closed path in which the end

overlaps with the beginning. During the learning stage, the
robot recognizes that the path ends at a point where the views
coincide with those of the beginning of the same path. If the
patrol mode is turned on, then the robot is able to jump
directly from the end of a sequence to its beginning, thus
following the same path continuously, until stopped by the
operator. Other stopping criteria can be applied, such as a
determined number of loops or start and stop times. Fig. 10
shows an example of the predictions made while following
a path continuously twice. The path is 55 meters long and
described by about 480 images in the SDM.

VI. OBSTACLE AVOIDANCE

In order for the robot to navigate in real environments, it is
necessary that the navigation process in autonomous mode is
robust enough to detect and avoid possible obstacles in the
way. Two algorithms were implemented, one for obstacles
which appear in straight line paths and another for obstacles
that appear in curves.

A. Obstacles in straight paths

In the autonomous navigation mode, the front sonar sen-
sors are activated. All objects that are detected at less than
1 m from the robot are considered obstacles and trigger
the obstacle avoidance algorithm. A median of 3 filter was
implemented to filter out possible outliers in the sonar
readings. When an obstacle is detected, the robot suspends
memory-based navigation and changes direction to the side
of the obstacle that seems more free. The robot chooses
the side by reading the two lateral front sonar sensors. The
side of the sensor that gives the higher distance to an object
is considered the best side to go. If both sensors read less
than 50 cm the robot stops to guarantee its safety. Providing
the robot senses enough space, it starts circumventing the

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_26

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



Fig. 8. Images predicted by the SDM following the second test path (approx. 47 m) using the basic algorithm.

Fig. 9. Images predicted by the SDM following the second test path using the sliding window algorithm.

obstacle by the safest side. While circumventing, it logs the
wheel movements in a stack. When the obstacle is no longer
detected by the sensors, the wheel movements logged are
then performed in reverse order emptying the stack. This
process returns the robot to its original heading. When the
stack is emptied, the robot tries to localize itself again based
on visual memories and resume memory-based navigation. If
the robot cannot localise itself after the stack is empty, then
it assumes it is lost and navigation is stopped. In the future
this behaviour may be improved to an active search method.

Fig. 11 shows an example of a straight path previously
taught and later followed with two obstacles placed in that
path. After avoiding collision with the first obstacle, the robot
resumes memory-based navigation maintaining its original
heading, performing lateral drift correction for a while. It
then detects and avoids the second obstacle and later resumes
memory-based navigation maintaining its original heading.

Note that in the figure, because the lines were drawn using
a pen attached to the rear of the robot, when the robot turns
to the left it draws an arc of a line to the right.

B. Obstacles in curves

The stack method described in the previous subsection
works correctly if the obstacle is detected when the robot is
navigating in a straight line. If the obstacle is detected while
the robot is performing a curve, that method may not work,
because the expected robot’s heading after circumventing the
obstacle cannot be determined in advance with a high degree
of certainty. If an obstacle is detected when the robot is
changing its heading, then the stack method is not used. The
robot still circumvents the obstacle choosing the clearer side
of the obstacle. But in that case it only keeps record of which
side was chosen to circumvent the obstacle and what was
the previous heading. Then, when the obstacle is no longer

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_26

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



Fig. 10. Images predicted by the SDM following a path, using the sliding window in the patrol mode. Close to image 480 the robot gets back to the
beginning of the sequence.

Fig. 11. Examples of obstacle avoidance in a straight path (the lines were
drawn using a pen attached to the rear of the robot, so they actually mark
the motion of its rear, not its centre of mass). A) Path followed without
obstacles. B) Path followed with obstacles. C) Obstacles.

detected, the robot uses vision to localise itself and fine tune
the drift using the algorithm described in Section IV-D. In
curves, the probability of confusion of images is not very
high, even if the images are captured at different distances.
The heading of the camera often has a more important impact
on the image than the distance to the objects. Therefore, after
the robot has circumvented the obstacle it will have a very
high probability of being close to the correct path and still at
a point where it will be able to localise itself and determine
the right direction to follow.

Fig. 12 shows examples where the robot avoided obstacles
placed in a curve. In path B (blue) the wall corner at the
left is also detected as an obstacle, hence there is actually a
second heading adjustment. The image shows the robot was
still able to localise itself after the obstacle and proceed in
the right direction, effectively getting back to the right path.

VII. RESULTS AND DISCUSSION

Fig. 13 illustrates the robot following a mission. The green
arrows indicate the path taught during the supervised learning

Fig. 12. Examples of obstacle avoidance in a curve. A) Path taught. B)
Path followed by the robot avoiding the obstacle D and the left wall corner.
C) Path followed by the robot when the obstacle was positioned at D’.

step. The red arrows mark the path chosen by the robot
during the autonomous run mode. The arrows were manually
placed behind the robot while it was moving along the path
and later enhanced in the picture.

The figure shows only a small difference between the
paths. In general it is possible to affirm that the robot
achieves the goal point with a minimum drift. The drift is
larger during curves, where a small change in the heading
can cause a difference of a few centimetres in the actual path.
In straight paths, the drift is corrected by the drift-correcting
algorithm, which is not used during curves.

VIII. CONCLUSION

A method of navigating a robot, using visual and odo-
metric information stored into an SDM, has been proposed.
The SDM is implemented in parallel in a GPU, for better
performance. Assis, the robot, uses supervised learning to
learn new paths for later autonomous missions. A sliding
window is used to segment the search space and improve
the performance. A novel view-based obstacle-avoidance

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_26

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 



Fig. 13. ASSIS cicerone robot during a mission. Green arrows indicate
learned trajectory and red arrows indicate the path followed.

algorithm was also described. The use of a stack to store the
robot’s motions when circumventing obstacles showed good
performance in straight paths. During curves, experimental
evidence shows that, after circumventing the obstacle, the
robot adjusts its heading faster using memory-based nav-
igation for localization and the drift-correction algorithm
for heading adjustment. Experimental results show good
performance of the system for indoors navigation. The robot
is able to perform autonomously tasks such as surveillance,
guiding people inside a building or carrying objects to pre-
viously taught places. Future work will include development
of higher level modules to implement advanced surveillance
and cicerone behaviours. In the patrol mode the robot must
detect changes in the environment which should trigger an
alert, such as intruder detection. In cicerone mode, the robot
must be able to interact with people.

Acknowledgment
The authors acknowledge Fundação para a Ciência e a Tecnologia
(FCT) and COMPETE 2020 program for the financial support to

the project UID-EEA-00048-2013.

REFERENCES

[1] M. Mendes, A. P. Coimbra, and M. M. Crisóstomo, “Circumventing
obstacles for visual robot navigation using a stack of odometric data,”
in Lecture Notes in Engineering and Computer Science: Proceedings
of The World Congress on Engineering 2017, London, U.K., 5-7 July
2017, pp. 172–177.

[2] P. Kanerva, Sparse Distributed Memory. Cambridge: MIT Press,
1988.

[3] R. P. N. Rao and D. H. Ballard, “Object indexing using an iconic sparse
distributed memory,” The University of Rochester, Computer Science
Department, Rochester, New York, Tech. Rep. 559, July 1995.

[4] M. Mendes, A. P. Coimbra, and M. M. Crisóstomo, “Robot navigation
based on view sequences stored in a sparse distributed memory,”
Robotica, July 2011.

[5] Y. Matsumoto, K. Ikeda, M. Inaba, and H. Inoue, “Exploration and
map acquisition for view-based navigation in corridor environment,”
in Proceedings of the International Conference on Field and Service
Robotics, 1999, pp. 341–346.

[6] P. D. Cristóforis, M. Nitsche, T. Krajnı́k, T. Pirea, and M. Mejail, “Hy-
brid vision-based navigation for mobile robots in mixed indoor/outdoor
environments,” Pattern Recognition Letters, no. 53, 2015.

[7] W. Burgard, D. Fox, G. Lakemeyer, D. Haehnel, D. Schulz, W. Steiner,
S. Thrun, and A. Cremers, “Real robots for the real world - the rhino
museum tour-guide project,” in Proceedings of the 1998 AAAI Spring
Symposium, 1998.

[8] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert,
D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz,
“Minerva: A second-generation museum tour-guide robot,” in In
Proceedings of IEEE International Conference on Robotics and Au-
tomation (ICRA’99, 1999.

[9] S. Konstantopoulos, I. Androutsopoulos, H. Baltzakis, V. Karkaletsis,
C. Matheson, A. Tegos, and P. Trahanias, “Indigo: Interaction with
personality and dialogue enabled robots,” 2008.

[10] R. Tellez, F. Ferro, S. Garcia, E. Gomez, E. Jorge, D. Mora, D. Pinyol,
J. Oliver, O. Torres, J. Velazquez et al., “Reem-b: An autonomous
lightweight human-size humanoid robot,” in Humanoid Robots, 2008.
Humanoids 2008. 8th IEEE-RAS International Conference on. IEEE,
2008, pp. 462–468.

[11] R. Kittmann, T. Fröhlich, J. Schäfer, U. Reiser, F. Weißhardt, and
A. Haug, “Let me introduce myself: I am care-o-bot 4, a gentleman
robot,” Mensch und computer 2015–proceedings, 2015.

[12] S. Johnson, Mind wide open. New York: Scribner, 2004.
[13] Y. Matsumoto, M. Inaba, and H. Inoue, “View-based approach to robot

navigation,” in Proc. of IEEE/RSJ IROS 2000, 2000.
[14] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile

robots,” The International Journal of Robotics Research, vol. 5, no. 1,
March 1986.

[15] J. Michels, A. Saxena, and A. Y. Ng, “High speed obstacle avoidance
using monocular vision and reinforcement learning,” in Proceedings
of the 22nd international conference on Machine learning. ACM,
2005, pp. 593–600.

[16] R. Rao and O. Fuentes, “Hierarchical learning of navigational be-
haviors in an autonomous robot using a predictive sparse distributed
memory,” Machine Learning, vol. 31, no. 1-3, pp. 87–113, April 1998.

[17] A. Rodrigues, A. Brandão, M. Mendes, A. P. Coimbra, F. Barros,
and M. Crisóstomo, “Parallel implementation of a sdm for vision-
based robot navigation,” in 13th Spanish-Portuguese Conference on
Electrical Engineering (13CHLIE), Valência, Spain, 2013.

[18] M. Mendes, M. M. Crisóstomo, and A. P. Coimbra, “Assessing a sparse
distributed memory using different encoding methods,” in Lecture
Notes in Engineering and Computer Science: Proceedings of The
World Congress on Engineering 2009, London, U.K., 1–3 July, 2009,
pp. 37–42.

[19] B. Ratitch and D. Precup, “Sparse distributed memories for on-line
value-based reinforcement learning.” in ECML, 2004.

[20] J. Snaider, S. Franklin, S. Strain, and E. O. George, “Integer sparse
distributed memory: Analysis and results,” Neural Networks, no. 46,
pp. 144–153, 2013.

[21] L. A. Jaeckel, “An alternative design for a sparse distributed memory,”
Research Institute for Advanced Computer Science, NASA Ames
Research Center, Tech. Rep., July 1989.

IAENG International Journal of Computer Science, 45:1, IJCS_45_1_26

(Advance online publication: 10 February 2018)

 
______________________________________________________________________________________ 




