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Abstract—This paper introduces the multi-objective cuckoo 

search (MOCS) method for solving the multi-objective optimal 

power flow (MOOPF) which is a multi-variable, 

multi-constraint and nonlinear programming problem. In order 

to speed up convergence and enhance the quality of solution, the 

quasi-opposition based learning mechanism is adopted to 

propose the multi-objective quasi-oppositional cuckoo search 

(MOQOCS) algorithm in this paper. In MOCS and MOQOCS 

methods, the feasibility-prior domination principle (FDP) is 

presented to ensure the feasibility of simulation result which is 

based on the objective values and the sum of constraint violation 

values. The crowding-distance sorting is considered to enhance 

the diversity of Pareto-optimal solutions and obtain better 

distributed Pareto optimal front. IEEE 30-bus and IEEE 57-bus 

systems have been considered to check the performance of the 

proposed methods. The simulation results confirm that 

MOQOCS algorithm obtains superior compromise solution and 

produces better distributed Pareto optimal front compared to 

other methods. 

 
Index Terms—Multi-Objective Optimal Power Flow 

(MOOPF), Cuckoo search, Multi-Objective Quasi-Oppositional 

Cuckoo Search (MOQOCS), Feasibility-prior Domination 

Principle (FDP), Pareto optimal 

 

I. INTRODUCTION 

HE primary purpose of optimal power flow (OPF) is to 

search the optimal load flow distribution which can 

satisfy the system constraints and minimize the selected 

objective, through optimal calculation to adjust the available 

control variables within the limits [1-3]. OPF has been a 

crucial problem for modern power system, which has 

attracted the attention of many scholars in recent decades. The 

selected objective is usually to minimization fuel cost of all 

generators for OPF problem. However, the voltage stability 

and power losses are also becoming more and more important  
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due to the increasing demand for electricity and more 

complex power system. In this situation, the multi-objective 

OPF (MOOPF) is necessary to be considered which optimizes 

multiple objectives simultaneously. 

The MOOPF is a multi-variable, multi-constraint and 

nonlinear optimization problem, which is difficult to 

accurately determine a best solution because of the conflict of 

different objectives [4, 5]. At present, numerous intelligent 

algorithms have been used to solve the MOOPF problem, 

which are usually divided into two types. The first approach is 

that many researchers transform the different objectives into a 

single objective function by adding weight values to each 

objective. Abaci and Yamacli [6] proposed the differential 

search algorithm (DSA) for solving MOOPF problem. The 

DSA method was implemented in three different test systems 

with single-objective and multi-objective optimization. The 

multi-objective adaptive immune algorithm (MOAIA) was 

presented by Xiong et al [7]. The power loss, voltage stability 

margin and voltage deviation were merged into an overall 

objective by weight coefficients and results validated the 

improved performance of MOAIA. Chaib et al. [8] presented 

backtracking search algorithm (BSA) and applied it for 16 

different cases on three standard electric systems. In that 

paper, BSA approach has superior performance in most cases 

than other well-known approaches. However, these methods 

just obtain one optimal solution through running the program 

one time. If the demand of the decision maker is changed, 

these approaches require rerun the program and consume a lot 

of computational time. 

Another approach is based on the non-domination principle 

and evolution algorithm which can obtain a set of 

Pareto-optimal solutions. Deb et al. [9] proposed the 

non-dominated sorting genetic algorithm II (NSGA-II) with 

the non-dominated sorting method and multi-criterion 

decision making. The results demonstrate that NSGA-II can 

obtain the solutions of better spread and superior convergence 

compared to PAES and SPEA methods in most cases. 

Sivasubramani et al. [10] presented the multi-objective 

harmony search (MOHS) algorithm for solving the MOOPF 

problem where cost, power losses and L-index were used to 

form the multi-objective optimization problems. The 

simulation results of MOHS have better distributed solutions 

compared to the NSGA-II approach. The multi-objective 

modified imperialist competitive algorithm (MOMICA) was 

presented and successfully applied to MOOPF problem by 

Ghasemi et al [11]. And the comparison of MOMICA 

algorithm with other methods indicated the superiority of the 

presented method. Recently, cuckoo search (CS) algorithm is 
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presented and reported to outperform many well-known 

algorithms, which is inspired by the breeding parasitic 

characteristics of cuckoo and combined with the Lévy flights 

behavior [12]. For solving the MOOPF problem and obtain 

better Pareto optimal solutions, this paper presents 

multi-objective cuckoo search (MOCS) method. Most 

recently, CS method has been used to solve various realistic 

problems such as bin packing problem [13], large-scale 

antenna array for 5G beamforming [14], traffic signal 

controllers [15], hyperspectral image classification [16], 

planar graph coloring problem [17], segmenting satellite 

images [18], and multi-object optimization problems [19-21]. 

However, these improved CS algorithms have not been used 

for effectively solving MOOPF problem, which motivates us 

to modify the CS algorithm and apply the method to this 

proposed field. To speed up convergence speed and enhance 

searching ability of CS method, quasi-oppositional based 

learning is introduced to the MOCS method and propose 

multi-objective quasi-oppositional cuckoo search (MOQOCS) 

algorithm. In MOCS and MOQOCS methods, non-dominated 

sorting is considered to select the higher quality solutions, and 

crowding distance sorting is considered to enhance the 

diversity and obtain better distributed Pareto optimal front. 

To ensure the feasibility of simulation result, this paper 

presents the feasibility-prior domination principle (FDP) 

based on the sum of constraint violation values, which 

combines the constraint handing method with domination rule 

to determine the dominance relation of different solutions. 

In this paper, the proposed MOCS and MOQOCS methods 

are examined in IEEE 30-bus and IEEE 57-bus systems with 

different object function. In order to evaluate the performance 

and effectiveness, the results of MOQOCS approach are 

compared with those solutions of MOCS and MOPSO 

approaches, which demonstrate that MOQOCS algorithm can 

obtain smaller best compromise solution and better 

distributed Pareto optimal front. 

The rest of this paper is organized as follows: Section 2 

presents the problem formulation of MOOPF problem. 

Section 3 describes the structure of CS method and the 

quasi-opposition-based learning mechanism. Next, the 

evolutionary mechanism of MOQOCS method is explained in 

Section 4, which presents the calculation process of 

MOQOCS algorithm for solving MOOPF problem. Section 5 

tests the proposed MOCS and MOQOCS methods on IEEE 

30-bus and 57-bus systems and describes the simulation 

results. Finally, Section 6 gives the conclusions. 

 

II. MOOPF PROBLEM 

The mathematical model of OPF consists of objective 

function and various system constraints. The objective 

function can be fuel cost, voltage deviation and power losses, 

etc. The system constraints are composed of many equality 

and inequality constraints. Therefore, OPF is a complicated 

nonlinear problem and can be formulated as below [22]: 

  min ,OF f x u  (1) 

  Subject to: , 0g x u   (2) 

  , 0h x u   (3) 

In the above formulation, f (x, u) represents the chosen 

objective function; x denotes a vector composed of state 

variables; u denotes a vector composed of control variables; 

g(x, u) and h(x, u) represent those equal constraints and 

unequal constraints. 

In many actual situations, the OPF problem of considering 

a single objective of fuel cost can not meet the system demand. 

Therefore, the multi-objective OPF problem is formulated to 

satisfy multiple objectives simultaneously, which can be 

expressed as: 

       1 2min , , , , , ,MOF f x u f x u f x u  (4) 

where fi (x, u) indicates the ith objective function; M indicates 

the number of optimal objectives. The different objectives of 

MOOPF are often conflict, because the performance of an 

objective may decrease when the performance of another 

objective is improved. It is impossible to make multiple 

objectives optimal simultaneously and obtain the optimal 

solution. Thus a collection of compromise solutions is 

necessary, which are Pareto optimal solutions. Generally, 

solution U1 dominates solution U2 (denoted by U1 ≺ U2) only 

if both of the below conditions are satisfied [1]: 

 
     

     

1 2

1 2

,    1,2, ,

,    1,2, ,

i i

j j

f U f U i M

f U f U j M

  

  
 (5) 

The solution U is regarded as Pareto-optimal solution if 

there isn't another solution dominating U in the whole 

population. For solving MOOPF problem, the main purpose 

is to get a set of Pareto-optimal solutions. In addition, the 

detailed description for the relevant concepts of Pareto 

optimization method can refer to [23, 24]. 

A. Objective Functions 

1) Minimization of Fuel Cost 

For solving OPF problem, the general optimal objective is 

the minimization of fuel cost associated with generator active 

power that can be represented as: 

  2

=1

+ +=
G

cost i i Gi i Gi

N

i

f a b P c P  (6) 

where PGi indicates the real power output of the ith generator; 

ai, bi and ci indicate the cost coefficients of the ith generator; 

NG indicates the number of total generators. 

2) Minimization of Active Power Losses 

In this case the active power losses are considered as the 

objective function, which can be formulated as [4]: 

  22

1

2 cos
TL

N

loss k i j i j ij

k

f g V V V V 


    (7) 

where Vi and Vj respectively indicate the voltage value of bus 

i and bus j; gk indicates conductance of line k connected 

between the ith and jth bus and i ≠ j; δij indicates the phase 

difference among bus i and bus j; NTL represents the amount of 

transmission lines. 

3) Minimization of Voltage Magnitude Deviation 

For the OPF problem of power system, bus voltage is a very 

important safety indicator. The objective function fcost can 

make the fuel cost optimal, but the bus voltage profile of the 

best solution may be undesirable. So the voltage magnitude 

deviation should be reduced as much as possible from the 

base 1.0 in p.u. to improve the voltage stability. The objective 
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is to make the sum of voltage deviations minimum, which can 

be represented by [4]: 

 
1

1.0
PQ

N

VD i

i

f V


   (8) 

where NPQ indicates the number of PQ buses. 

B. Multi-objective Optimization 

1) Minimization of fcost and floss 

For minimizing the fuel cost and active power losses 

simultaneously, the multi-objective function F1 is considered 

to solve the MOOPF problem in this study, which can be 

shown as: 

     1
min , , ,

cost loss
F f x u f x u  (9) 

2) Minimization of fcost and fVD 

The multi-objective function F2 is adopted for optimizing 

the fuel cost and voltage magnitude deviation simultaneously, 

and the corresponding function can be formulated as: 

     2
min , , ,

cost VD
F f x u f x u  (10) 

C. System Constraints 

MOOPF is a large-scale nonlinear problem which requires 

satisfying various equal constraints and unequal constraints as 

follows: 

1) Equality Constraints 

In MOOPF model, the equal constraints consist of the 

active and reactive power load flow equations, which can be 

given as [25]: 

  
1

cos sin 0,   
B

Gi Di i j ij ij ij ij

N

B

j

P P V V G B i N 


     (11) 

  
1

sin cos 0,  
B

Gi Di i ij ij ij ij

N

j B

j

Q Q V G B i NV  


     (12) 

where NB represents the amount of all system buses; PGi and 

PDi indicate the injected active power and active load demand 

on bus i; QGi and QDi indicate the injected reactive power and 

reactive load demand on bus i; Gij and Bij respectively indicate 

the real part and imaginary part of the ijth element of the node 

admittance matrix; δij indicates the voltage phase difference 

between the ith and jth buses [26]. 

2) Inequality Constraints 

In the MOOPF model, the unequal constraints are 

described as follows [27]: 

i. Generator constraints: generator voltage, active power 

and reactive power of the generator are limited by their 

minimum and maximum limits: 

 
min max

i i
,    1,2,...,

G Gi G G
V V V i N    (13) 

 
min max

i i
,    1,2,...,

G Gi G G
P P P i N    (14) 

 
min max

i i
,    1,2,...,

G Gi G G
Q Q Q i N    (15) 

ii. Transformer taps constraints: 

 
min max

,     1,2,...,
i i i T

T T T i N    (16) 

where NT represents the number of transformer branches. 

iii. Shunt VAR compensator constraints: 

 
min max

,    1,2,...,
Ci Ci Ci C

Q Q Q i N    (17) 

where NC represents the number of reactive compensators. 

iv. Security constraints: 

 
min max

i i
,    1,2,...,

L Li L PQ
V V V i N    (18) 

 
max

i
,    1,2,...,

Li L TL
S S i N   (19) 

where VL represents the voltage at load bus; SL represents the 

transmission line loading; NPQ and NTL indicate the number of 

PQ buses and transmission lines. 

 

III. QOCS ALGORITHM 

A. Overview of CS Algorithm 

The CS is a novel heuristic algorithm which is inspired by 

the breeding parasitic characteristics of cuckoo and combined 

with the Lévy flights behavior. It is worth mentioning that the 

host may find that the egg is not its own with a probability pa 

 [0, 1], and the host will abandon the invasive egg from the 

nest or form a new nest on this situation. For establishing the 

mathematic model of CS algorithm, three idealized 

assumptions were used: i) every cuckoo can only lay one egg 

in a randomly selected nest for one time; ii) the superior nests 

with better eggs will be retained to next generation; iii) the 

number of nests are invariant during the whole search process 

[28, 29]. 

In CS algorithm, an egg is regarded as a candidate solution. 

Let Ui (k) denote the ith solution (for i = 1, 2,…, NP) at kth 

iteration. In the initial process of the cuckoo search algorithm, 

each solution is randomly generated within the range of the 

specified boundaries. When generating new solution Ui (k+1) 

of the ith cuckoo at (k+1)th iteration, the Lévy flight is 

performed as follows: 

      1
i i

U k U k L vy     é  (20) 

where  > 0 denotes the step size and usually considered to be 

1; the special symbol ⊕ denotes the entry wise multiplication. 

The Lévy flight follows the random walk, which can be 

defined according to the Lévy distribution as bellow: 

    ,     1 3L vy u t


 


  é  (21) 

This is a stochastic equation of heavy tailed probability 

distribution with an infinite variance. In this form of walking, 

it may be short distance step and occasionally a long step. In 

the process of exploring a space with wide range, Lévy flight 

is greatly efficient to global search. And the Lévy(λ) can be 

specifically calculated as follow [30, 31]: 

 
1/

vy( )Le
v




  (22) 
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1/

( -1)/2

(1+ ) sin ( /2)
, 1

(1+ ) / 2 2
v



 

 
 

 


 



 
 
 

 (23) 

where μ and v are random values and obey the normal 

distribution; Γ is the standard Gamma function and β is a 

parameter usually taken as 1.5. Therefore, the update formula 

of CS method can be calculated as: 

       
0 1/i i i best

V k U k U k U
v




     (24) 

where 0 is the step size scaling factor; Ubest indicates the 

current best solution. 

After producing the new solution Vi (k), the CS will use the 
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greedy strategy to select the better solution recorded as Vi (k) 

according to their objective function values. The last 

operation in CS method can be seen as the replacement 

strategy by discovering a new solution, which is formulated 

as: 

  
   

 

1 2 ,  
1

,                                 

i r r a

i

i

V k rand U U rand p
U k

V k otherwise

   
  



 (25) 

where Ur1 and Ur2 are two randomly selected solutions. If the 

objective function of Vi is smaller than Ui (k+1), Vi is regarded 

as the next generation solution, otherwise Ui (k+1) would 

remain unchanged. 

B. Quasi-opposition-based Learning 

Opposition-based learning (OBL) mechanism can 

accelerate the convergence and improve the quality of 

solutions through considering the current solutions and 

opposite solutions synchronously, which was first presented 

by Tizhoosh [32]. On the basis of probability theory, the 

random solution is 50% better than its opposite solution and 

vice versa. Thus, the superior solution between the two 

inverse solutions is chosen as the candidate solution which 

can enhance search efficiency of evolutionary algorithms. The 

OBL method has been effectively applied to a variety of 

problems. In order to explain clearly the principle of 

opposition-based learning, the concepts of opposite number 

and opposite point are defined in this paper, which are given 

as follows [33]: 

Opposite number: If x is a random number in the search zone 

[a, b], its opposite number can be expressed as: 

 
ox a b x    (26) 

Opposite point: If  1 2, , , , ,i dP x x x x  is a point in 

d-dimensional space where xi  [ai, bi], its opposite 

point  1 2
, , , , ,

o o o o

i d
OP x x x x  may be defined as follows: 

 ;      1, 2, ,
o

i i i i
x a b x i d     (27) 

However, it should be pointed out that the OBL has some 

improvement mechanisms, in which quasi-opposition-based 

learning (QOBL) has been applied by many researchers and 

proved to be more effective than OBL [34]. Moreover, we can 

define the quasi-opposite number and quasi-opposite point as 

follows: 

Quasi-opposite number: The quasi-opposite number x
qo

 of a 

random number x in the search zone [a, b] can be expressed 

as: 

  ,
2

qo a b
x rand a b x


  

  
    

 (28) 

Quasi-opposite point: The quasi-opposite point 

 1 2
, , , , ,

qo qo qo qo

i d
QOP x x x x  in d-dimensional space is 

calculated as follows: 

 , ;   1, 2, ,
2

qo i i

i i i i

a b
x rand a b x i d


   

  
  
  

(29) 

The QOBL can be applied not only to the initialization 

process, but also to the evolutionary process of CS algorithm 

for updating the population. In this study, the solution 

generated by mutation mechanism using Eq. (25) can be 

replaced by a quasi-opposite solution. 

IV. MOQOCS APPROACH FOR MOOPF PROBLEM 

In this section, the evolutionary process of MOQOCS 

algorithm for solving MOOPF problem is described in details. 

A. Initialization Individuals 

For solving the MOOPF problem by MOCS and MOQOCS 

algorithms, the initial individuals should be randomly 

generated in the search space which can be represented by a 

matrix as follows: 

 

1 2

1 1 1

1 2

2 2 2

1 2

       

       

               

     

D

D

D

N N N

u u u

u u u
U

u u u



 
 
 
 
 
  

 (30) 

where N represents the number of individuals; D indicates the 

dimension of individual that is the number of control variables. 

The nest is to create the quasi-opposition-based population of 

the initial population U using the QOBL mechanism in 

Section 3.2. Finally, compute the objective function value of 

all the 2N individuals. 

B. Selection of Pareto-optimal Solutions and Gbest 

For solving MOOPF problem, this paper uses 

non-dominated sorting and crowding distance sorting 

developed by Deb et al [9]. 

1) Non-dominated Sorting 

According to non-dominated approach, we can sort all the 

solutions into different non-dominated levels, and specific 

operations are described as: 

(1) Find the Pareto-optimal solutions in the current 

generation by Eq. (5) in Section 2, and assign these 

solutions to the highest rank which is recorded as 

rank=1. 

(2) Remove temporarily the solutions of the upper front from 

the entire population, and generate new Pareto optimal 

solutions. Repeat step (1) to give the next-best rank 

which is recorded as rank=2. 

(3) Repeat step (2) until all the solutions are identified to its 

non-domination level. 

2) Crowding Distance Sorting 

The crowing distance is a performance index to estimate 

the density of solutions which can reflect the distribution of 

the Pareto-optimal front [10]. The crowding distance of the 

ith solution is the average distance of the (i-1)th and the 

(i+1)th solutions on each objective. However, all the 

objective function needs to be normalized because different 

objective functions may differ greatly on the value size. So the 

crowding distance of the ith solution can be expressed as: 

 
max min

1

( 1) ( 1)
( )

M
j j

j j j

f i f i
dis i

f f

  



  (31) 

where M indicates the number of optimal objective functions; 

fj(i) indicates the jth optimal objective of the ith solution; fj
max

 

and fj
min

 indicate the largest and smallest values of the jth 

optimal objective. It's worth pointing out that the population 

needs sorting for every objective function before 

crowding-distance sorting. Then, the crowding distance of 

those two solutions with maximum and minimum function 

values is infinity. 
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After calculating the crowding-distance of all solutions, we 

can generate Pareto-optimal front according to two indices of 

non-dominant rank and crowding distance. The ith solution is 

superior to the jth solution if one of the following two 

formulas is satisfies. 

    rank i rank j  (32) 

          and  rank i rank j dis i dis j   (33) 

Finally, we can choose the best N solutions from all 2N 

solutions as the new population. In addition, the gbest is 

chosen randomly from the Pareto-optimal set to guide the 

evolution of population. 

C. Feasibility-prior Domination Principle (FDP) 

The MOOPF problem is a complex nonlinear optimization 

problem of power system, which has many constraints 

required to handle. The main problem is to handle the 

inequality constraints on state variables which include voltage 

constraint of the buses; output reactive power constraint of 

generator; output active power constraint of slack bus and 

apparent power of branch. In this paper, the value of 

constraint violation on state variables refers to the sum of all 

constraint violation values if a solution vector Ui violates its 

inequality constraints, which can be described as: 

    
1

,
H

N

i j

j

Constr U Constr h x u


     (34) 

Where hj(x, u) represents the jth inequality constraint of the Ui; 

NH represents the number of inequality constraints. If the 

value of ConVio(Ui) is equal to zero, Ui is a feasible solution 

and it does not violate the inequality constraints. 

It should be noted that the above non-domination method 

doesn't take into account the constraint problem, so FPD is 

proposed to modify the non-domination method for obtaining 

better Pareto-optimal solution. Here, a solution U1 is 

considered to dominate another solution U2 when one of the 

following conditions can be satisfied: 

(1) U1 is a feasible solution but U2 is not. 

(2) U1 and U2 are not feasible solutions and ConVio(U1) is 

smaller than ConVio(U2). 

(3) U1 and U2 are feasible solutions and U1 dominates U2 

according to Eq. (5). 

The FPD gives a better rank to the feasible solution than the 

infeasible solution, which enhances the reliability of solutions 

and the convergence speed to the feasible area. After 

determining the dominated relationship of all solutions 

according to FPD, solution U is considered as Pareto optimal 

solution if no other solution dominates it in current 

generation. 

D. Stopping Criteria 

In this study, the iterative procedure of MOCS and 

MOQOCS methods are stopped when the maximum iteration 

number is reached. Otherwise update the population and 

search the better Pareto optimal solutions. 

E. Best Compromise Solution 

The Pareto-optimal solutions have been obtained after 

reaching the stop standard. Then, we should select a best 

compromise solution as the final solution. However, it is 

unable to judge accurately the quality of those different 

Pareto-optimal solutions due to the different practical 

requirements. In this paper, fuzzy theory is applied to solve 

the vague nature of judgment and determine a best 

compromise solution. The fuzzy membership μk(i) for the kth 

objective function of solution i can be defined as [10]: 
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where
min

if and
max

if represent the minimum and maximum 

values of the kth optimal objective. Every solution has a 

normalized membership function which is the sum of 

membership values of all optimal objectives. The 

membership function of solution i can be expressed as: 
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 (36) 

where N indicates the number of Pareto-optimal solutions; M 

indicates the number of optimal objectives. Thus, the Pareto 

optimal solution with the maximum membership μ(i) can be 

considered as the best compromise solution. 

F. Detailed Steps of MOQOCS Algorithm for MOOPF 

Problem 

This paper is focused on solving the MOOPF problem by 

using the proposed MOQOCS algorithm, which employs 

QOBL and FDP concepts to improve the performance of CS 

method. For applying MOQOCS method to the complex and 

nonlinear MOOPF problem, the following procedure should 

be performed: 

Step 1: Choose the parameters of MOQOCS algorithm such 

as population size and maximum iterations. 

Step 2: Generate the initial population as described in 

Section 4.1 and create the corresponding 

quasi-opposite population.  

Step 3: Calculate the values of objective functions and 

constraint violations for all 2N individuals and select 

N solutions as the initial population. 

Step 4: Modify the population according to the proposed 

MOQOCS algorithm. Calculate the optimal 

objectives of the current population and obtain the 

value of constraint violations. 

Step 5: For the parent population and current population, 

calculate non-domination level and crowding 

distance. Then, choose the best N solution according 

to the constraint-dominated sorting and crowding 

distance sorting. 

Step 6: The Gbest solution is chosen randomly from the 

Pareto-optimal set to guide the evolution of 

population. 

Step 7: If the maximum cycle number is satisfied, stop the 

iteration and record the Pareto optimal solutions, 

otherwise go back to Step 4. 

Step 8: The N optimal solutions obtained finally is the 

Pareto-optimal set which can form the Pareto front of 

the MOOPF problem. 

Step 9: Determine the best compromise solution as 

described in Section 4.5. 
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Fig. 1.  The system structure diagram of IEEE 30-bus system. 

 
TABLE I 

MAIN CHARACTERISTICS OF IEEE 30-BUS SYSTEM 

Characteristics 
IEEE 30  

Number Details 

Buses 30 - 

Branches 41 - 

Generators 6 Buses: 1, 2, 5, 8, 11 and 13 

Capacitor banks 9 
Buses: 10, 12, 15, 17, 20, 

21, 23, 24 and 29 

Transformers 4 
Branches: 16-9, 6-10, 4-12 and 

28-27 

Control variables 24 - 

 
TABLE II 

CONTROL VARIABLES SETTINGS OF IEEE 30-BUS SYSTEM 
Control variables Min Max Step 

P2(MW) 20 80 Continuous 

P5(MW) 15 50 -- 

P8(MW) 10 35 -- 

P11(MW) 10 30 -- 

P13(MW) 12 40 -- 

VG(p.u.) 0.95 1.10 -- 

T (p.u.) 0.90 1.10 0.01 

QC (p.u.) 0.00 0.05 0.001 

 
TABLE III 

GENERATOR COST COEFFICIENTS OF IEEE 30-BUS SYSTEM 

Bus no. Cost coefficients 

 a b c 

1 0.00 2.00 0.00375 

2 0.00 1.75 0.01750 

5 0.00 1.00 0.06250 

8 0.00 3.25 0.00834 

11 0.00 3.00 0.02500 

13 0.00 3.00 0.02500 

 

 
TABLE IV 

OPTIMAL SOLUTIONS FOR CASE 1 OF IEEE 30-BUS SYSTEM 

Control variables MOQOCS MOCS MOPSO 

P1(MW) 141.8487 155.1729 121.3579 

P2(MW) 54.5133 52.7212 62.1462 

P5(MW) 33.1509 37.3662 35.6263 

P8(MW) 35.0000 34.2326 34.8620 

P11(MW) 26.4683 26.9567 23.0183 

P13(MW) 23.8736 26.0591 27.4026 

V1(p.u.) 1.0994 1.0561 1.0646 

V2(p.u.) 1.0907 1.0432 1.0531 

V5(p.u.) 1.0673 1.0177 1.0255 

V8(p.u.) 1.0792 1.0275 1.0330 

V11(p.u.) 1.0995 1.0901 1.0754 

V13(p.u.) 1.0949 1.0977 1.1000 

T11(p.u.) 1.0700 0.9400 1.0000 

T12(p.u.) 0.9000 0.9400 0.9300 

T15(p.u.) 0.9800 0.9600 0.9900 

T36(p.u.) 0.9700 0.9400 0.9500 

QC10(p.u.) 0.0240 0.0100 0.0170 

QC12(p.u.) 0.0180 0.0190 0.0120 

QC15(p.u.) 0.0150 0.0080 0.0250 

QC17(p.u.) 0.0230 0.0240 0.0090 

QC20(p.u.) 0.0230 0.0210 0.0140 

QC21(p.u.) 0.0240 0.0230 0.0120 

QC23(p.u.) 0.0200 0.0160 0.0160 

QC24(p.u.) 0.0240 0.0200 0.0170 

QC29(p.u.) 0.0090 0.0090 0.0170 

Fuel cost ($/h) 836.4424 849.013601 850.2705 

Loss (MW) 4.9040 4.95520324 4.9820 

VD. (p.u.) 1.8829 1.395367908 1.1957 

 
TABLE V 

OPTIMAL SOLUTIONS FOR CASE 2 OF IEEE 30-BUS SYSTEM 

Control variables MOQOCS MOCS MOPSO 

P1(MW) 141.7724 123.9168 126.4749 

P2(MW) 48.8748 49.6020 49.1051 

P5(MW) 21.3345 21.7950 21.5987 

P8(MW) 20.4854 21.1487 21.1370 

P11(MW) 11.8675 12.1259 11.3384 

P13(MW) 12.1742 12.0000 12.0325 

V1(p.u.) 1.0998 1.1000 1.1000 

V2(p.u.) 1.0802 1.0803 1.0843 

V5(p.u.) 1.0496 1.0453 1.0591 

V8(p.u.) 1.0516 1.0507 1.0564 

V11(p.u.) 1.0328 1.0598 1.0692 

V13(p.u.) 1.0342 1.0344 1.0521 

T11(p.u.) 1.0900 1.0500 1.0400 

T12(p.u.) 0.9600 1.0500 1.0600 

T15(p.u.) 1.0800 1.0700 1.0800 

T36(p.u.) 1.0100 1.0100 0.9900 

QC10(p.u.) 0.0040 0.0230 0.0110 

QC12(p.u.) 0.0200 0.0100 0.0150 

QC15(p.u.) 0.0200 0.0160 0.0090 

QC17(p.u.) 0.0150 0.0170 0.0150 

QC20(p.u.) 0.0240 0.0210 0.0150 

QC21(p.u.) 0.0240 0.0130 0.0230 

QC23(p.u.) 0.0210 0.0220 0.0150 

QC24(p.u.) 0.0250 0.0250 0.0160 

QC29(p.u.) 0.0110 0.0070 0.0010 

Fuel cost ($/h) 799.9640 800.0395 800.2388 

Loss (MW) 8.9177 8.7951 8.9277 

VD. (p.u.) 0.3776 0.3991 0.4063 
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Fig. 2.  Pareto optimal fronts of MOQOCS, MOCS and MOPSO for Case 1 of the IEEE 30-bus system. 

 

 
Fig. 3.  Pareto optimal fronts of MOQOCS, MOCS and MOPSO for Case 2 of the IEEE 30-bus system. 

 

 

V. SIMULATION RESULTS 

To validate the effectiveness of MOQOCS approach for 

solving MOOPF problem, we applied MOCS, MOQOCS 

approaches to the IEEE 30-bus and IEEE 57-bus system. The  

 

population size is set to 50 and the maximum cycle numbers 

are set to 300 and 500, respectively. The multi-objective PSO 

is performed in the same simulation environment and 

compared with the proposed methods. All the optimization  
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Fig. 4.  The system structure diagram of IEEE 57-bus system. 

 

 

programs are coded in MATLAB 2014a programming 

language and run on a 2.53 GHz personal computer with 4 GB 

RAM. 

A. IEEE 30-bus System 

The main characteristics of IEEE 30-bus system have been 

shown in Table I and its detailed data is obtained from [35].  

The specific system structure diagram is presented in Fig. 1, 

from which we can see that the 30-bus system has 6 generators 

and 4 transformers. The total power demands of the test 

system are (2.834+j1.262) in p.u, respectively, at 100 MVA 

base [3]. This test system has 24 control variables which 

consist of the active power of PV buses, voltages magnitudes 

of generator buses, transformer ratio and shunt reactive power 

compensating. Table II shows the limits of system control  

 
TABLE VI 

MAIN CHARACTERISTICS OF IEEE 57-BUS SYSTEM 

Characteristics 
IEEE 57  

Number Details 

Buses 57 - 

Branches 80 - 

Generators 7 Buses: 1, 2, 3, 6, 8, 9 and 12 

Capacitor banks 3 Buses: 18, 25 and 53 

Transformers 17 

Branches: 19, 20, 31, 35, 36, 37, 41, 

46, 54, 58, 59, 65, 66, 71, 73, 76 

and 80 

Control variables 33 - 

variables and the step size of discrete variables. In addition, 

the fuel cost coefficients of generators of this system are listed 

in Table III. 
 

 

TABLE VII 

CONTROL VARIABLES SETTINGS OF IEEE 57-BUS SYSTEM 
Control variables Min Max Step 

P2(MW) 0 100 Continuous 

P3(MW) 0 140 -- 

P6(MW) 0 100 -- 

P8(MW) 0 550 -- 

P9(MW) 0 100 -- 

P12(MW) 0 410 -- 

VG(p.u.) 0.95 1.10 -- 

T (p.u.) 0.90 1.10 0.01 

QC (p.u.) 0.00 0.30 0.01 

 

TABLE VIII 

GENERATOR COST COEFFICIENTS OF IEEE 57-BUS SYSTEM 

Bus no. Cost coefficients 

 a b c 

1 0.00 20 0.0775795 

2 0.00 40 0.01 

3 0.00 20 0.25 

6 0.00 40 0.01 

8 0.00 20 0.0222222 

9 0.00 40 0.01 

12 0.00 20 0.0322581 
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TABLE IX 

OPTIMAL SOLUTIONS FOR CASE 1 OF IEEE 57-BUS SYSTEM 

Control variables MOQOCS MOCS MOPSO 

P1(MW) 162.8950 158.3636 163.8368 

P2(MW) 63.0847 75.9674 81.8002 

P3(MW) 64.1195 61.9222 65.8043 

P6(MW) 96.3255 98.7284 87.1061 

P8(MW) 366.3409 357.9396 356.1229 

P9(MW) 99.3859 99.8737 99.3693 

P12(MW) 410.0000 410.0000 409.4457 

V1(p.u.) 1.0463 1.0251 1.0390 

V2(p.u.) 1.0441 1.0217 1.0333 

V3(p.u.) 1.0452 1.0165 1.0186 

V6(p.u.) 1.0542 1.0142 1.0005 

V8(p.u.) 1.0587 1.0072 0.9890 

V9(p.u.) 1.0353 0.9889 0.9803 

V12(p.u.) 1.0426 0.9961 0.9992 

T4-18(p.u.) 1.0800 1.0100 1.0000 

T4-18(p.u.) 0.9200 1.0800 0.9600 

T21-20(p.u.) 1.0200 1.0800 1.0200 

T24-25(p.u.) 1.1000 1.0400 1.0900 

T24-25(p.u.) 0.9900 0.9800 1.1000 

T24-26(p.u.) 1.0200 1.0300 1.0000 

T7-29(p.u.) 1.0100 0.9500 0.9400 

T34-32(p.u.) 0.9600 0.9700 0.9800 

T11-41(p.u.) 0.9100 0.9000 0.9000 

T15-45 (p.u.) 0.9700 0.9400 0.9500 

T14-46(p.u.) 0.9700 0.9200 0.9400 

T10-51(p.u.) 0.9700 0.9400 0.9300 

T13-49(p.u.) 0.9300 0.9000 0.9100 

T11-43(p.u.) 0.9900 0.9200 0.9200 

T40-56(p.u.) 0.9900 1.0000 1.0100 

T39-57(p.u.) 0.9900 0.9800 0.9600 

T9-55(p.u.) 0.9700 0.9600 0.9600 

QC18(p.u.) 0.0700 0.1700 0.1200 

QC25(p.u.) 0.1800 0.1200 0.2700 

QC53(p.u.) 0.1000 0.1600 0.1400 

Fuel cost ($/h) 42141.6241 42176.1426 42267.9647 

Loss (MW) 11.3515 11.9950 12.6854 

VD. (p.u.) 1.2530 1.0976 1.0212 

 

1) Case 1: Minimizing Fuel Cost and Power Losses 

The multi-objective function F1 is applied as the optimal 

objective in this case, which optimizes the fuel cost and power 

losses simultaneously. The obtained results by the MOQOCS 

algorithm and other algorithms are given in Table IV. It can 

be seen that the best compromise solution is obtained by the 

proposed MOQOCS method, with the minimum fuel cost of 

836.4424 $/h and minimum power loss of 4.9040 MW. 

Moreover, the Pareto optimal fronts of MOQOCS, MOCS 

and MOPSO approaches are shown in Fig. 2. This figure 

presents that the most of Pareto optimal solutions obtained by 

MOQOCS are better than other two methods, which has the 

better Pareto-optimal front. These simulation results clearly 

prove the superiority of MOQOCS method. 

2) Case 2: Minimizing Fuel Cost and Voltage Deviation 

In this case, another multi-objective function F2 is 

considered as the optimal objective, which optimizes fuel cost 

and voltage deviation at the same time. The optimal control 

variables and objective values of MOCS, MOQOCS and 

MOPSO algorithms are shown in Table V. As seen is this 

table, the MOQOCS approach obtain the best compromise 

solution between the three approaches, with the optimal 

TABLE X 

OPTIMAL SOLUTIONS FOR CASE 2 OF IEEE 57-BUS SYSTEM 

Control variables MOQOCS MOCS MOPSO 

P1(MW) 143.7306 142.6769 143.2937 

P2(MW) 92.0984 96.1313 93.1893 

P3(MW) 45.8069 44.7229 44.2879 

P6(MW) 67.9360 69.2148 68.4100 

P8(MW) 461.8063 456.8351 463.5491 

P9(MW) 95.6923 94.2731 90.4651 

P12(MW) 360.1945 363.3278 364.6325 

V1(p.u.) 1.0166 1.0528 1.0000 

V2(p.u.) 1.0168 1.0476 0.9971 

V3(p.u.) 1.0177 1.0324 0.9881 

V6(p.u.) 1.0392 1.0243 1.0029 

V8(p.u.) 1.0594 1.0269 1.0072 

V9(p.u.) 1.0257 1.0078 0.9810 

V12(p.u.) 1.0204 1.0135 0.9901 

T4-18(p.u.) 1.0300 1.0000 0.9900 

T4-18(p.u.) 1.0200 0.9900 1.0500 

T21-20(p.u.) 0.9800 0.9900 0.9800 

T24-25(p.u.) 0.9600 1.0000 1.0600 

T24-25(p.u.) 1.1000 1.1000 1.0600 

T24-26(p.u.) 1.0000 1.0300 1.0100 

T7-29(p.u.) 1.0300 0.9900 0.9800 

T34-32(p.u.) 0.9200 0.9300 0.9300 

T11-41(p.u.) 0.9000 0.9000 0.9000 

T15-45 (p.u.) 0.9400 0.9700 0.9200 

T14-46(p.u.) 0.9600 0.9800 0.9200 

T10-51(p.u.) 1.0100 0.9800 0.9600 

T13-49(p.u.) 0.9100 0.9200 0.9000 

T11-43(p.u.) 0.9700 0.9400 0.9000 

T40-56(p.u.) 1.0100 1.0200 1.0500 

T39-57(p.u.) 0.9100 0.9300 0.9200 

T9-55(p.u.) 1.0200 1.0000 0.9700 

QC18(p.u.) 0.1500 0.0700 0.2500 

QC25(p.u.) 0.1500 0.1800 0.1900 

QC53(p.u.) 0.2400 0.2200 0.2000 

Fuel cost ($/h) 41734.0015 41740.5413 41760.6149 

Loss (MW) 16.4648 16.3818 17.0276 

VD. (p.u.) 0.6766 0.7251 0.7808 

 

fuel cost of 799.9640 $/h and optimal voltage deviation of 

0.3776 p.u. To clearly compare the performance of these 

methods, the Pareto optimal fronts of MOQOCS, MOCS and 

MOPSO methods are given in Fig. 3. It can be seen that 

MOQOCS obtains the better Pareto-optimal front, and most 

solutions obtained by MOQOCS are superior to MOCS and 

MOPSO approaches. 

B. IEEE 57-bus System 

The IEEE 57-bus power flow test system, which is a larger 

scale power system, has been adopted to further evaluate the 

performance of MOQOCS algorithm in this paper. The main 

characteristics of this test system have been shown in Table 

VI and the detailed system data can be obtained from [1]. The 

system structure diagram of this system is presented in Fig. 4, 

from which we can see that this system has 7 generators and 

17 transformers. The total load demands of the 57-bus system 

are (12.508+j3.364) in p.u, respectively, at 100 MVA base. 

Table VII shows the limits of system control variables and the 

step size of discrete variables. In addition, the fuel cost 

coefficients of generators for this system are presented in 

Table VIII. 
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Fig. 5.  Pareto optimal fronts of MOQOCS, MOCS and MOPSO for Case 1 of IEEE 57-bus system. 

 

 
Fig. 6.  Pareto optimal fronts of MOQOCS, MOCS and MOPSO for Case 2 of IEEE 57-bus system. 

 

 

1) Case 1: Minimizing Fuel Cost and Power Losses 

In this case, the simulation experiment is to minimize fuel 

cost and power losses by MOQOCS, MOCS and MOPSO 

methods. The obtained best compromise solutions and the 

optimal control variables are presented in Table IX. As seen 

in Table IX, the optimal fuel cost and power losses by using 

MOQOCS approach are 42141.6241 $/h and 11.3515 MW, 

which are better than those results of other two algorithms. In  

IAENG International Journal of Computer Science, 45:2, IJCS_45_2_04

(Advance online publication: 28 May 2018)

 
______________________________________________________________________________________ 



 

TABLE XI 

CPU AVERAGE TIMES (s) OF DIFFERENT METHODS ON TWO TEST SYSTEMS 

 MOQOCS MOCS MOPSO 

IEEE 30-bus system 

Case 1 83.9740 81.7112 82.1839 

Case 2 75.6134 74.0871 73.8015 

IEEE 57-bus system 

Case 1 267.4018 265.0341 264.1274 

Case 2 255.8187 252.3415 254.0726 

 

addition, the Pareto optimal fronts of MOQOCS, MOCS and 

MOPSO approaches are shown in Fig. 5. It is obvious that 

MOQOCS method obtains better Pareto-optimal solutions 

than MOCS and MOPSO methods. From the results, it can be 

seen that MOQOCS method is also applicable to the 

large-scale system and has greater advantages compared with 

other algorithms. 

2) Case 2: Minimizing Fuel Cost and Voltage Deviation 

Another multi-objective function is considered for the 

IEEE-57 test system in this case, which optimizes the fuel cost 

and voltage deviation at the same time. The obtained best 

compromise solutions and the optimal control variables of 

MOCS, MOQOCS and MOPSO algorithms are summarized 

in Table X. It can be observed from table X that MOQOCS 

approach obtain the better compromise solution among the 

three approaches, with the optimal fuel cost of 41734.0015 

$/h and optimal voltage deviation of 0.6766 p.u. Fig. 6 

presents the Pareto optimal fronts of this optimization 

problem for 57-bus system. It is obvious that MOQOCS 

obtains better distributed solution which is closer to the true 

Pareto front than MOCS and MOPSO methods. 

C. Performance Measure 

1) Computation Efficiency 

In order to measure the computational efficiency, CPU 

average times of three different algorithms by 30 independent 

runs are summarized in Table XI. From this table, it is 

obvious that those computational times are almost 

synchronized for the same optimization problem, and the 

proposed methods can obtain superior solution within the 

suitable time for MOOPF problem. 

2) Quality Indicator based on C-metric 

The superiority of the MOQOCS method has been 

demonstrated according to the best compromise solutions and 

Pareto optimal fronts in previous section. In this paper, 

C-metric is adopted as the quality indicator which is the most 

common method to assess the quality of the obtained Pareto 

optimal sets. C-metric can compare two non-dominated sets 

(A, B) which derived from two different methods, which can 

be defined as [36]: 

  
 , :

,
b B a A a b

C A B
B

  
  (37) 

where C (A, B) is the percentage of individuals in set B 

dominated by any individual in another set A. If C (A, B)=1, 

all solutions in set B are dominated by solutions in set A [37]. 

If C (A, B) = 0, no solution in set B is covered by set A. Both C 

(A, B) and C (B, A) should be considered since the 

non-symmetry of C-metric and C (A, B) + C (B, A) ≠ 1. 

The calculated results of C-metric for all cases are 

illustrated in Table XII, where A, B, C indicate MOQOCS, 

TABLE XII 

AVERAGE RESULTS OF C-METRIC FOR DIFFERENT CASES 

 C (A, B) C (B, A) C (A, C) C (C, A) 

IEEE 30-bus system 

Case 1 0.8476 0.0443 0.9229 0.0016 

Case 2 0.9137 0.0063 0.9639 0.0000 

IEEE 57-bus system 

Case 1 0.8712 0.0354 0.9317 0.0085 

Case 2 0.9229 0.0031 0.9763 0.0000 

 

MOCS and MOPSO methods. Table XII shows that for IEEE 

30-bus system, the solutions of MOQOCS can dominate 

84.76% and 92.29% solutions obtained by QOCS and 

QOPSO for Case 1. MOQOCS generate optimal sets can 

dominate 91.37% and 96.39% solutions derived from QOCS 

and QOPSO for Case 2. Table XII indicates that for IEEE 

57-bus system, QOCS and QOPSO have 87.12% and 93.17% 

solutions dominated by those solutions of MOQOCS for Case 

1. Likewise, MOQOCS obtains optimal set can dominate 

92.29% and 97.63% solutions produced by QOCS and 

QOPSO for Case 2. 

 

VI. CONCLUSION 

The MOOPF is a multi-variable, multi-constraint and 

nonlinear optimization problem which requires to optimizing 

multiple objectives simultaneously. This paper first applies 

the MOCS method to solve the MOOPF problem and obtain 

better Pareto optimal solutions than CS. Moreover, the 

quasi-oppositional based learning is introduced to propose the 

MOQOCS algorithm for speeding up convergence and 

enhancing the quality of solution. In MOCS and MOQOCS 

methods, FDP is proposed to determine the dominance 

relation of different solutions based on the sum of constraint 

violation values, which can strengthen the feasibility of 

simulation result. And crowding distance sorting is 

considered to enhance the diversity of Pareto-optimal solution 

and obtain better distributed Pareto optimal front. MOCS and 

MOQOCS methods have been validated on IEEE 30-bus and 

IEEE 57-bus test systems for solving MOOPF problem. The 

results prove that MOQOCS method is more efficient to find 

the Pareto-optimal solutions and best compromise solution 

than MOCS and MOPSO methods. The curves of Pareto 

optimal fronts show that MOQOCS method generates better 

distributed solutions compared with other two algorithms. 

Therefore, it can be concluded that the proposed MOQOCS 

method is an efficient and reliable algorithm for MOOPF 

problem. 
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