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Virtual Machines Online Acquisition

N. Alouane, J. Abouchabaka, N. Rafalia

Abstract—Clouds basically offer a set of instance acquisition
solutions, it’s either an on-demand plan where the user has to
pay the full VM hourly pricing or can go with a commitment
for a X duration, then the user can benefit from a Y percent of
reduction over the total VM reservation period. That point of
shifting or decision making becomes more difficult during the
last couple years, with this big number of service reservation
offers with various durations that we have on the market
today and knowing the fact that not all workloads are easy to
predict, it forces the user to think about an optimal
combination of these offers, while maintaining the same
availability level, consistency and latency of the on-demand
solution. In this paper, we introduce two deterministic
algorithms for the multi-slope case, that incur no more than
1+ ﬁ and & respectively, compared to the cost obtained
from an optimal offline algorithm, where o is the maximum
saving ratio of a reserved instance offer over on-demand plan.
Our simulation driven by the google cluster usage data-trace
shows that more than 30% of cost savings can be achieved
when applied to a real cloud provider like amazon web
services, while 40% when purchasing instances through a
cloud broker service.

Index Terms; online programming; cloud ec2 reservation;
optimizatien; virtual machines

l. INTRODUCTION

HE number of companies that relies on cloud services is

on a rapid growth path. According to [10], By 2016

over 80% of enterprises globally will be using
Infrastructure as a service (laaS), also the Gartner's 2015
CIO survey estimates that 83% of non-using cloud services
companies consider cloud laaS as an infrastructure option,
and this is because the cloud laaS becomes more suitable
for almost all hosting use cases either for development,
testing environment, high-performance computing, batch
processing or mission-critical business applications, and it
can be used to run most workloads. However, laaS cost
management still a headache for cloud users, they find a lot
of difficulties for choosing the most cheaper and suitable
cloud provider for their needs (e.g., Amazon services Ec2,
Rackspace Hosting, Microsoft Azure, Google App
Engine...) but in reality, the cloud provider choice is not so
important, since the difference between cloud providers
offers is so tight if not equal. In fact the pricing models with
different commitment levels along with the instance types
scheduling should be the primary concerns for users, for
example if there is an application that needs 7 vCPU and the
three instance types provided by the cloud provider could
respectively complete (Large, 4 vCPU, 3.1%), (Medium, 2
vCPU, 2.5%) and (Small, 1 vCPU, 1.2%), it would be more
profitable (even if it is over-provisioned) if this user picks
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up two large instances instead of choosing one instance
from each type. Also, where a heavy cloud user can rely on
reserved instances marketplace where he can reserve an
instance for months while taking advantage of significant
reductions (up to 60%), instead of using on-demand
instances and pay only for the incurred instance-hours. So,
we can see clearly that the virtual machines (VMs)
purchasing strategies is very important either for a heavy
cloud user or a cloud broker in order to take full advantage
of cloud services. In this paper we focus on VMs
purchasing strategies based on different pricing models with
different commitment levels, and we answer tree important
questions: what type of commitment level should I reserve,
2- when should I reserve 3- and how many VMs should |
reserve?
In the literature, instances of the VMs purchasing problem
has been solved in most cases by either using exact historic
workloads as a reference or relying on long-term prediction
of future workload, but unfortunately even if we disregard
the fact that workload is very unpredictable and unstable, a
practical implementation of these solutions requires a very
long prediction over time (say years), which is not always
easy to get especially for start-up companies (i.e., if a user
wants to make a decision about choosing a three years of
commitment, it would require at least three years of
workload history).
Recently, [6] proposed for the first time an online algorithm
inspired from the Bahncard problem[13] for reserving
instances with no a priori knowledge of future workload,
but unfortunately the reservation strategy used in this
approach is deprecated by Amazon Ec2 and no longer valid,
the old Amazon Ec2 business model for reserved instances
offers three utilization sizes: 1-Light utilization: It offers the
lowest upfront payment in return of receiving a significant
discounted hourly usage fee, also the reserved instance can
be turned off at any point without paying the hourly fee, 2-
Medium utilization: the user pays a higher upfront than light
utilization in return of a much lower hourly usage, here
again the user can shut down the reserved instance at any
time without accumulating any fees, Heavy utilization:
refers to the most profitable offer and most appropriate for
stable workloads for a long period, the user pays a higher
upfront but in exchange he benefits from the lowest hourly
usage, however the user will be charged for every hour of
the reservation period even if the instance is turned off.
Recently Amazon discovered [11] that more than 95% of
customers are choosing the third model “Heavy utilization”,
thus, they have changed the business pricing model, and
right now users are given the choice between: paying the
entire reservation period as an upfront, paying half of the
reservation period as an upfront fee while the remainder is
split over the following months, or paying no upfront but
the entire reservation cost is split over the following
months, and of course the user is still charged over all the
reservation period either the instance was turned on or off.
So, this changing over the business model of reserved
instances has changed things, especially, the competitive
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ratio of online algorithms designed to solve the VMs
purchasing problem, the gap between the online and the
optimal instance acquisition algorithm will certainly
increase. Another problem that we can mention is related to
the reserved instances location, all previous works assume
that either a cloud broker or a user allocates instances
within the same region or the same availability zone (AZ),
but in reality, it is not always true. The Amazon Ec2 policy
allows switching of reserved instances AZs only within the
same region, so if we take this fact in consideration, users
that require instances hosted in different regions due to
some latency problems would not fully benefit from the RI
discount (e.g., in the worst case, the RI would be located
inside an inactive region, and the user will be charged even
if the RI is turned off).

In this paper, we extend the work of [6] by taking in
consideration the new business pricing model used by
Amazon EC2, and we solve the problem of Rls scheduling
with different commitments level for the Multi-Slope case.
To our best knowledge this is the first work that address the
problem of RIs scheduling in an online manner while
considering multiple reservation offers. So, in summary we
make the following contributions:

e We prove that the RIs scheduling problem is
indeed NP-hard, by using a reduction from the
longest path problem [12]

e We prove that the competitive ratio of any
deterministic online algorithm is at most 2 times
the minimum cost obtained by an optimal offline
algorithm that knows the exact future a priori

e We propose two deterministic algorithms that

. 1 2 .
incurs no more than 1 + P and P respectively

where o is the maximum saving of a reserved
instance offer over on-demand plan

Il.  RELATED WORKS

In the literature, many approaches and techniques have been
designed in order to reduce the user’s IT computing cost,
some of them, like [10] are focused on instance types
scheduling, their objective is to find the optimal
combination between VMs types (i.e., Large, Medium or
Small) to fill the user’s capacity request within a time far
less than brute force method (i.e., testing all types of VMs
combinations). However, brute force method is still an
effective solution, even the smallest instance from Amazon
Ec2 (i.e., tl.micro) can run the brute force scheduling
algorithm for more than a thousand type of VMs in less than
an hour, which is the minimum subscription time, so we
concluded that VMs type scheduling is not crucial for users.
In this section, we focus rather on works that provide a
rental planning between on-demand and reserved instances
plan to reduce the instance acquisition cost. We also give
insights about previous works around the multi-slope rental
problem.

A. VMs purchasing strategies

In [2] the authors addressed the problem on how a web
application should plan the long-term reservation contracts
in such a way that the user profitability is increased.
Different tests were conducted in case of high, normal and
low workload of a web application, however their model is
completely depended on administrator’s inputs like max,
min, and average of workload, also the downtime penalty

estimation which is in practice may not be available, and
very hard to compute especially for start-up companies.

[3] Assumes that the future workload is known in
advance, and propose two possible remedies to the problem
of VMs scheduling based on the type and the subscription
time, the first solution was to simplify the problem by
fixing the minimum subscription time of all instance types
to an equal length, thus the problem was reduced to an
integer programming problem and can be solved in a matter
of seconds even for real problems. In the second solution,
they propose a heuristic solution of the problem with
heterogeneous subscription times (e.g., 1 hour, 1 day, 1
week, 1 month...). But here again as we mentioned before
the workload prediction is very hard to get and not reliable.

In [7], authors proved that finding the optimal VM
renting strategy along with the jobs scheduling problem are
computation intractable and introduce a new approximation
algorithm for minimizing the computing cost for deadline-
constrained batch jobs. But their approach assumes that the
workload is known in advance. Moreover, in their
experimental results the deadline time was bounded
between one month and two-month whereas in reality the
deadline time is much less than that.

The first and only work that addressed the problem of
instance renting strategies in an online manner without a
priori knowledge of the future workload was [6], they first
proved that even the optimal strategy where the entire future
demands are given, suffers from the “curse of dimentiality”
and is computationally intractable, and they left open to
show whether the offline problem is NP-hard. They
proposed a deterministic (resp., randomized) algorithm that

incurs no more than 2 — « (resp., e_f_a times the cost of

the optimal offline algorithm. However, their approach
suffers from several limitations: 1)- the business pricing
model adopted in their work is no longer used by amazon
EC2, 2)- they discussed the case of one single renting
option, which reduces the complexity of the problem.

B. Muti-Slope Rental Problem

In this section, we briefly review some research efforts
around the multi-Slope rental problem, and the competitive
ratio reached by each approach. This review inspired us in
finding a new online strategy and applying it in the cloud
computing area.

Azgar et al. [1] addressed the multi-slope rental problem
for the convex case, their purpose was to reduce the cost of
engines provisioning in a factory, and they assumed that
slopes (i.e., engines) become available over time, and the
transition cost between states is the same. The obtained
online algorithm has guaranteed around 6.83 as a
competitive ratio. Bejerano et al. [4] considered the problem
of routing ATM networks inside virtual channels (VCs),
they give a 4-determinisitic algorithm for the convex and
non-additive case of the multi-slope problem. Damaschke et
al. [5] treated the non-additive case of the problem from [1],
where moving to another slope involves new fees, they
defined an upper bound of 4 and a lower bound of 3.618 for
deterministic algorithms, also a randomized algorithm was
presented that guarantees a 2.88 as a competitive ratio.
However, none of the three works [1], [4] and [5] took in
consideration the slope duration as a parameter, they all
assume that the acquisition of a slope is absolute and not
time-restricted. Meyerson [8] has considered slopes duration
as a parameter for the parking permit problem, each permit
allows a usage of some duration with different renting price,
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Meyerson shows that no deterministic algorithm can do
better than ©(k) where k is the number of permits (i.e.,
linear in the number of permits), and no randomized
algorithm can do better than ©6(logk). Another example
where the slopes duration has been taken into account is
Guiging et al. [9], they addressed the multi-ski rental
problem with multiple discount options, each with a rental
duration, they showed that there is no deterministic
algorithm can have a small competitive ratio lower than 4
when the number of slots is large.

I1l.  PRELIMINARY

In this section, we introduce some details about concepts
used in this paper. We firstly describe the new business
pricing models used by Amazon Ec2 service. Then we
explain how the competitive ratio between an online and
optimal algorithm can be measured, and finally we
introduce our main problem that is the multi-slope rental
problem for an optimal cost management.

A. Ec2 Business pricing models

Amazon Ec2 provides customers the ability to choose
between three different purchasing models for a better
flexibility to optimize cost.

On-Demand plan: allow users to pay a fixed rate for
compute capacity without commitment or any upfront fees.
However, it is possible that users will not be able to launch
a large number of on-demand instances for a short period
when congestion arises in some Availability zones. On-
demand instances are recommended for applications with
short, unpredictable and spiky workload, also for a testing
environment.

Reserved instances plan: compared to on-demand
instances, users can benefit from significant discounts up to
60% for a long period (for one or three years), while the
availability is guaranteed at 100% inside the chosen
availability zone, users can move the reserved instance
between AZs within the same region, changes its network
configuration, or even sell it in case the user does not need
it anymore, in the reserved instances marketplace. However
even if this user turns off his reserved instance for some
duration, he will be charged over all the reservation period
either the instance was turned on or off. Reserved instances
are more profitable for applications with a stable and steady
workload.

Reserved instances marketplace: users can sell their
reserved instances on behalf other users if they have been
active for at least 30 days, and at least one month is
remaining in the term of reservation. Unlike the RIs sold by
amazon where the commitment duration is set to either 1-
year or 3-years, RIs sold by users can be found in different
commitment levels, between 1 month and 3 years.

Spot instances: like on-demand instances, they can be used
without any upfront commitment but at a very low hourly
rate (up to 80% of discount) but with the risk of sudden
machine shut-down. In this paper, the spot business model
is not taken into consideration due to its complexity, and
very hard to anticipate.

B. Competetive analysis

Competitive analysis foundation lies on the comparison
between an online algorithm and an offline optimal
algorithm. An online algorithm tries to solve a given
problem without knowledge of future requests or future
input sequence, while an offline algorithm, act while

assuming that the exact future demand is known a priori. An
online algorithm alg is c-competitive if the performance
produced by alg on any input sequence is at most c times
what an offline optimal algorithm can do while using the
same input. Of course, the offline algorithm is always
performing better than any online algorithm, and this is why
the competitive ratio is always higher than 1. Computing
the performance of either an online or offline algorithm
cloud be an easy exercise as it can be a tough task,
especially, when it comes to NP-hard problems, where even
finding an algorithm that can solve the offline problem in a
polynomial time is impossible. So in this case the most
suitable solution is working with boundaries, by looking for
an upper bound and lower bound respectively for the online
and the offline algorithm.
In our case a formal definition would be:

Costgig(R) < c.Costyp(R)

Where Cost,;4(R)is the accumulated cost by choosing
algorithm alg for solving the RIs scheduling problem for
any input sequence R = {ry,..., 7}, and Costy,(R) is
obtained by solving the problem in an offline manner.

IV. RESERVATION SCHEDULING PROBLEM (PROBLEM
STATEMENT)

The reservation scheduling problem is a variation of the
traditional Multi-slop rental problem, where there are
multiple renting options, each option is characterized by
four parameters:
b;: Buying cost, r;: rental cost, d;: option duration and ¢;:
time arriving
There are a lot of known variations of the main problem like
the parking permit problem [8], Rent-or-By problem, Multi-
slop ski rental problem [9], On capital investment [1], also
the Bahncard problem and the ski rental problem as a
special case when there are only two options. Each problem
is subject to restrictions like:
e Additive: moving from option i to option j requires
paying the difference in buying prices b; — b;
e Non-additive case: transition between option i and
option j is subject to a defined transition cost b;
e Convex: for i < j, b; < b; holds when r; > 7;
e Non-convex: the convex restriction do not
necessarily holds.

Also, the option’s time arriving parameter is rarely
considered in most problems, due to its complexity and it
only increases the competitive ratio between the offline and
online algorithm. In this paper, we omit the time arriving
parameter and assume that all reservations options are
available at time 0.

The reservation scheduling problem can be formulated
as the following: We have n different reservations contracts
that can be purchased, each contract can be represented
by R < b;($),7:($),d;(months or hours) >. So, if we
take the c1.medieum instance from Amazon Ec2 as an
example, an on-demand offer would beR < 0%, 0.5$, 00 >,
whereas a reservation contract of 3 months would beR <
809, 0.2, 3months >. It is obvious that using on-demand
offer is more efficient for high fluctuating and sporadic
workload, while long term reservation contract is more
suitable for stable requests lasting for a long period.
However, in cases where history and reliable predictions are
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unavailable (like start-up companies) making purchase
decisions with caution and in an online manner is very
important. So, our goal is to optimally combine between
different reservations contracts to serve every type of
requests while minimizing the competitive ratio ¢ of the
cost incurred by our algorithm versus the cost incurred by
the offline algorithm which see the future requests in
advance.

[11+12], 2 operations

[11], 1 operation /_“j& [12], 1 operation }Ievel 1Jrlevel 2
I
6

| | | |
[ I [ I
0 35 4 55

7
months

Figure 1. Example of a user requesting a single VM during two separate
intervals 11 and 12.

A. Offline reservation problem analysis

Solving the offline reservation problem requires solving two
sub problems: rental planning problem for one VM at a time
and optimal strategy for distributing idle reservations
instances for other requests.
1) Rental planing problem for one VM at a time:

In this section, we prove that the first sub problem is not
NP, thus it can be solved in a polynomial time. Figure 1
illustrate an example where the user asks for a single VM
instance at a time, for example in the first interval where the
demand duration is 3.7 months, the offline algorithm has
two choices (we notice that the problem is convex): using a
3 months of reservation commitment and using on-demand
offer for the remaining period (i.e., 0.7 month), or using a 4
months of reservation commitment (even if it is
overprovisioned). We count this comparison between the
two solutions as a single operation. Also in the second
interval (i.e., 1.2 months) we have two choices either
renting one instance during a whole month while using on-
demand offer for the remaining period (i.e., 0.2 month) or
renting an instance for two months of commitment, and
here again we have one operation to curry. However, if we
consider the interval 11 + 12 we have three options: using
the best option of 11 (computed previously) along with the
best solution of 12 separately, renting an instance for 5
months of commitment while using on-demand offer for the
remaining 0.4 month, or renting an instance for 6 months of
commitment. So in this level we have two operations to
execute, in the same way, we can analyse the remaining
intervals and conduct the optimal rent strategy. Computing
the complexity of this algorithm is an easy exercise, we
have just to compute the number of operations in each level
(m is the number of intervals):

requested VMs number requested VMs number

level 1 =>m ops, level2 => 2(m-1) ops, level3 => 3(m -2)
ops ... level m =>m(m — (m — 1)) = n ops
So, the complexity of this algorithm =m +2(m — 1) +
wt+m(m—(m—-1)) ~nd
This serve as an evidence that the rental planning problem
for one VM at a time can be solved in a polynomial time.

2) Idle reservation instances distribution (IRID)
In this section, we prove that distributing idle reservation
instances problem is actually NP hard, and thus there is no
algorithm that can solve the problem in a polynomial time
(assuming P # NP). In Figure 2 (a) we split the instances
requests into a set of multiple levels (i.e., level 1, level 2...),
each level asks for a single VM at a time (e.g., level 4
requests one single VM during the interval [5, 6.4]),
afterwards we optimally solve the rental planning problem
by using the previous algorithm Figure 2 (b) (e.g., in level 4
it is more profitable using two months of reserved instance
instead of one, while the remainder (0.4 month) is filled
with on-demand instance).

However, we see that there are some idle reservations
remaining in each level, and we should specify how those
idle reservations should be distributed towards other levels.
For example, in Fig 2 (c) it can be more profitable using the
idle reservation obtained from level 2 to fulfil the level 1°s
demand, in this case we would have another planning
partition for level 1, that is, finding the optimal renting
planning for the two intervals [5, 8] and [10, 12.5]
separately, as a result we get a 3 months RI for interval [5,
8] and a 5 months RI for interval [10, 12.5], and of course if
we get other idle reservations from this new planning we
have to repeat this operation until we reach the bottom of
the diagram (we note that level 3’s idle reservation -figure
2(b)- can be also be used to fulfil other levels like (level2,
levell, ...). So, the main question right now is, starting from
Figure 2(b), what is the optimal idle Rls distribution?

In the following we prove that this problem is NP hard (but
not NP-complete, since it isn’t a decision problem) using a
reduction from the longest path problem [X], which is a
known NP hard problem.

Definition: Given a weighted and oriented graph G without
negative cycles, a path between two vertices (u, v) is called
simple if it does not have any repeated vertices. The longest
path problem refers to the longest simple path between two
vertices (u, v).

In the following we describe the reduction from IRID
problem into a graph that has the longest path of a certain
size if and only if IRID has an optimal solution:

requested VMs curve requested VMs number

requested VMs curve

A requested VMs curve A e RI idlerl [EHE opI A RI idlerl |HEE opi
=
level 4 level 4 mogths idle level 4
[
level 3 €— Onessingle VM requested level 3 |_3months 11 idle level 3
< r e —~
level 2 | level 2 Simonth idle level 2
L« Tovre SOUU o ot e
{ | ; i
level 1 ! Lo | - level 1 | My # ' level 1 ml
» > -
5 64 77 95 125 months 5 78 10 13 months 5 64 77 95 125  months
(@) (b) (©

Figure 2. Example of an offline algorithm behavier for reserving instan
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1. Each node represents a spot that can be filled with
an

2. 1idle reserved instance, it can also represent the case
where an idle RI is not used at all.

3. Two nodes (n,,n,) are connected by an oriented
edge (n; => n,) if ny’s idle RI comes just before
n,’s idle RI, and they are not related to the same
idle reserved instance (i.e., using n,’s idle RI will
not affect the existence of n,’s idle RI). An edge
can be attached to a restriction (see Figure 3 (b),
edge (nB2, nC1)

4. The weight of an oriented edge between two
vertices (n,,n,) is the gain accumulated when
using the idle reserved instance in spot n, ,
compared to not using the n2’s idle RI at all

5. Add a (start, end) vertices to graph G

In Fig 3 we illustrate the reduction from the previous
problem (Figure 2 (b)) into a graph, first we start by
creating a new node in each spot that can be used to run an
idle RI, see Figure 3 (a), besides, we add nodes like nA, nB
and nC to manage cases where idle RIs: A, B, and C are not
used, see figure 3 (b).

We can see that nAl, nA2 and nA3 are not connected since
we can use the idle reserved instance A to fulfil only one of
those nodes, besides NAL is not connected to nodes like nB1
and nB2 because using the idle reserved instance A for nAl
spot incurs changes in planning partition of level 2, which
means it is possible that there will be no idle reservation
instance B and no nB1 and nB2 possible spots. Finally, we
add a start node and end node to graph G, and we try to find
the largest path between those two nodes, which correspond
to strategy with the optimal and largest reduction possible.

The reduction from the largest path problem to IRID is
trivial (i.e., solving Figure 3 (b) problem in a polynomial
time is equivalent to solving the longest path problem)

l. DETERMINISTIC ONLINE ALGORITHMS

In this section, we present three online deterministic
algorithms, we obtain from the first algorithm a lower

bound where one cannot expect more than ﬁ times the

optimal cost, where a represent the maximum saving of a
reserved instance contract over on-demand plan, and it
follows two interesting algorithms with different reservation
strategies, we proceed to talk about either risk taking or
proceeding with caution.

A. Rent-Never-Algorithm(RNA)

This algorithm suggests that we never rent an instance and
use only on-demand instances.

. . .1 iy
Theorem: This algorithm is T competitive.

Proof: Consider {sav;}o<;<nas the saving of a reserved
instance R < b;, 13, d; > over on-demand plan, we note o as
the largest saving over all RIs. In the worst case, each level
will need an instance for a long duration, more than the
longest reservation period (e.g., three years in case of
Amazon Ec2), so the competitive ratio will be:

_ Costyna(t) CoStppq(t) 1

B Costop (1) T (1—a) *Costpy(t) 1—a
As a direct application in Amazon EC2, a equals 57%, and
the competitive ratio of RNA algorithm is ~ 2.32

B. Lower bound for deterministic algorithms

We believe that RNA’s competitive ratio is also a lower
bound for any deterministic algorithm, by unfortunately we
couldn’t find an appropriate formal proof for that. However,
we give a lower bound value of 2, just like other works with
a similar multi-slop problem.

We first discuss the problem with two slopes and then give
our generalization to the multi-slop case:

Let Ry < by, 1,00 >and R, < by, 1y,d; > be the only two
available offers, and x is time of transition from R, to R,,
any deterministic online algorithm has three choices:

1. Rent R, before 2% instance requests (this is
0
the break-even-point between R, and R;, we will

talk about it later)
2. Rent exactly when the instance requests number

by+rixd
equa's D1tTy*dy

b dq -
———* instance requests
0

3. Rent after

Cost, t +(b1+ d .
In case 1: feaser® _rox+utmirdy) oo gines x <
Costopt(t) To*X
bi+ri*dq
To
Ccost t +(b1+ d .
In case 2 Xrease® _Toxtlutnidy) _ 5 ginee =
Costope(t) To*X
by+7r1*dq
To
Cost, t +(b1+ d .
In case 3 feases® _rox+(utnirdy) oo gines x>
Costopt(t) bq+ri*dq
bi+ri*dq

To
Let us now consider the multi-slope case. In case all the
reservation offers are very close except the last one:
(bj+ri*xd)~1ry*d; s.t. 05i<z (D
The lower bound of any deterministic online algorithm
(doa) will be:

A Aidlerl
Bidle RI

@] ciderl
@)ee) |

@

v

Represent the case where the idle RI is not used at

PRCEREIE i

~
k/——f O
<|f nA2 is nut

Figure 3. Reduction from the IRID problem to the longest path problem,
in (b) the thick line indicates the optimal cost as a function of the game
duration time
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Costgig(t) _ (by+ri*dy)+-+(bpt+rp*dp)

Costope(t) - Costope(t)

Where p is the number of all reservation offers used by a

doa.

If alg wants to make a good competitive ratio it has to use

R, offer, and by considering(1), we come back to the

previous problem with only two reservation offers:
Costgqy(t) 1o (di+.. dp_q) + (b, +1,%d)
Costype(t) B Costype(t)

We believe that the resulted lower bound is not optimal, and

it can be more than 2.

s.t.0<i<p

C. Maximum-Duration-Algorithm(mda)

This algorithm uses a reservation option R; < b;,1;,d; > if
and only if the last longest and uncut period of instance
request is greater than or equal to di. Initially all instances
requested by all levels are supposed to use on-demand plan,
and let:

D,: the number of instances requested by the all levels at

time t
< R;,rem; >: a Rl in use, where rem; is the remaining
time of the reservation period

Check(x): a check function, it equals O if x is false and 1
otherwise

ReservationSet(t): is the set of reserved instances in use
attime t

ResN,: is the length of the ReservationSet(t) set at time t

1. Initialization t = 0, ReservationSet = {}
If iexistesuchasi = argmax(d;|d; <
3t Check(D, > ResN,)) then

t—-d;-1
3. Reserve R;offer, and add R;to ReservationSet
4. Foreach < R;,rem; > in ReservationSet
decrement di value and remove R; from
ReservationSet when rem; = 0
5. Lunch on-demand plan for the remaining instances
6. Sett=t+1,gotostep?2

In this algorithm, reservation is lazy, the algorithm does not
reserve until it sees that the optimal offline algorithm has
already spent more or equal to what mda is about to rent.
Fig. 4 helps to illustrate algorithm mda: if a certain level i
asks for an instance lasting exactly eight months, obviously
the optimal offline algorithm will pick a RI from the
marketplace that last exactly eight months, however, mda
will start by using on-demand instance until it reach the first
RI duration in the marketplace, and rent it, which is in this
example equals to one month, afterwards, it rent an instance
for two months by the same way, and since mda is an
online algorithm and has no a priori knowledge of future
workload, it will rent a new RI for four months by assuming
that the workload is still going.

In Figure 5 we illustrate the performance of mda over the
previous example (Figure 2 (a)), and we see that we have
more idle periods, and specially in level 2, the four months
reservation is done before that level 2 stop requesting VM,
therefore mda was assuming that the VM requesting will

On-demand One month Two months Four months
plan plan plan plan

«—> <> —>< ontne

level i | | | | algorithm

Four months

. plan Optimal offline
evel i | | algorithm

Figure 4. Illustration of algorithm 1 for a single level i

Theorem: This algorithm (mda) is 1 + ﬁ competitive

requested VMs curve

RI idle Rl JHE on-demand instance

requested VMs number

S TTT——
level 2 HlM%FM_ M

level 1

&~
Z
V V¥

95 125" montﬁs(M)
Figure 5. Applying mda to the previous example (Figure 2 (a))

continue. We note that designing an idle RIs distribution
strategy is not possible for any online algorithm, because it
is impossible to know either if level i will request an
instance during its idle period or not, so in summary the
online algorithm cannot even consider this period as idle.

Proof: In order to compute the competitiveness of this
algorithm we split Cost,,,4,(t) in two parts: Cost,,q,(t) =
CosStyaq(t™) + Cost(rem)
Where Cost,,4,(t™) denote the cost accumulated by mda
until time ¢t~ (t not included), and Cost(rem) is the
remaining fee of the last RI. We can write:

Costypaq(t™) CoStpmaa(tT) 1

Costope(t) — (1 —a)Costpga(t™) ~ 1—a

In the worst case, level i will stop requesting instance in
time t just after that mda rent a new RI, let’s called
R, < by, Ty diy, >
so: Cost(rem) = Cost(R,,) = by, + 1y, * dpy
Now we have to compute the Cost(rem) competitive ratio.

At a certain time, let dg.,(t) = ZZ—d-—l Check(D; >

ResN,). From step 2, we can see that d; which is the period
of the next RI is always lower than d,..(t), so we can
write: d,,, < dyer(t) , and since the optimal offline
algorithm has to pick a cheap reservation offer, let’s called
Ry < by, 1y, dy > where dy =>d, , we can write:
Cost(Ry) = Cost(R,,) because the problem is convex,
therefore Costype = Cost(Rp) + ++- + Cost(Ry) =
Cost(Ry) = Cost(R,,)

and we conclude: Costp,q,(t) < (1 + ﬁ)Cost(,pt(t)

D. Break-even-point -Algorithm(bepa)
In this algorithm, a transition between two reservations
offers R, < by,1,,dp, > and R, < b,,1,,d, > , where
a < b depends on a break-even point defined by:
b, — by — XL, Cost(R") + ry* X1 d';

Ta =T

Beplt),a =
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Where {R';}o<icq < b';,7';,d'; > is the set of RIs used
previously form t —d, tot, andCost(R';) = (T'i + %) *

(d'; —idle;), and idle; is the idle period during R’i
Computing Bepj, , is simple, it represents the time where
the cost accumulated when using R, and R;, are intercepted.
In Fig.6 we have an example of how to compute Bepj .
each reservation plan is represented by a line which
indicates the cost incurred if an online algorithm stays in
that reservation plan. So Bepj , is the time of transition
from state a to state b, and formally it is the solution of the
equation:
b, + 1, % (x —previous d';) + Cost(previous R';) = b,
+1, %X
The idea behind this algorithm is simple, once R, usage is
over, we ask this question: can we get a cost saving if we
had used R, offer for the last d, period? If the answer is
yes, we should fixe our “mistake” and rent R, if a certain
condition is verified, we will talk about it later, if the
answer is no, then we have to stick with the current offer,
but again if a certain condition is verified. Initially all
instances requested by all levels are supposed to use on-
demand plan, and let:
c¢: Index of current RI
n: Total number of Rls available
/ID(c,user): number of times an instance has been requested
during the current RI
DE: Number of times an instance has been requested during
the interval [t — d;, t]
idlet: idle period during the current RI
A formal definition of the algorithm would be:

1. Initializationt = 0

2. Foreach leveli

3. If R isover, or level i is on the on-demand plan

4.  For ifromntoc //for each RI offer

5 if(Df = Bep}. and Bepf, < d)
6

ND = D — (d; — Bep{. —d,) /Inew
demand
7 if(ND = idlef) /lidle demand
8. Reserve R,, offer
9. else
10. ADC = ND —r, = idle! /I Additional cost
11. Budget = Cost(R;) — ADC
12. Find R; where Cost(R;) < Budget and
j<i
13. end else
14. end if
15. else
16. Budget = Y1 Cost(R')) + 1,
(Dt — idlet)
17. if(Budget > Cost(R,))
18. Reserve R, //IRe-Reserve R,
19. else
20. Find R; where Cost(R;) //budget cost
21. end else
22. t=t+1

23. go to step2

Figure 6, helps to illustrate bepa. It starts with an on-
demand plan, and whenever it sees that its cost exceeds
Cost(R,), then such use of R, is not justified, and we
should have reserved R, beforehand at time 0 and used to

P
R
Cost . ,Jt
A PP = S - RO<0$, 0.067$, 00>
.................. 3 —---- R1<21$,0.03$, 720>
~~~~~~~~ s
------- 3 J H H
b2 e A-- ; D e R2 <72$, 0.0258, 2160>
== : ;
I/’
— /,I
b1 y-- /0 ‘ ‘
bo L I ; ! L » Time(h)
720 1440 | 2160 v

Bepl,0=583 IR Bep2,1=1673 IR

Figure 6. A multislope rental instance with 3 slopes. The thick line
indicates the accumulated cost when using bepa.
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Figure 7. lllustration of algorithm bepa for level i

serve the demand instead, which would have lowered the
cost, so as a fixe to this “mistake” , we reserve Rywrite after
a number of Bep], instance requests(IRs), and of course
Bepf, > d;(583 < 720), otherwise using R, is not cost
effective and we have to retain R, plan. Once R, is over we
check if we reached the break-even point Bep}, while
using R;, in this example it didn’t happen during the first
R4, so as mentioned previously, we have to stick with the
current offer, which is Ry, but if a certain condition is
verified. Now imagine if there were no instance requests
during R,, and our bepa decided to reserve R, for the
second time, surely bepa will lose a lot of money, so there
has to be a condition based on which we can choose the
right offer to reserve. In bepa at step 16 we defined a
condition where we compare between the budget spent in
previous reservations plus the effective instance requests
cost 7, * D! minus the cost of idle period during the current
R, offer, and Cost(R;). So, if budget > Cost(R,), even if
there were no instance requests during the second R;, we
are sure that this second reservation of R, is bounded and its
cost is lower than what we have spent previously. In Fig. 6,
this condition is indeed verified, budget = 114$ and
Cost(R,) = 43$, so bepa proceeds to a second reservation
of R, at time 1320. If the condition budget > Cost(R;)
fails, then we have to find a new {Rj}ocj<i
where Cost(Rj) < budget. Now that we rent R, for the
second time, we check if we reached the break-even point
Bep$ ; while using the current R, in order to move to R,, in
this example Bep$ ; = 1314, so we definitely exceeded, so
once R, is over we have to rent R, offer, but again if a
certain condition is verified. We definitely spent in previous
reservations a cost more than Cost(R,), so even if there
were no instance requests during R,, we still can bound the
cost incurred by R,, by finding a lower bound for the
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interval [0,1314]. However, if the number of instance
requests during the last R is slightly above Bep; — D} =
14Bep2,1 - D(2,t) = 14 (ed = 4546), Costbepa will incurs
additional fees ED*rl (i.e., (2023-1314)*rl), since the
optimal offline algorithm would have used on-demand plan
for the 14 instance requests, thus the additional fees ED*rl
will not let us to bound Cost bepa. So as a solution to this
problem, we have to ensure that there is enough new
demands, so that nd > ed, and thus the interval [0, 2036] can
be bounded. If this condition is verified we can reserve R,
(it is the case in our example), otherwise we have to find
another Rj 0<j<I where Cost(Rj) < budget, so that Costbepa
can always be bounded.

Theorem: For

i competitive

Proof: let Costyy,q(t) = Costy,,(t™) + Cost(rem)

We know that Cost,,,q (t7) < ﬁ Costope ()

And since we do not rent the last R; offer until
Cost(rem) < Costy,q(t™)

2
Then COStbpa(t) < ECOStopt(t)

any demand sequence, bepa is

Il.  DETERMINISTIC ONLINE ALGORITHMS WITH SHORT
TERM PREDICTION

Previously, we analysed algorithms with either full
knowledge of future workload (optimal algorithm strategy),
or with no workload prediction consideration, but in this
section, we focus on a new line strategy, which takes in
consideration short term workload predictions. This can be
helpful to reduce the overall risk introduced by our online
algorithms, since we can use the short prediction to enhance
the reservation decisions by avoiding long and non-
profitable plans while promoting small profitable
reservation plans. Thus, bring our algorithms closer to the
optimal strategy. Short term predictions can be easily
computed and estimated during the first months of cloud
usage, once the user have control and better understanding
of how the backend code is performance in a cloud
environment after a series of enhancement, short term
predictions can be reliable at a certain point.

Let e; be our estimated short-term prediction limit, that
means that at any moment ¢, our algorithms know about the
future workload in the next e, duration, and let’s assume
that e, is always lower than the smallest reservation plan
available: e, < {d;}1<i<n, SO We can get the most reliable
prediction possible. In our simulation, we set e, < 15 days,
as a realistic short-term prediction for new cloud users.
Now, for our algorithms to be able to extend their decisions,
we need to consider both workload history, plus future
workload predicted.

The deterministic mda adaptation to short-term
prediction: We start serving demands by using on-demand
instances, unlike regular mda strategy, we do not have to
wait until the user spends an equivalent budget to the
smallest reservation offer available, but rather, we can
predict the traffic demand for the next ¢t + e, duration, and
then decide earlier whether or not we should reserve an
instance. This small change in the algorithm’s decisions,
saves many Idle reserved instances.

1. Initialization t = 0, ReservationSet = {}
If iexistesuchasi = argmax(d;|d; <
t+
Y t+z§-di-1 Check(D, > ResN,)) then

3. Reserve R;offer, and add R;to ReservationSet

4. Foreach < R;,rem; > in ReservationSet
decrement di value and remove R; from
ReservationSet when rem; = 0

5. Lunch on-demand plan for the remaining instances

6. Sett=t+1,gotostep?2

In Fig 8 we applied this algorithm to the same demand
curve used in Fig 5, while using 2 weeks as a short term
prediction available at any time, we can see that both Idle
reserved instances incurred in level 4 and level 1
disappeared (because of the 15 days’ workload prediction,
we know that the VM request will not last for all that
duration, the algorithm omits the next RI offer, thus it falls
back to the on-demand plan), while it has been reduced in
level 3 and 2. The larger the e;, the more we get closer to
the offline algorithm. As we can see in Fig 9, we have more
cost-effective strategy when e, is larger (1 month). For
instance, level 2 has no Idle reservation period, thus the
overall VM provisioning cost has decreased dramatically. In
the next sections, we will see how this algorithm can
perform under small short-term prediction values.

The same construction can be applied to bepa over a family
of short term prediction values, we skip the formulation part
for simplicity reasons. More benchmark evaluations can be
found in the next sections.

I, SIMULATION

In the previous sections, we have analysed our proposed
algorithms in terms of cost performance regarding the
competitive analysis. In the remaining, we simulate our
algorithms in a real use case, using large dataset of cloud
users

requested VMs curve
idleRl [ on-demand instance

requested VMs number
A RI

level 4 [W¢ M| idle

level 3

% P .
level 2 !1M % ;!‘L)

Figure 8. Applying mda with a short term prediction (0.5 month ~ 2
weeks) to the same demand curve used in Fig. 5
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Figure 9. Applying mda with a short term prediction (1 month) to the
same demand curve used in Fig. 5
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Figure 10. Users demands filtred by the standard deviation: (a) refers to a
stable workload (0 < o/p < 1), (b) refers to a medium worklad (1 < o/p <5)
and (c) refers to a sporadic workload (5 < o/p)

A. Dataset Description and Preprocessing

We were not able to find any public information about
any cloud provider’s usage, because mainly it’s confidential
and could damage their reputation, in case some repeated
downtime or degraded performance were found in their
public dataset, so we are currently bound to using the
google cluster-usage traces [17], which is not a public cloud
though, but it reflects some google services usages, and
some google engineers computing usages. Overall, it can be
fairly used to perform benchmarks between algorithms or
strategies against more than 930 users contained (CPU,
memory, disk, etc.) in Google’s data trace over 29 days in
May 2011. The data trace represents a cluster computing
workload of more than 11K instances, with more than
50GB of csv resources

B. Dataset adaptation to a cloud enviroment:

Dataset adaptation is not an easy task, we need to
accurately estimate home many instances each user requires
if it meant to be run in a public cloud, so tasks scheduling is
important along with machines/clusters computing
adaptation. Basically, we had to consider the following
constraints in order to achieve an accurate adaptation to a
cloud environment:

e RAM VS CPU usage: We consider leasing a
new virtual machine once it’s either the RAM or
the CPU reach the threshold of the current host
machine (network usage should be considered
too, but it’s not available in the dataset)

200000
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Figure 11. The demand curve of User 401(with stable workload) in Google

clusterusage traces[14], over 1 month, adapted to a t2.medium AWS EC2
instance

VMs Number (t2.medium)

e Parallel tasks of the same jobs: We consider
tasks running in the same time even if they
belong to the same job as separate tasks,
therefore they are duplicated in the tasks queue,
and incurs workload to the cloud infrastructure.

o Tasks with constraints: Computational tasks that
cannot run on the same server in the traces (e.g.,
tasks of MapReduce) are scheduled to different
instances

In the end, we obtain a demand curve for each user,
indicating how many instances this user requires in each
hour. Fig. 9 illustrates such a demand curve for a user.

C. Dataset duration

Google data trace span only 30 days, so we have to
proportionally decrease the on-demand billing cycle, we
choose one hour to be equal to one minute, and the

reservation offer of lan becomes 24h x365j =

8760 min ~ 6days . Also, the dataset total duration

becomes: 29j x 24h * 60 min = BTOME _ 476 years
8760 min

The break-even is scalled down to 28 instance-hours.

D. User Classification:

In order to evaluate our online algorithms, when we
have stable, medium and sporadic on demand traffic, we
sort the 930 users into 3 groups, based on the traffic
fluctuation (standard deviation ¢ and the mean p).

Group 3 represents users with a high sporadic traffic (i.e.,
o/p > 5). In Fig. 10 we can see clearly that these users have
a small means, therefore, they should use on demand
instances as a VM provisioning solution.

Group 2 this group represents users that have a medium
traffic workload, with 1 < o/u <5. In Fig 10 we can see that
they in the second place as the most dominant users, they
actually need a dynamic provisioning strategy (i.e., both on-
demand and reservation plans should be considered).

Group 1 it represents the most dominant users type, they
have a stabilized workload with 0 < o/p < 1, with a large
mean, they need to be served using reserved plans only.

E. Pricing Model:
In this simulation, we adopt the pricing of Amazon EC2 of
a t2.medium instance from the marketplace (Jan 2017):
e  On-demand hourly rate: 0.052$/h
One-month reservation offer: 0.0468$/h
Three months reservation offer: 0.0416%$/h
Six months reservation offer: 0.0345$/h
One-year reservation offer: 0.0286%/h
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Figure 12. User demand statistics and group division
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Figure 13. Cost performance of online algorithms without a priori
knowledge of future demands: (a) refers to a sporadic workload, (b) refers
to a stable workload

e Three years reservation offer: 0.0231$/h

F. Online Algorithms

We start carrying tests of our online algorithms, without
any knowledge of the future workload.

Benchmark Online Algorithms: Our benchmark is
performed like the following: we start by evaluating our two
online deterministic algorithms against an on-demand pure
plan strategy, where each user uses only on-demand
instances, this strategy is simple and straightforward, no
complexity involved, though it’s widely used by most cloud
new users, especially for start-ups that has been using cloud
for less than 2 years (i.e., they don’t have an accurate start-
off estimation of how many servers they will need for their
business, plus it roughly depends on their backends code
quality and complexity). Our online algorithms take an All-
on-demand strategy whenever the workload ends before the
break-even time. Our second benchmark is when all

resources are reserved from the beginning, this typical for
old cloud users that have an accurate estimation of how
many instances they need to run their business, so they
start-off with a major resources reservation to reduce
computing cost. In the following we test these two
algorithms alongside with our online algorithms for each
google users group.

Cost Performance: We see in Fig. 8a that when applied
to Group 1 and 3, our deterministic online algorithms
realize significant cost savings compared with the two
benchmarks. In particular, when switching from All-on-
demand to our deterministic algorithms, we can achieve a
24% and a 33% saving with both mda and bepa algorithms
respectively when tested against a stable workload Fig. 11a,
while the optimal algorithm (which is not realistic, we just
use it for benchmark, it refers to the lowest possible VM
reservation cost per hour, regarding the upfront cost or the
idle periods) can save up to 30% and 35% when compared
against our deterministic algorithms respectively.

In the other side, in Fig. 11b, bepa as expected is not
performing well against extreme(sporadic) workload, and
its underlying cost is mostly above all other algorithms. We
can see at first that the two-deterministic algorithm are
performing with caution, no reservation during the first
months until the 6", both mda and bepa make a reservation
during the same month but with different reservation
contract, bepa algorithm go for a couple of 6-months
reservation offers, which is very risky regarding the
workload’s nature, while mda starts making a few 1-month
reservations, it seems though to equals the All-on-demand
algorithm expenses (which is the best choice when it comes
to highly sporadic workload) because it simply doesn’t take
too much risk, and therefore it remains very close to the
All-on-demand algorithm. The optimal algorithm though
makes significant saving over all algorithms, up to 50% of
cost saving against All-on-demand and mda, and up to 70%
when compared to bepa which is the worst performing in
this group.

In the flowing section, we switch back to the performance
of our enhanced algorithms considering the short term
perdiction reliability. We omit the part on how we predict
short terms of workload periods, since it’s roughly related
to the user’s business model, and we focus on the future
VMs demands adaptation with the google data-trace. We set
the same linear down scale strategy used previously to adapt
two short term prediction categories: 1 month equals 12
hours and 3 months equals 36 hours. For each one of these
categories, we roll our online algorithms without any
knowledge of future workload for cost benchmark and
verify if we can further reduce the cost of VMs acquisition
with this strategy in case of a stabilized or a highly sporadic
traffic, and how far it can be true.

In Figs 14 and 15, we normalize all costs to mda and bpa
respectively. We can see that in all chart lines, cost have
been reduced effectively for both short term prediction
categories (1-month and 3-months). Having more prediction
timeline helps definitely make better reserving decisions to
effectively avoid useless VM reservations when the
workload goes down, but it doesn’t mean that you can save
cost over strategic VM reservation offers. Reserving the
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Figure 14. Cost performance of online algorithms with different short-term
prediction windows when simulating a stabilized vm demands. All cost are
normalized to the mda and bpa strategies respectively without any future

information: (left) refers to mda benchmark, (right) refers to bpa
benchmark

right offer at the right time and thus saving cost within the
same decision needs a better algorithm. In other words, the
short-term prediction strategy only helps to reduce the lose
accumulated by all bad reservation offers made by the
algorithm, moreover, the reduction made between different
short-term prediction categories is not linear. For instance,
in Fig. 14 (a), we can see that the difference between
knowing a 1-month and 3-months of future demand is not
proportional to what we can save when running mda with
1-month over mda with no a piori knowledge, the benefits
are decreasing. The same thing applies to bpa strategy, in
which the 3-months prediction overall cost was very close
to the 1-month strategy beforehand.

In the other hand, we can see in Fig. 15 an improvement of
more than 6% over the 1-month strategy. Since this is a
sporadic workload simulation, and because of the high
number of bad reservation offers being saved by the
algorithm with a larger prediction window, we can see this
improvement in the chart-line, more knowledge we have
about the future workload (i.e., longer prediction period),
more bad reservation offers are cancelled. But again, at a
certain point, even with a high prediction window, margin
benefices go down, leaving no space for more
improvements. We note also that, with certain users in the
data-trace, having an extreme sporadic demand, the on-
demand strategy is very close to the optimal strategy, which
means, the all x-months prediction strategies are irrelevant,
and have no improvement over the cost acquisition.

In this section, we evaluate the competitive ratio of our
online algorithms regarding dynamic instance requests
(1000, 5000, 10 000 requests). Let’s assume that we have a
m4.large RI type, low usage for one-year commitment. The
hourly rate of an on-demand instance in the US East region
is $0.1, and the upfront fee for one-year commitment is $61,
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Figure 15. Cost performance of online algorithms with different short-term
prediction windows when simulating a high fluctuating vm demands. All
cost are normalized to the mda and bpa strategies respectively without any
future information: (left) refers to mda benchmark, (right) refers to bpa
benchmark

while the hourly rate goes down to $0.034. Let’s assume
also that the owner is willing to sell no more than 200 hours
of his RI, and his asking for an admission price around
[$0.002, $0.026].
Basically, the seller has to define a couple of parameters,
like the maximum duration t and c. So, let’s assume that
c=2 and within a time interval [0, T], we randomly setup a
set of requests {r;} = {(b;, k;, s;, t;)}, where s; is a random
value in [0,T — 1], ¢t; is also chosen from [0, 1], k; is
chosen from [0,m], and b; and k; depend on each other
based on the bid price point.

In the following, we evaluate the competitive ratio of our
online algorithms while considering all previous
parameters. We initialize a fixed set of reserved instances
and dynamically change the maximum duration value in
order to study the t value, then we initialize the maximum
duration with a fixed value and vary the number of Rls. We
can see in Fig. 16 all different variation of the competitive
ratio under different instance requests scenarios.

Fig. 16a and Fig. 16b evaluates the maximum duration
variation. When this value goes up, the competitive ratio
decreases. This confirms our previous theoretic analysis.
Fig. 16¢ and Fig. 16d evaluates the variation of the number
of reserved instances. Both the competitive ratio decreases
and the number of reserved instances increase. This is due
to the assumption conditions, more instances are being
requested with a low bid value, therefore the number of
reserved instances increases. We can see that the
competitive ratio of mda algorithm is reaches 45 % in all
three scenarios, while our second bpa algorithm reaches
55%.

Next, we benchmark our online algorithms against two
additional algorithms:

(Advance online publication: 28 May 2018)
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Figure 16. Benchmarking the comptetive ratio of our online algorithms against alg A and alg B in different setups.

1) alg A: where each user opts for the RI offer that has
the maximum bid price available.

2) alg B: where each user opts for the RI offer with the
maximum bid frequency value available, i.e., b; /t;.

Assumption is not used by any of these two algorithms.
We can see in Fig. 17 that our online algorithms perform
well compared to our two benchmarks.

For the next simulation, we are using the same google
data trace used in the previous benchmark. Each job
contains a set of tasks, either with the same or different
resource requirement. Because of the hourly billing nature,
we consider only long jobs that are running for more than
1h from google trace, they are about 39k jobs, so we can
evaluate the cost saving performance of our online
algorithms. In order to operate an accurate simulation, we
start by concluding how many instances are required per
each job if it were to execute in a real cloud data center
scenario. We proceed with the following adaptation of the
google cluster dataset to accurately schedule different single
and parallel task jobs: 1- All single task jobs are gathered
into one single instance until one of the core VM resources
gets exhausted, then we move to another new instance. 2-
For the parallel task jobs, in most scenarios, these are
MapReduce based tasks, so they should be scheduled into
different instance type. We note that in each second, most
google cluster jobs need around 100 instances. So, we
assume that each seller has more than 100 instances, say
200 RIs, and looking to sell about 1 month of usage from
each instance. In Fig. 18, we plot our benchmark against
algorithms A and B, and we can see that bpa and mda are
performing about 15% and 20% less than our close
competitor (B algorithm).

We omit the scenario where we benchmark the maximum
duration, because many jobs in the data trace stay in the
active state less than 15 hours, which makes the total saving
over our online algorithms almost the same with either a 1-
month, 2-month or a 3-month RI duration.

In this section, we introduce a broker service that sells on
demand instances to the end users, with a reduced price
compared to the full AWS on demand instance prices. We

analyse the performance of this broker if it were to run our
online algorithms as an instance reservation strategy. Then
we benchmark our algorithms against heuristics algorithms
that are usually used by broker services.

For a correct simulation, we combine instance requests of
all users who belong to the same demand group (demand
fluctuation) into one single group. This is because we get
many instance hours wasted if each user makes his own
instance purchase, for more clarification,

4500
4000

3500
3000
2500
2000
1500
1000
50
0
30 50 100

Maximum duration (hours)

Profits ($)

(=]

mda B bpa M AlgorithmA | AlgorithmB
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Figure 21. Benefits of using a broker service with a combined cost saving
for different workload classes.

in Fig. 20 we plot the wasted instance accumulated for
each demand fluctuation group. For instance, we compare
the average instance hours consumed by a group 2 user, if it
were to be purchased directly from AWS, versus the
average instance hours consumed by all group 2 users
combined. We run through the remaining 3 demand groups,
and we visualize the cost saving percentage accumulated in
each scenario. The medium demand fluctuation seems to be
the one that is making more profits than others, while we
expected that the highly demand fluctuation makes
significant profits, it turns out that it’s wrong, most group 3
users have a low instance usage, therefore there was not
enough instance requests to be combined, so the overall
wasted instance hours was small.

Now, we have to evaluate this combined demand
instances strategy if it were to be operated by a broker
service and see how our online algorithms perform against a
classic heuristic algorithm. In Fig. 20 we plot the

accumulated cost for both the single user and the broker
service running the same reservation strategies for each
single demand fluctuation group. While Fig. 21 shows the
overall profit when we use a broker for each particular
group. We can see that the profit can reach 15% when we
combine all user groups. The same result can be seen in Fig.
19d, where the broker saved more than 73k$ with all users
combined. We note that the broker profits vary depending
on instance requests fluctuations, for instance, the broker
realized over 40% profits with a medium traffic, while the
smallest profits were reported with a stabilized traffic
(~5%), this can be seen in Fig. 19c. This is due to the fact
that users with stabilized traffic are already using RIs for
most of their demand instances, therefore the broker’s
spending is very close to the user’s spending. In Fig. 19b,
we can see that the broker makes good profits through
instance demand combination, thus better using reductions
of RIs. However, in Fig. 19a, even with the combined
instance requests, the profits are not optimal, the broker still
don’t have enough instance requests to purchase enough
RIs, thus making less profits than a medium user traffic. But
we still get a 15% ~ 17% cost reduction due to instance
demand combination.

Now, we benchmark the cost of our online algorithms
against selfish and heuristic strategies. Fig. 19 shows that
the selfish strategy is the most successful one, then comes
the heuristic strategy, and finally our online algorithms.
This is due to absence of the forthcoming instance requests.
However, in Fig. 19a, all 4 algorithms have similar curves
with a sporadic workload, this because most instances come
from an on-demand plan, only a few are effectively Rls,
thus all strategies decisions become less important.

From all broker’s performance results, we can say that
more than 75% of users that belong to the medium
workload demand, save more than 30%, while the same
broker can save more than 25% in favour to 70% of all
users combined. We also report that there is a certain limit
(i.e., 50%) on the maximum profit that each user can make,
also we found that with both our online algorithms, more
than 40% of users made a profit around 30% (this the
scenario where the broker earns the most), and only a small
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group made less than 4%, that’s because they have
requested only a small number of instances of the entire
demand, thus the broker have to charge them with a cost per
hour very close to the cloud pricing catalogue. There are
many strategies to satisfy this kind of users, where the
broker has to over compensate for their sporadic traffic at
the expense of other users belonging to the medium
workload group, but these strategies are out of scope of this

paper.

In this section we analyse both benefits and challenges of
a cloud broker system that haven’t been discussed in the
previous evaluation. First, all cloud providers have special
pricing plans for large business, beyond the reservation
plan, which means the cloud broker can make much more
benefits when contracting with a cloud provider, for
instance AWS offers a 20% discount for heavy ec2 usage
apart from RI offers, thus cloud brokers are easily qualified
for these large contracts.

Second, besides the saving of computing resources, the
broker can reduce the storage and bandwidth allocation,
thus reducing its usage, the cost of combined resources is
always cheaper than the cost of allocating separate services
from an 1AAS cloud provider.

Third, the cloud broker can help start-ups with small
business to overcome the fear of cloud migration and
expensive computing bills, since most instance acquisitions
are made through RI offers, they are much cheaper, cost-
effective with no risk, lasting for years as a business plan
model.

However, the broker has several limitations and
disadvantages, either related to the server maintenance or
operating the service. First, the broker’s partial profit
depends heavily on the pricing catalogue of each cloud
provider. Also, starting a new OS system for a new user on
the same VM is billed as a new hour cycle (e.g., AWS, but
not all cloud providers have this limitation), thus not saving
much over user instances mixing strategy. Actually, in our
evaluation, we can see that even when omitting the
instances mixing strategy, we can still save 8% over the
total expenses.

Second, most high traffic sites don’t have control about
when workload picks can happen, so the broker estimation
and online decisions may not work properly, in fact, it could
be a disaster in some scenarios, and the broker will have to
bump off wasted RI at a bad price. But after all, these users
will have to deal with the same circumstances when
acquiring instances directly from IAAS cloud providers.

Third, in our previous evaluation, we assumed that users
can benefit from all the cost saving realized by the broker,
so the broker will not find any difficulties in acquiring new
customers and retaining old once. But in fact, the broker has
to take a portion of the reservation benefits or through a
percentage over total revenue, so there will be not much
room for customers that already have a reduced computing
cost. For instance, a large cloud customer has already a
direct contract with the cloud provider that is probably in
the same pricing level as the broker. So, only small business
would be interested in using a cloud broker service, in

addition to that, the broker has to drop prices at the lowest
level to seriously attract new clients, and retaining old
customers, because if the price point is close to the cloud’s
pricing plan, all customers will prefer using the cloud
directly since it has other interface integration with other
services like storage, load balancer, web application
firewall... etc.

Fourth, maintaining a cloud broker service is not an easy
task, especially if it serves many small business, the broker
should be prepared to a large number of case issues (so it
needs a dedicated team for customers support), many
customers will ask for an integration with other cloud
services within the broker’s APl (so it means a dedicated
team for continues development and testing), also it is very
difficult to provide a correct SLA(service level agreement)
when the broker uses different cloud providers in the same
to time to serve customers.

In this section we run a new set of experiments with
different website traffic scenarios. We schedule AWS
reserved instances at 4 different situations in order to
evaluate the performance of our online algorithms:

1. Scenario 1. Website with an average audience
traffic but with small pick load time. The average
request per second (RPS) rate of this site is around
300 and it’s twice during workload pick times. The
annual revenues forcast of this site should be
around 2M$

2. Scenario 2: Website with an average audience
traffic but with high pick load time. This is similar
to scenario 1, except that the pick load is 8 times
superior than the regular workload. The annual
revenues forcast of this site should be around
3.5M$

3. Scenario 3: Website with a large audience traffic
but with small pick load time. The average
incoming requests rate of this site is around 300
requests per second (RPS) and it’s twice during
workload pick times. The expected annual
revenues of this site should be around 5M$

4. Scenario 4: Website with a large audience traffic
and a high pick load time. Again, this is similar to
scenario 3, except that the spike load is 8 times
superior than the regular workload. The annual
revenues forcast of this site should be around 7M$

For simplicity and reference we choose t2.small as the
smallest AWS instance size available. Let’s assume that the
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Figure 22. Number of reserved instances in each scenario.
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Figure 23. Expected benefits when using online algorithms versus short
term prediction algorithms for each scenario

maximum number of instances that can be purchased at the
same time is 20.

Web sites are mostly made of several backend/server
layers, each with a specific goal, in order to get a fair and
correct benchmark, we set the overall benefits of executing
a single request as the same for all sites backend layers,
besides, we set the computing needs of each request as the
mean value of several request types combined, while
considering the targeted backend layer family. For instance:
if a request of type A needs 0.02 s and 0.03 s for processing
during the first and the second backend layer respectively,
and a request of type B needs 0.01 s and 0.04 s for
processing during the first and the second backend layer
respectively, and considering that most (80% of workload)
of requests belong to type A, then, the mean value of a
single computing request would be (0.02 4+ 0.03) * 0.8 +
(0.01 + 0.04) = 0.2 = 0.05 s. With this last assumption, we
can say that the more workload we get, the larger is the
benefits of the site.

We assume that the downtime of AWS instances is less
than 99.99%, that’s around 12 minutes a month of
unavailability, the penalty of such infraction is about 12k$.

In Fig 5, we can see the amount of RIs in each scenario,
we were able to manage good margin benefits with our
online algorithms compared to the previous classic
strategies. We can see a 25% increase in the RIs ratio
compared to an average arrival rate strategy. We can see
also a 13% increase of RIs when using bpa strategy over
mda in both scenarios 2 and 4, this is because of the
sporadic nature of the traffic, and the fact that we need an
algorithm that is ready to take much risk to take advantage
of all high pick load times and further increase the margin
benefits. However, in scenario 1 and 3, mda remains the
best strategy to use, since in both scenarios, the traffic is
stable with small pick load times, that have small impact on
the requested computing resources. The annual profits
benchmark result is plotted in Fig 3.

Based on the presented results, we can conclude that our
online algorithms can generate important cost saving
regarding AWS computing investment, especially when
used against a high traffic workload with high pick load
time, we can see this result clearly in both scenario 3 and 4,
while it remains fairly profitable when using mda for a
traffic with small pick load time.

IV. CoNcLUsION AND FUTURE WORK

In this paper, we extended the work of Wei Wang et al.
in the case where we have multiple reservation offers.
Firstly, we proved that this problem is indeed NP-hard, and
we proposed two practical online deterministic algorithms

that incur no more than 1+ﬁ and ﬁ respectively,

compared to the cost obtained from an optimal offline
algorithm. Then we developed two other short-term
prediction algorithms that further improves the competitive
ratio. We focused on a large-scale simulation of previous
algorithms over the Google cluster-usage traces. We
evaluate our strategies regarding dynamic instance requests,
reserved duration, dynamic bid price, combined versus
separated workload, competitive ratio, and more. Over 30%
of computing expenses can be saved when using our
algorithms, while 40% when customers go through a cloud
broker service. One of the issues that we have not discussed
is the probability-based algorithms along with the
combinations of different cloud providers offers (i.e., Rack
space Hosting, Google App Engine, Amazon Ec2...). We
are confident that these combinations could further reduce
the instance acquisition cost.
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