
 

 

Abstract—In this paper, an efficient and reliable approach 

based on hybrid modified cuckoo search algorithm (MCS) 

combining with differential evolutionary algorithm (DE) 

(named MCS-DE) is proposed to solve optimal reactive power 

dispatch (ORPD) problem with minimization of power losses 

(Ploss) , voltage stability index (Lindex) and voltage deviation 

(Vd) as objectives. The original CS method often converges to 

local optima. In order to avoid this shortcoming, a series of 

modifications is purposed to the assimilation policy rule of CS. 

The variations of the two main parameters and an improved 

search equation are introduced into the MCS-DE to improve 

local search near the global best, and it profits from DE to 

further improve the optimization performance. The proposed 

MCS-DE is examined and implemented on IEEE 30-bus and 

IEEE 57-bus test power systems with three different objectives. 

The simulation results presented in this paper demonstrate the 

effectiveness and robustness of hybrid MCS-DE approach for 

solving ORPD problem and it can be made better results 

compared to the CS, DE, and other methods reported in the 

literature as demonstrated by simulation results. 

 
Index Terms—Optimal reactive power dispatch, Hybrid 

modified cuckoo search algorithm, Cuckoo search algorithm, 

Differential evolutionary algorithm. 

I. INTRODUCTION 

PTIMAL reactive power dispatch (ORPD) plays an 

increasingly significant role for secure, economic and 

reliable operation of power systems and is gaining much 

more attention. It is one of the main sub problems of optimal 

power flow (OPF) calculation which can be used to figure out 

control variables, and to minimize desired objective 

functions including transmission power losses (Ploss), voltage 
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stability index (Lindex) or voltage deviation (Vd) while 

simultaneously fulfilling a given set of equality and 

inequality system constraints. The main purpose of ORPD 

problem is to regulate the corresponding settings of control 

variables and find the optimal operating state of a power 

system and so as to improve the reactive power distribution. 

However, it is formulated as a complex combinatorial 

optimization problem taking into account nonlinear functions 

having multiple local minima because of the presence of 

control variables contain continuous variables like generator 

bus voltages and discrete variables such as tap setting of 

transformers and reactive power output of compensators 

[1,2].  

Many conventional optimization algorithms have been 

applied in the literatures in order to solve ORPD problem 

such as Newton’s based approach [3], Quadratic 

Programming [4], dynamic programming [5] and 

Interior-point method [6] in the past few decades. Bakirtziss 

in [7] handle the shunt reactive compensation devices with a 

linear-programming and in [8] Jan and Chen combined the 

sensitivity factor method with the fast Newton-Raphson 

economic dispatch to solve the OPF problem. Although most 

of these classical methods have excellent convergence 

characteristics but they face challenges in handling the 

problems with discrete nature and integer thus make the 

solution process computationally complex [9,10]. Later, 

some of the similar stochastic search algorithms such as 

gravitational search algorithm (GSA) [11], particle swarm 

optimization (PSO) [12,13], harmony search algorithm 

(HSA) [14], genetic algorithm (GA) [15,16], differential 

evolution (DE) [17], etc. have been found to be suitable to 

overcome these drawbacks and shown better results in 

solving ORPD problem. In [18], a self-adaptive differential 

evolutionary (SADE) algorithm is adopted to search the 

optimal control settings. Mahadevan in [19] solved the 

ORPD problem by introducing a learning strategy to 

overcome the drawback of premature convergence in PSO. In 

opposition-based GSA (OGSA) [20], the idea of opposite 

number is blended with GSA for population initialization and 

also for generating new population. Most of these approaches 

have no restrictions on the nature of objective functions and 

have the great possibility capacity to find global optimal 

solution, and proved themselves to be more efficient 

alternatives for solving any non-linear, non-convex 

optimization problems. Additionally, there are also 

researchers who used hybrid techniques to solve ORPD 

problem such as Nelder Mead (NM) simplex subroutine [2] is 
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introduced in the internal architecture of the firefly algorithm 

(FA). A modified PSO called as PSO with aging leader and 

challenges (ALC-PSO) has been presented in [21] is applied. 

M.Basu in [22] proposed a quasi-oppositional differential 

evolution (QODE) to solve ORPD problem by employing 

quasi-oppositional based learning (QOBL). And the results 

show that the hybrid method has better convergence 

characteristics and robustness than the original version of 

algorithms. 

In recent years, the Cuckoo Search (CS) algorithm is found 

to be one of the successful techniques of the present power 

system domain [23, 24] and has demonstrated great 

effectiveness in both critical factors of convergence rate and 

capability in achieving global optimal. It is proposed by 

YANG Xinshe and DEB Suash [25, 26] of the University of 

Cambridge in the year 2009, inspired by the parasitic 

behavior of cuckoo birds in reproduction process based on 

the probability for a host bird in discovering an alien egg in 

its nest. The application of CS into some optimization 

problems has been done such as OPF problem [27], advanced 

machining process [28], combined heat and economic 

dispatch [29]. The CS has three main advantages: it uses few 

number of control parameters, its convergence is fast and it 

can find near optimal solution regardless the initial parameter 

values. Based on the above considerations, in this paper, a 

new hybrid modified cuckoo search algorithm (MCS) 

combine with differential evolutionary algorithm (DE), 

called MCS-DE algorithm is used to solve ORPD problem. In 

the proposed MCS-DE algorithm, improving the search 

equation in order to improve the solution vectors, and to 

adjust the convergence rate, dynamically variable parameters 

namely discovery probabilities Pa and the step size α are 

incorporated instead of the fixed values. In addition, 

introducing the crossover operator of DE to further improve 

the optimization performance and enhance the quality of 

solution. 

In this work, the proposed MCS-DE is applied for the 

solution of ORPD problem of power systems. Two IEEE 

standard power systems like IEEE 30-bus and 57-bus 

systems are adopted and the ORPD problem of these test 

systems are solved with three different objectives that reflect 

minimization of either Ploss or that of Lindex or Vd. Results 

obtained by MCS-DE are compared with other different 

computational intelligence-based methods surfaced in the 

state-of-the-art literatures including basic CS and DE. The 

simulation results show the potential and effectiveness of 

MCS-DE and it can improve the convergence performance 

and get the better solution at the same time. 

The rest of this article are classified in five sections as 

follows: Section 2 covers formulation of optimal reactive 

power dispatch while Section 3 explains the standard 

structure of the CS, DE and the proposed hybrid modified 

MCS and DE (MCS-DE) algorithms, and next, Section 4 

gives the implementation of MCS-DE for ORPD problem. 

Section 5 of the paper is allocated to presenting optimization 

results and undertaking comparison and analysis of the 

performance of the mentioned methods used to solve the case 

studies of ORPD problem on IEEE 30-bus, IEEE 57-bus 

systems and finally, the conclusion of the implementation for 

the proposed hybrid method is presented in Section 6. 

II. MATHEMATICAL MODEL 

In this paper, the objective functions of the ORPD problem 

is to minimize the transmission real power losses (Ploss), the 

voltage stability index (Lindex) and the voltage deviation (Vd) 

while satisfying several equality and inequality constraints. 

The main purpose behind using an ORPD problem in a power 

system operation is to redistribute reactive power in the way 

that the minimum amount of transmission line losses, 

maximize voltage stability margin and also minimum voltage 

deviation can be attained. 

The integral formulation of the proposed ORPD problem 

is expressed as follows: 

  min ,f u x  (1) 

 
min max

min max
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. .

G u x

H u x
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u u u
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where f is the objective function of the system active power 

losses, voltage stability index and voltage deviation, 

respectively; G (u,x) is the equality constraints and H (u,x) is 

the inequality constraints of the power system; u and x 

respective represent the vector of control variables and state 

variables which can be expressed as: 

    , , & , ,T T

Gi i ci i Gi liu V T Q x V Q S   (3) 

where VGi is the voltage at the generator bus i; Ti is the tap 

ratio of the transformer i; Qci is the reactive power output of 

compensator i; Vi is the voltage at the load bus i; QGi and Sli 

are the reactive power output at the generator i and apparent 

power of the transmission i, respectively; and T is 

transposition. 

A. Objective Functions 

1) Minimization of transmission power losses (Ploss) 

The objective function of the real power losses in the 

transmission lines for whole network is expressed as follows: 

  2 2

1min min 2 cos
L

loss k i j i j ij

k N

f P g V V VV 


  
    

 
  (4) 

where Ploss denotes the objective function of total power 

losses; NL is the number of transmission lines; gk is the 

conductance of branch k connected between the ith and jth 

bus; δij is the voltage angle difference between bus i and j; Vi 

and Vj are the voltage magnitude of bus i and j, respectively. 

2) Minimization of voltage stability index (Lindex) 

For any load bus j, the Lindex can be worked out: 

 
1

max max 1
PV

PQ PQ

N

i

j ji
j N j N

i j

V
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    (5) 

where Lj is the Lindex value for load bus j; i denotes the 

generator bus (PV bus) and j denotes the load bus (PQ bus); 

NPV and NPQ are the number of generator buses and load 

buses, respectively. 

By classifying the PV buses and PQ buses, we obtain as: 
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Rearranging(6), we can get: 
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where 

    1[ ]LL LGF Z Y   (9) 

The Lindex value varies between 0 (no load point) and 1 

(voltage collapse point) in the system voltage stability margin 

and it indicates the system is almost stable if the value of 

Lindex close to 0. Hence, mathematically, to minimize the 

maximum value Lindex which representing the voltage 

stability of the total power system, the objective function can 

be expressed as: 

  2min minf Lindex  (10) 

 

3) Minimization of total voltage deviation (Vd) 

The purpose of this problem is to minimize the load bus 

voltage deviation and improve the voltage profile of electric 

power network and then help the system to operate more 

securely, which can be modeled as in: 

 3

1

min min
PQN

REF

d i

i

f V V V


  
   

 
  (11) 

where Vi is the bus voltage at the ith load bus; VREF represents 

the specified reference voltage value magnitude at load bus i 

which is equal to 1.0 p.u. and Vd is the sum of the absolute 

value of load bus voltages from 1.0 p.u. 

B. System Constraints 

All the above mentioned objective functions(4), (10) and 

(11) are optimized while satisfying following system equality 

and inequality constraints. 

 

1) Equality constraints 

The active and reactive power balance equations described 

by a set of power flow equations which can be expressed as 

following equality constraints: 

  
1

cos sin 0,1
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Gi Di i j ij ij ij ij

j

P P V V G B i N 
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      (13) 

where PGi and QGi are the active power and reactive power at 

generator i, respectively; PDi and QDi are the load active 

power and reactive power at the load i, respectively; Vi and 

Vj, respectively, denote the voltage magnitude of the ith and 

jth bus; Gij and Bij, represent the real part and imaginary part 

of Yij which is the element of the bus admittance matrix at the 

ith row and the jth column, respectively; NB is the number of 

the buses connecting with the ith bus; N is the number of total 

buses except for swing bus and NPQ is the number of PQ 

buses. 

2) Inequality constraints 

Inequality constraints of control variables: the limit for 

generator bus voltages, tap setting of transformers and 

reactive power output of compensators. 

 
min max 1Gi Gi Gi PVV V V i N   ，  (14) 

 
min max 1i i i TT T T i N   ，  (15) 

 
min max 1Ci Ci Ci CQ Q Q i N   ，  (16) 

Inequality constraints of state variables: the limit for 

voltages at PQ bus, reactive power output at PV bus and 

apparent power of transmission line. 

 min max 1i i i PQV V V i N   ，  (17) 

 
min max 1Gi Gi Gi PVQ Q Q i N   ，  (18) 

 
max ,1li li LS S i N    (19) 

where NPV denotes the number of generators; NT is the 

number of transformers; NC is the number of the 

compensators and NL is the number of network branches. 

C. Handling of constraints 

The control variables can be self-constrained according to 

their limits by the algorithm but the state variables 

themselves cannot satisfy the constraints. In this paper, the 

state variables are incorporated into the objective function. 

Hence, the overall objective function is formulated by 

penalizing strategy taking power system operational 

limitations into account and mathematically it is expressed 

as: 
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where (Vi ‒ V
lim 

i ), (QGi ‒ Q
lim 

Gi ) and (Sli ‒ S
lim 

li ) are the violations 

associated with voltages at PQ buses, reactive power outputs 

at the generators and apparent power of the transmission lines, 

respectively; σV, σQ and σL are penalty coefficients of the 

state variables. V
lim 

i 、Q
lim 

Gi and S
lim 

li are defined as: 

 

max max
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x x x

x x x x
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where K represent Vi, QGi and Sli; max and min are the 

maximum and minimum limiting value of Vi, QGi and Sli. 

III. MCS-DE ALGORITHM 

A. The standard Cuckoo search algorithm (CS) 

The cuckoo search (CS) algorithm is a novel heuristic 

stochastic optimization approach based on the breeding 

parasitism behavior of the cuckoo species and its Lévy 

Flights characteristics. It is needed to set three idealized rules 

[27, 30] to form the mathematical model of CS: 

(1) Each cuckoo can only lays one egg at a time and puts it 

into a randomly chosen host nest. 

(2) The highest quality egg in the host nest will be hatching 

and retaining to the next generation. 

(3) The number of available host nests for the cuckoos is 

fixed as m, and the host bird will discover the alien eggs laid 

by cuckoos with a probability Pa∈[0,1]. 

The algorithm starts with the randomly generated solution 

and population. Randomly initialize the search space Xi = (xi
1, 

xi
2,…, xi

d) with d dimension for host nest i (i =1,2,…, m). 

Based on above rules, the CS includes two randomized 

processes. 
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1) Generating new solution via Lévy Flights 

Generally, Cuckoos engage the obligate brood parasitism 

by laying their eggs in the communal nests or the nests of the 

other species birds. In this case, the host birds may be 

recognizing the eggs of the Cuckoos are not their own, they 

will probably either throw the eggs away or simply abandon 

the current nest to build a new one in a new location. This 

concept is transformed to optimization technique and each 

egg in the host represents a potential solution. Host i of a 

global random walk can be expressed as(22). 

 
( 1) ( )

( )
k k

i i L vyx x     é  (22) 

 ( ) ~ (1 3)L vy u t


 
  é  (23) 

where xi
(k) denotes the current position of ith nest (for 

i=1,2,…,m) in generation k; xi
(k+1) is the new solution in 

generation k+1; α is the step size parameter related to the 

scale of the problem; ⊕denotes the entry wise multiplication 

and Lévy(λ) is the Lévy distribution which can be 

approximated as: 

  
1/

~L vy
u

v



é  (24) 

where u and v are taken from a normal distribution: 

 (); ()u raud v raud   (25) 
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where rand() is a normally distributed stochastic number in 

range [0,1]; β is the distribution factor and Γ() is the gamma 

distribution function. 

In the growth stage, xi
(k) starts with the donor vector vi

(k)= 

xi
(k) and a new solution vector is computed, which is given by: 

 ( ) ( ) ( ) ( )

1/
( ) ()k k k k

i i i gbest

u
v x x x rand

v



       (27) 

where xgbest is the best solution. It is worth pointing out that, 

according to(22), it indicates that the global explorative 

random walk and the next moving position of the nest is 

determined based on the current position and the transition 

probability. Furthermore, the Lévy Flights behavior has been 

applied to the optimum random search, and it shows a good 

performance. 

2) Discovery alien eggs with the probability Pa 

The other part of CS is to place some nests by constructing 

a new solution and there is a probability rate Pa∈[0,1] to 

discover alien eggs. Whenever building a new solution, the 

random rand∈[0,1] is compared with Pa. Host i of a local 

random walk can be expressed as: 

 

( +1) ( ) ( ) ( )= + ( )( )

1,
( )

0,

k k k k

i i j g

a

x v H u x x

if rand P
H u

otherwise




 


 (28) 

where xj
(k) and xg

(k) are two randomly selected solutions in 

generation k; H(u)=H(Pa‒rand) denotes a Heaviside function 

; rand is drawn from a uniform distribution. 

After producing the new solution xi
(k+1), it will be evaluated 

and compared to the vi
(k). If the objective fitness of xi

(k+1) is 

smaller than vi
(k), xi

(k+1) is accepted as a new solution, else vi
(k) 

would be obtained. 

B. Modified Cuckoo search algorithm (MCS) 

The standard CS algorithm use constant value of α (step 

size) and Pa (probability∈[0,1]), the fine-tuning of solution 

vectors are dependent on the two parameters, which can be 

potentially used in adjusting convergence rate of the 

algorithm. The two important parameters are used to obtain 

the global and local improved solutions, respectively. In 

order to eliminate the drawback of the fixed values of the 

parameters α and Pa and enhance the performance of the 

algorithm, the MCS utilizes variable α and Pa which are 

dynamically varied with the increase of generations and can 

be described as follows: 

 
2

min max min max max( ) +( ) (( ) / )k k k k        (29) 

 
2

min max min max max( ) +( ) (( ) / )a a a aP k P P P k k k     (30) 

where kmax is the number of total generations and k is the 

current generation, respectively. 

According to (29) and (30), in the initial generations, the 

values of α and Pa are large enough to push the algorithm to 

increase the diversity of the solution vectors. It is worth 

mentioning that, the decreased parameter values in the final 

generations will result in a better fine-tuning of the solution 

vectors. Hence, the quality of solutions is slowly improved 

and the algorithm will converge near the global best solution 

in the latter part of the generations. 

Moreover, in order to improve local search near the global 

best and further enhance the convergence rate for achieving a 

better solution quality, formula (28) is changed as follows: 

 

( +1) ( ) ( ) ( ) ( )

( )

= + ( )( )+ ( )( )

         + ( )( )

k k k k k

i i j g pb i

k

gb i

x v H u x x H u x x

H u x x

 


 (31) 

where xpb and xgb, respectively, denote the best position of 

nest i and the best potion in host nests in the dth dimension at 

generation k, which is helpful to the nests to move to the 

global best position. In this paper, the difference between 

(31) and (28) is the update modes of velocity and position 

which are crucial for the artificial intelligence-based 

algorithms. 

C. The crossover operator of DE 

In order to prevent population from trapping into local 

minimum, the crossover operator of differential evolution 

(DE) algorithm which is carried out in which the donor 

vector exchanges its components with those of the current 

member is embedded into the evolutionary process of 

MCS-DE to enhance population diversity and improve global 

searching capability as shown in (32). 
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ij Rk
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ij

v rand C j round d rand
x

v otherwise
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(32) 

where rand is a uniform random value generated within the 

range [0,1], which is generated once for each jth dimension 

of the ith trial vector; CR∈[0,1] is the control parameter, 

called crossover factor; j∈[1,d] is a random integer which 

ensures that at least one dimension of x
(k+1) 

ij is inherited from 

the mutant vector v
(k) 

ij . 
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D. The proposed hybrid Cuckoo search algorithm 

Based on the above-mentioned rules, the advantages of 

local search capability provided by modified CS and global 

search ability of DE can be effectively combined, and 

resultantly a novel hybrid modified CS (named MCS-DE) 

algorithm is proposed. The steps of the MCS-DE can be 

summarized as follows: 

Step 1: Initialize the population of m host nests xi 

(i=1,2,…,m), parameters and random values. 

Step 2: Fitness evaluation of the population. 

Step 3: Lay random cuckoo eggs into nests by Lévy Flights 

according to(22), (27) and (29) to evaluate the 

fitness of every nest.  

Step 4: Updating the position of the nests by (30) and(31), 

worse nests (Pa) are abandoned and new ones are 

built. 

Step 5: Generate new population by introducing the 

crossover operator of DE according to(32). 

Step 6: Build new nests and keep the best solutions with the 

best fitness (or nests with quality solution). 

Step 7: Repeat steps 3 until a stopping criterion is met. 

IV. IMPLEMENTATION OF MCS-DE FOR ORPD PROBLEM  

The proposed MCS-DE method is used to find the settings 

of control variables such as generator bus voltages (VGi), tap 

settings of transformers (Ti) and reactive power output of 

compensators (Qci) in order to achieve minimum 

transmission power losses (Ploss), voltage stability index 

(Lindex) and total voltage deviation (Vd). In the 

implementation of MCS-DE for solving the ORPD problem, 

the basic steps of MCS-DE are depicted as follows: 

Step 1: Set the parameters and generate the initial 

population. 

The initial population is made up of m host nests, 

randomly initialize the search space Xi = (xi
1, xi

2,…, 

xi
d) (i =1,2,…, m) and m ×d represent the dimension 

of the population. The d-dimension parameter 

vectors of the population are restricted by the 

maximum and minimum limits as follows: 

 
 

 

1 2

min min min min

1 2

max max max max

, ,

, ,

d

i i i i

d

i i i i

X x x x

X x x x




 (33) 

The initial velocity of population is set as a zero 

matrix with m × d dimension and the d-dimension 

problem for the ith host nest can be generated as: 

 
, ,min ,max ,min( )

1,2, , ; 1,2, ,

j i j j jx x rand x x

i m j d

   

   
 (34) 

Step 2: Compute the objective function value: evaluate the 

fitness Fi for Xi. 

Step 3: Update the position of all nests based on Lévy 

Flights according to (22), (27) and (29). Then 

choose a nest ‘j’ randomly from all the nests, 

evaluate the fitness Fj for Xj again. 

Step 4: If Fj < Fi, then replace Xi with the new solution Xj. 

Step 5: Then the worse nests are abandoned with a 

probability (Pa) and new ones are built based on (30) 

and (31). 

Step 6: Generate new population by introducing the 

crossover operator of DE according to (32) and then 

record the current position as follows: 

for i=1:m 

          for j=1:d 

             if (rand<CR) or (j==round (d · rand +0.5)) 

                Y (j, i) = X (j, i); 

         else 

                Y (j, i) = Pbest (i). Position (j); 

        end 

end 

              pSample (i). Position = Y (1: d, i) 

Step 7: Calculate the fitness function again and keep the best 

solutions: go to the next step if the number of 

iterations reaches the maximum number of 

iterations; otherwise update the position and 

continue the Step 3. 

Step 8: Rank the solutions and find the global best solution: 

the solution with the best fitness (the lowest Ploss, 

Lindex and Vd) is the best solution. 

And the computational flowchart of MCS-DE for ORPD 

problem is shown in Fig.1. 

 

Begin

Set parameters and Initialize population

Evaluate the population

Record current fitness Fi for Xi

Update the position via Levy Flights

 based on dynamic step size

Evaluate the  fitness Fj for Xj again

Fj >Fi

Replace Xi with new solution Xj 

Replace worst nest with the improved search equation 

based on dynamic probability  

Generate new population by introducing 

the crossover operator of DE

k=kmax?

Select the best optimized solution

End

k=k+1

 

No

Yes

Yes

No

 
Fig.1. computational flowchart of MCS-DE for ORPD problem 

 

V. SIMULATION EXPERIMENTS 

For the purpose of verifying the effectiveness of the 

proposed MCS-DE algorithm applied for ORPD problem, in 

the following section, numerical results extracted from 

solving ORPD problems by implementation of CS, DE and 

MCS-DE algorithms in the simulation runs will be presented. 
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Test systems are carried out on the three algorithms on 

IEEE30-bus and IEEE57-bus power systems. And the 

description of the two test systems is depicted in TABLE I. 

The three code of the algorithms are written by MATLAB 

R2014a programming language and run on PC with Intel(R) 

Core(TM) i5-7500 CPU @ 3.40GHz with 8.00 GB RAM. In 

this study, iterations are limited to maximum number of 1000 

for IEEE30-bus and 1500 for IEEE57-bus power systems. 

The results of CS, DE and hybrid MCS-DE algorithms, 

which follow, are the best solutions for 30 independent trails. 

A. Parameter settings 

In general, the performances of evolutionary algorithms 

are sensitive to algorithm parameters. In this paper, we 

perform repeated simulations to find optimal values for the 

parameters and the parameters for the MCS-DE, CS and DE 

are given in TABLE II. 
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Fig.2. Network configuration of IEEE30-bus system 

 

B. Example 1: IEEE 30-bus test system 

IEEE 30-bus power system is taken as test system 1 and 

the representation is shown in Fig.2. This system has 30 

buses, whose network consists of six generators (at the buses 

1, 2, 5, 8, 11 and 13), four transformers (at lines 6–9, 6–10, 

4–12 and 28–27) and nine shunt compensators (at buses 10, 

12, 15, 17, 20, 21, 23, 24 and 29). Hence, the numbers of 

control variables to be optimized are 19. The limits of 

reactive power of generators are seen in TABLE III and 

TABLE IV lists the minimum and maximum limits for the 

control variables. The detailed data (load data, line data, 

minimum and maximum limits for active power sources, bus 

voltages) for this test system are taken from [11, 17]. The 

lower voltage magnitude limits at all buses are 0.95 p.u. and 

the upper limits are 1.1 p.u. including PQ buses. The initial 

total active power losses are 5.832 MW which is calculated in 

Matpower3.2. In this example, three cases with different 

objective functions such as minimizing the Ploss, Lindex and 

Vd are considered. 

 

1) Case1: Minimization of Ploss for IEEE30-bus system 

The objective function of minimization of transmission 

power losses (Ploss) is defined as Eq.(4) and Eq.(20). TABLE 

TABLE I 

DESCRIPTION OF TEST SYSTEMS 

Description IEEE 30-bus IEEE 57-bus 

number of buses, NB 30 57 

number of generators, NPV 6 7 

number of transformers, NT 4 17 

shunt compensators, NC 9 3 

branches, NL 41 80 

control variables 19 27 

base case for Ploss , MW 5.832 27.864 

 

TABLE II 

PARAMETER SETTINGS OF THREE ALGORITHMS 

Parameter CS DE MCS-DE 

population size: m 30 30 30 

dynamically step size: αmin/αmax -- -- 0.05/0.5 

constant step size: α 0.1 -- -- 

dynamically probability: Pamin/ Pamax -- -- 0.005/0.5 

constant probability: Pa 0.25 -- -- 

distribution factor: β 1.5 -- 1.5 

crossover factor: CR -- 0.8 0.8 

 

TABLE III 

LIMITS OF GENERATORS REACTIVE POWER OUTPUTS IN IEEE 30-BUS 

SYSTEM 

Generators Qimax (MVAr) Qimin (MVAr) 

G1 200 -20 
G2 100 -20 
G5 80 -15 
G8 60 -15 
G11 50 -10 
G13 60 -15 

 
TABLE IV 

LIMITS OF CONTROL VARIABLES IN IEEE 30-BUS SYSTEM 

Control variables Ximax Ximin Step 

VG (p.u.) 1.1 0.95 Continuous 

T 1.1 0.9 0.0001 

QC (p.u.) 0.05 0.0 0.0001 

 

V illustrates the best Ploss (BOV), average Ploss (AOV), worst 

Ploss (WOV) and the standard deviation (SD) obtained by 

three different methods in the 30 trials. The obtained optimal 

values of control variables and average CPU times of 

MCS-DE, CS, and DE are shown in TABLE VI.  The results 

show that employing MCS-DE is less than the amount 

obtained by CS and DE. The obtained minimum value of Ploss 

yielded by MCS-DE is 4.5128 MW and is less by 22.62% 

compared to base case of 5.832 MW. 

In order to verify the efficiency of the proposed algorithm, 

the results obtained by MCS-DE are compared with other 

methods reported in the literatures like GSA [11], HFA [2], 

BBO [31], DE [17], CLPSO [19] and PSO [19] and their 

details are shown in TABLE VII. Judging from the presented 

results, it turns out that active power losses obtained from 

MCS-DE is the least and MCS-DE has better performance 

than other methods. The computational times of the 

compared algorithms are also shown in TABLE VII. It may 

be seen from this table that the computing time of MCS-DE is 

less than other algorithms including GSA [11], CLPSO [19] 

and PSO [19]. TABLE VIII lists the saving percent of the 

reactive power losses (%Psave) for different algorithms. The 

TABLE VIII indicates that a 22.62% decrease in active 

power losses achieved by employing the MCS-DE algorithm, 

which is the biggest reduction of active power losses 

compared to that obtained by the other reported approaches. 
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TABLE V: COMPARISONS OF SOLUTIONS FOR THREE METHODS IN IEEE30-BUS SYSTEM 

Compared item Case1  Case2  Case3 

MCS-DE CS DE  MCS-DE CS DE  MCS-DE CS DE 

BOV 4.5128 4.7316 4.7561  0.1242 0.1261 0.1266  0.0884 0.1823 0.1689 

AOV 4.5131 4.9185 4.9461  0.1251 0.1278 0.1282  0.0933 0.2346 0.2465 

WOV 4.5184 5.0355 5.0489  0.1260 0.1292 0.1297  0.1107 0.2929 0.2998 

SD 0.0031 0.1533 0.1485  0.0009 0.0015 0.0016  0.0117 0.0553 0.0658 

BOV: best objective value; AOV: average objective value; WOV: worst objective value; SD: standard deviation. 

 

TABLE VI: OPTIMAL SETTINGS OF CONTROL VARIABLES IN IEEE30-BUS SYSTEM 

Control variables 
Case1  Case2  Case3 

MCS-DE CS DE  MCS-DE CS DE  MCS-DE CS DE 

VG1  1.1 1.1 1.091909  1.099254 1.1 1.1  1.014657 1.01438 1.025614 

VG2  1.094303 1.092107 1.082942  1.096208 1.084671 1.091488  1.010071 1.007515 1.018501 

VG5  1.074749 1.087273 1.062394  1.099577 1.1 1.081827  1.017975 1.015087 1.033676 

VG8  1.076597 1.075078 1.068903  1.093269 1.053813 1.093246  1.010427 0.993313 0.991545 

VG11  1.1 1.097443 1.098454  1.099887 1.086178 1.1  1.009599 1.04299 1.015005 

VG13  1.1 1.096589 1.1  1.099963 1.061142 1.071683  1.002139 1.038982 1.067512 

T6-9 1.0433 1.0087 0.9980  0.9959 0.9353 1.1000  1.0241 0.9777 0.9627 

T6-10 0.9000 1.0726 0.9105  0.9002 0.9646 1.1000  0.9000 0.9803 0.9436 

T4-12 0.9792 1.1000 0.9404  0.9705 0.9805 0.9000  0.9656 0.9986 1.0848 

T28-27 0.9647 1.0218 0.9521  0.9564 0.9168 0.9427  0.9684 0.9451 0.9570 

QC10  0.0500 0.0500 0.0000  0.0342 0.0123 0.0000  0.0434 0.0178 0.0194 

QC12  0.0500 0.0010 0.0111  0.0150 0.0012 0.0000  0.0233 0.0181 0.0412 

QC15  0.0483 0.0278 0.0003  0.0491 0.0500 0.0179  0.0500 0.0486 0.0162 

QC17  0.0500 0.0061 0.0398  0.0350 0.0500 0.0500  0.0000 0.0165 0.0151 

QC20  0.0402 0.0500 0.0432  0.0335 0.0261 0.0396  0.0500 0.0285 0.0500 

QC21  0.0500 0.0500 0.0229  0.0057 0.0130 0.0295  0.0500 0.0109 0.0000 

QC23  0.0252 0.0500 0.0000  0.0000 0.0159 0.0114  0.0500 0.0195 0.0469 

QC24  0.0500 0.0337 0.0084  0.0117 0.0000 0.0180  0.0500 0.0322 0.0402 

QC29  0.0219 0.0154 0.0246  0.0000 0.0000 0.0056  0.0257 0.0310 0.0144 

BOV 4.5128 4.7316 4.7561  0.1242 0.1261 0.1266  0.0884 0.1823 0.1689 

CPU time (s) 93.6761 95.1646 111.1095  80.4418 86.5848 103.2117  90.2348 95.7710 115.6832 

BOV: best objective value. 

TABLE VII: COMPARISONS OF DIFFERENT APPROACHES FOR IEEE30-BUS SYSTEM WITH MINIMIZING Ploss 

Variables MCS-DE GSA[11] HFA[2] BBO[31] DE[17] CLPSO[19] PSO[19] 

VG1 1.1 1.071652 1.1 1.1000 1.1000 1.1000 1.1000 

VG2 1.094303 1.022199 1.054332 1.0944 1.0931 1.1000 1.1000 

VG5 1.074749 1.040094 1.075146 1.0749 1.0736 1.0795 1.0867 

VG8 1.076597 1.050721 1.086885 1.0768 1.0756 1.1000 1.1000 

VG11 1.1 0.977122 1.1 1.0999 1.1000 1.1000 1.1000 

VG13 1.1 0.967650 1.1 1.0999 1.1000 1.1000 1.1000 

T6-9 1.0433 1.098450 0.980051 1.0435 1.0465 0.9154 0.9587 

T6-10 0.9000 0.982481 0.950021 0.90117 0.9097 0.9000 1.0543 

T4-12 0.9792 1.095909 0.970171 0.98244 0.9867 0.9000 1.0024 

T28-27 0.9647 1.059339 0.970039 0.96918 0.9689 0.9397 0.9755 

QC10 0.0500 1.653790 4.700304 4.9998 5.0000 4.9265 4.2803 

QC12 0.0500 4.372261 4.706143 4.987 5.0000 5.0000 5.0000 

QC15 0.0483 0.119957 4.700662 4.9906 5.0000 5.0000 3.0288 

QC17 0.0500 2.087617 2.30591 4.997 5.0000 5.0000 4.0365 

QC20 0.0402 0.357729 4.80352 4.9901 4.4060 5.0000 2.6697 

QC21 0.0500 0.260254 4.902598 4.9946 5.0000 5.0000 3.8894 

QC23 0.0252 0.000000 4.804034 3.8753 2.8004 5.0000 0.0000 

QC24 0.0500 1.383953 4.805296 4.9867 5.0000 5.0000 3.5879 

QC29 0.0219 0.000317 3.398351 2.9098 2.5979 5.0000 2.8415 

Ploss(MW) 4.5128 4.51431 4.529 4.5511 4.555 4.5615 4.6282 

CPU time (s)/kmax 93.6761/1000 94.6938/200 NRa/200 NRa/300 NRa/500 138/50 130/50 

NRa means not reported in the referred literature. 

 

TABLE VIII: COMPARISONS OF DIFFERENT METHODS FOR MINIMIZING Ploss IN IEEE30-BUS SYSTEM 

Compared item PSO[19] CLPSO[19] BBO[31] DE[17] HFA[2] MCS-DE 

Initial Ploss(MW) 5.812 5.812 5.812 5.842 5.811 5.832 

Best Ploss(MW) 4.6282 4.5615 4.5511 4.555 4.529 4.5128 

%Psave 20.37 21.5158 21.6948 22.0301 22.0616 22.62 

 

TABLE IX: COMPARISONS OF DIFFERENT APPROACHES FOR IEEE30-BUS SYSTEM WITH MINIMIZING Lindex and Vd 

Compared item Best Lindex  CPU time (s)/kmax Best Vd CPU time (s)/kmax 

MCS-DE 0.1242 80.4418/1000 0.0884 90.2348/1000 

CS 0.1261 86.5848/1000 0.1823 95.7710/1000 

DE 0.1266 103.2117/1000 0.1689 115.6832/1000 

ABC[2] NRa NRa/200 0.135 NRa/200 

FA[2] NRa NRa/200 0.1157 NRa/200 

BBO[31] NRa NRa/300 0.0926 NRa/300 

DE[17] 0.1246 NRa/500 0.0911 NRa/500 

HFA[2] NRa NRa/200 0.098 NRa/200 

NRa means not reported in the referred literature 
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2) Case2: Minimization of Lindex for IEEE30-bus system 

In this case, the proposed MCS-DE approach has been 

applied for enhancement of voltage stability i.e. minimization 

of Lindex which is defined as Eq.(5), Eq.(10) and Eq.(20). 

Results obtained by CS, DE and the proposed MCS-DE 

algorithm are also presented in TABLE V. The optimal 

values of control variables and average CPU times of the 

three algorithms for case 2 also are shown in TABLE VI. It is 

also observed that MCS-DE performs best after that it 

follows CS and DE. The comparisons of the results obtained 

from the reported methods in the literatures are shown in 

TABLE IX. Form TABLE IX, one can see that the value of 

Lindex obtained from MCS-DE is the lowest among all the 

methods. 

3) Case3: Minimization of Vd for IEEE30-bus system 

In this case, the proposed MCS-DE has been applied for 

improvement of voltage profile i.e. minimization of voltage 

deviation (Vd) which is defined as Eq.(11) and Eq.(20). The 

best, average and worst Vd and the standard deviation yielded 

by CS, DE and the proposed MCS-DE among 30 runs of 

solutions are summarized in TABLE V. The optimal values 

of control variables and average CPU times obtained from 

the three methods are given in TABLE VI. The Vd obtained 

by the proposed MCS-DE is compared to those reported in 

the literatures like ABC [2], FA [2], BBO [31], DE [17] and 

HFA [2] are shown in TABLE IX. It is seen from TABLE IX, 

that Vd obtained from MCS-DE is the lowest among all other 

methods. It is also observed that MCS-DE approach performs 

best after that it follows HFA, DE, BBO, FA and ABC. 

When considering average convergence characteristics for 

different cases and to illustrate the convergence of the 

proposed MCS-DE algorithm, fitness values of different 

objectives with 1000 iterations are plotted in Figs.3–5. It is 

seen that the convergence speed of the proposed MCS-DE 

algorithm converges rapidly towards the optimal solution and 

gives better improvement of transmission power losses, 

voltage stability index and voltage deviation profiles 

compared to CS and DE algorithm. 

Comparative distribution of the values of CS, DE and the 

proposed MCS-DE in the 30 trials for different objectives are 

presented in Fig.6–8. From these figures it may be observed 

that the convergence profile of Ploss, Lindex and Vd obtained 

by the proposed MCS-DE approach for this test system is 

promising one and MCS-DE has a stronger robustness. This 

is consistent with the standard deviation in TABLE V. 

 

 
Fig.3. Comparative average convergence curves of power losses for 

IEEE30-bus system 

 
Fig.4. Comparative average convergence curves of Lindex for IEEE30-bus 

system

 
Fig.5. Comparative average convergence curves of voltage deviation for 

IEEE30-bus system 

 
Fig.6. Comparative distribution of the values of power losses for IEEE30-bus 

system 
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Fig.7. Comparative distribution of the values of Lindex for IEEE30-bus 

system 

 
Fig.8. Comparative distribution of the values of voltage deviation for 

IEEE30-bus system 

 

C. Example 2: IEEE 57-bus test system 

The standard IEEE57-bus system is shown in Fig.9 and 

the detailed data are given in [32, 33]. Totally this system 

has 57 buses, including seven generators (at the buses 1, 2, 

3, 6, 8, 9, 12), seventeen transformers and three shunt 

compensators (at buses 18, 25 and 53); therefore, the search 

space of this case system has twenty seven dimensions. The 

limits of reactive power of generators are seen in TABLE X 

and TABLE XI lists the minimum and maximum limits for 

the control variables. For PQ buses, the lower and upper 

voltage magnitude limits are 0.94 and 1.06 p.u. The initial 

total active power losses are 27.864 MW which is calculated 

by Matpower3.2. 

1) Case4: Minimization of Ploss for IEEE57-bus system 

For this case, the solution result for Ploss minimization 

objective are tabulated in TABLE XII. The optimal control 

variables and average CPU times of MCS-DE, CS, and DE 

are shown in TABLE XIII. In order to verify the efficiency 

of the proposed MCS-DE, the concerned performance 

indexes including the best Ploss, the worst Ploss, the average 

Ploss, the standard deviation and the saving percent of the 

reactive power losses (%Psave) for 30 independent runs are 

compared with other methods reported in the literatures like 

EC-DE [33], SOA [32] and L-SaDE [32] and their details 

are shown in TABLE XIV. TABLE XIV demonstrates that a 

power loss reduction of 16.49% (from base case of 27.864 

MW to 23.269 MW) is accomplished by using the proposed 

MCS-DE approach, which is the biggest reduction of power 

losses compared to that obtained by the other reported 

approaches. Moreover, the standard deviation of MCS-DE is 

the lowest. It turns out that MCS-DE algorithm literally has 

better performance and robustness than other algorithms. 
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Fig.9. Network configuration of IEEE57-bus system 

 

TABLE X 

REACTIVE POWER GENERATION LIMITS IN IEEE57-BUS SYSTEM 

Generators Qimax (MVAr) Qimin (MVAr) 

G1 200 -140 
G2 50 -17 
G3 60 -10 
G6 25 -8 
G8 200 -140 
G9 9 -3 
G12 155 -150 

 
 

TABLE XI 

LIMITS OF CONTROL VARIABLES IN IEEE 57-BUS SYSTEM 

Control variables Ximax Ximin Step 

VG (p.u.) 1.1 0.9 Continuous 

T 1.1 0.9 0.01 

QC18(p.u.) 0.2 0.0 0.005 

QC25(p.u.) 0.18 0.0 0.006 
QC53(p.u.) 0.18 0.0 0.006 
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TABLE XII 

COMPARISONS OF SOLUTIONS FOR THREE METHODS IN IEEE 57-BUS SYSTEM 

Compared item 
Case4  Case5 

MCS-DE CS DE  MCS-DE CS DE 

BOV 23.2690 23.7592 23.7476  0.2658 0.2673 0.2725 

AOV 23.8450 24.6163 24.8872  0.2711 0.2768 0.2806 

WOV 24.4244 25.5375 26.3291  0.2758 0.2832 0.2925 

SD 0.5777 0.8893 1.2937  0.0050 0.0080 0.0100 

CPU time(s) 283.0721 290.9116 292.0554  282.9279 283.5402 287.1492 

BOV: best objective value; AOV: average objective value; WOV: worst objective value; SD: standard deviation. 

 

 
 

TABLE XIII 

OPTIMAL SETTINGS OF CONTROL VARIABLES IN IEEE57-BUS SYSTEM 

Control variables 
Case4  Case5 

MCS-DE CS DE  MCS-DE CS DE 

VG1 1.085241 1.099199 1.099702  1.100000 1.100000 1.100000 

VG2 1.074555 1.086942 1.088470  1.081606 1.085585 1.084406 

VG3 1.063154 1.092038 1.079738  1.083648 1.088533 1.083170 

VG6 1.057265 1.090687 1.082360  1.077414 1.075027 1.093528 

VG8 1.075219 1.099870 1.097615  1.096466 1.096144 1.100000 

VG9 1.055731 1.087465 1.078957  1.098056 1.095393 1.091404 

VG12 1.049382 1.098502 1.100000  1.100000 1.099930 1.100000 

T4-18 1.02 1.06 1.10  0.92 1.10 0.94 

T4-18 1.08 1.02 1.10  1.05 1.10 1.10 

T21-20 1.06 0.95 1.03  1.00 0.90 1.10 

T24-25 0.91 0.91 1.10  0.90 1.10 0.97 

T24-25 1.10 1.10 0.92  1.10 0.92 0.90 

T24-26 1.01 1.07 1.10  1.10 1.10 0.94 

T7-29 1.00 1.10 1.10  0.96 0.99 1.10 

T34-32 0.94 0.94 0.94  0.93 0.91 0.93 

T11-41 0.90 0.95 0.90  0.94 0.90 0.95 

T15-45 0.99 0.99 1.01  0.97 1.02 0.96 

T14-46 0.97 1.04 0.99  0.99 0.95 0.98 

T10-51 0.98 1.08 0.97  0.99 1.00 1.02 

T13-49 0.94 0.99 0.98  1.02 0.99 1.07 

T11-43 0.99 0.99 1.06  1.04 1.10 1.05 

T40-56 0.99 1.06 1.09  0.91 1.09 1.06 

T39-57 0.97 0.90 0.91  0.95 0.94 1.10 

T9-55 1.00 1.10 1.04  1.10 1.10 1.06 

QC18 0.135 0.185 0.195  0.000 0.195 0.125 

QC25 0.108 0.174 0.150  0.072 0.084 0.150 

QC53 0.132 0.180 0.156  0.180 0.150 0.180 

BOV 23.269 23.7592 23.7476  0.2658 0.2673 0.2725 

CPU time(s) 283.0721 290.9116 292.0554  282.9279 283.5402 287.1492 

BOV: best objective value. 

 

TABLE XIV 

COMPARISONS OF DIFFERENT METHODS IN IEEE57-BUS SYSTEM WITH MINIMIZING Ploss 

Methods Initial Ploss Best Ploss Average Ploss Worst Ploss Standard deviation %Psave 

MCS-DE 27.864 23.269 23.845 24.4244 0.5777 16.49 

CS 27.864 23.7592 24.6163 25.5375 0.8893 14.73 

DE 27.864 23.7476 24.8872 26.3291 1.2937 14.77 

EC-DE[33] 27.8637 23.3403 23.7920 24.5325 0.6019 16.23 

SOA[32] 28.462 24.6248 25.741 28.7541 2.1360 13.48 

L-SaDE[32] 28.462 24.6712 26.0983 28.2335 1.7928 13.32 
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Fig.10. Comparative average convergence curves of power losses for 

IEEE57-bus system 

 
Fig.11. Comparative average convergence curves of Lindex for IEEE57-bus 

system 

 
Fig.12. Comparative distribution of the values of power losses for 

IEEE57-bus system 

 
Fig.13. Comparative distribution of the values of Lindex for IEEE57-bus 

system

 

2) Case5: Minimization of Lindex for IEEE57-bus system 

The statistical comparison of the results obtained from 

MCS-DE, CS, and DE are shown in TABLE XII and the 

optimal control variables and average CPU times of three 

algorithms for case 5 are also presented in TABLE XIII. 

From this table it may be inferred that the proposed 

MCS-DE yields better results as compared to CS and DE. It 

is also observed that MCS-DE approach performs best after 

that it follows CS and DE. 

Furthermore, in order to illustrate the proposed MCS-DE 

algorithm also has better convergence in larger IEEE57-bus 

power system, the average convergence characteristics of 

different objectives for two cases with 1500 iterations are 

plotted in Figs.10–11. Comparative distribution of the 

values of CS, DE and the proposed MCS-DE in the 30 trials 

for different objectives are presented in Fig.12–13. From 

these figures it may be observed that the convergence profile 

for the proposed MCS-DE approach for this test system is 

also promising one. 

VI. CONCLUSION 

In this paper, the hybrid MCS-DE algorithm has been 

proposed, and demonstrated successfully applied to solve 

nonlinear, non-convex ORPD problem. It is tested and 

examined with different objective functions such as 

minimization of active power losses and enhancement of 

voltage stability and voltage profile for standard IEEE 

30-bus and 57-bus test systems. Statistical analysis confirms 

the high level of consistency and robustness of MCS-DE in 

solving ORPD problem of power systems. It is verified that 

the proposed MCS-DE approach is a global algorithm and 

has strong ability to jump out of local optimum.  

Furthermore, MCS-DE convergence speed than CS and DE 

algorithms and can discover higher quality solution for the 

problems studied in this paper with comparison other 

previously reported methods in the literature for power 

systems.  
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