
 

 
Abstract—Coarse-grained object classification with simple 

backgrounds has become quite mature, but the fine-grained 
object classification task against complex backgrounds is still 
challenging because there are only subtle differences in the local 
areas between different classes of fine-grained objects. In this 
paper, we propose a novel multi-scale convolutional neural 
network (msCNN) architecture that used for fine-grained object 
classification, which can extract discriminate local features at 
different scales in pyramid scale space. And a simplified bilinear 
model is used to carry out the end-to-end training for object 
classification. In the training phase, we design a distributed 
learning method with sample penalty term based on the sample 
distribution to optimize the network, which can improve the 
generalization ability of the network. In addition, we avoid using 
costly manual annotations like bounding box throughout the 
training and classification process. Finally, we present extensive 
experiments and visualizations on CUB-200-2011 dataset and 
ILSVRC2012_Dog dataset that analyze the effects of the bilinear 
msCNN model on the fine-grained object classification task. The 
classification accuracy shows that the significant improvement 
of our msCNN model on the fine-grained object classification. 
 

Index Terms—fine-grained object classification, multi-scale 
CNN, weakly-supervised, sample penalty 
 

I. INTRODUCTION 

ine-grained object classification is a challenging research 
topic in the field of computer vision, which aims to 

classify subordinate-level categories under basic-level 
category, such as different bird types [1], dog breeds [2], 
flower species [3], aircraft models [4] etc. As shown in Fig. 1, 
the visual differences between different categories are very 
small, and are easily affected by the following conditions: the 
position and the posture of fine-grained object, the viewpoint 
of shot and the illumination conditions. In the box on the left, 
Indigo Bunting and Lazuli Bunting are two different breeds of 
birds that may be difficult to distinguish for people who are 
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not experts. However, coarse-grained object classification is 
relatively simple, e.g., most people can easily recognize that 
the box on the left contains birds while the box on the right 
contains dogs. In particular, the difficulty of fine-grained 
object classification comes from the fact that discriminative 
features are focused not just on foreground object, but more 
importantly on the parts of object (like the body and wing of a 
bird) [5]. How to find and make use of the useful local area 
information is the key to the fine-grained object classification. 
Therefore, most of the fine-grained object classification 
algorithms follow this principle: locating the key area of 
foreground object (“where”) to extract effective features 
(“what”). 

In the fine-grained object classification task, finding 
foreground object and key parts can be seen as a two-level 
attention process (object-level and part-level). And they 
heavily rely on costly manual labels like bounding box for 
object-level process and part landmarks for part-level process. 
With the help of these information, the background noise can 
be eliminated and the foreground object can be effectively 
detected. Some CNN-based models have been shown great 
improvements on the earlier work by using hand-crafted 
features [6, 7, 30, 33]. The disadvantages of this method 
include not only the difficulty of obtaining valuable label 
samples, but also the optimal choice of marking information 
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Fig. 1. Fine-grained object categories vs. Coarse-grained object categories. 
Fine-grained object categories (in the box on the left) include visually 
similar objects, e.g., to recognize Indigo Bunting and Lazuli Bunting. 
Coarse-grained object categories (in the box on the right) typically include 
visually distinct objects such as birds and dogs. 
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for fine-grained object classification. 
On the other hand, feature extraction ability is the key 

factor to determine the accuracy of image classification. 
Finding a more distinguished feature has always been the goal 
pursued by researchers. Some of the outstanding traditional 
feature descriptors are artificially designed like VLAD [8] or 
Fisher vector [9] with SIFT features [10]. By replacing SIFT 
with features extracted from convolution layers of a deep 
CNN pre-trained on ImageNet [11], some of the past 
classification models achieve state-of-the-art results on many 
object classification tasks [12, 27, 46]. These algorithms are 
easily applied to a variety of datasets because they do not rely 
on manual annotation information, such as bounding boxes. 
But their performance is lower than the best part-based 
architectures, especially when the background of object is 
complex. In addition, the effect of end-to-end training of these 
models has not been adequately studied. 

In this paper, our main contribution consists of two parts: 1. 
we build a bilinear msCNN architecture that improves feature 
extraction ability on the basis of the traditional CNN; 2. we 
design a distributed learning method with sample penalty term 
to improve the generalization ability of the network based on 
the sample distribution. By simulating the automatic zooming 
function of biological vision and the construction of pyramid 
scale space in the SIFT feature extraction process, we add the 
scale space to the whole CNN structure and adjust the scale 
automatically, which in order to detect the key part areas and 
improve the feature extraction ability. Then we use a 
simplified bilinear model [13] to couple the two neural 
networks for feature extraction and object classification. It 
consists of two feature extractors based on msCNN whose 
outputs are connected by fully connected layers. Although we 
do not explore this connection further, this architecture is 
related to the two stream hypothesis of visual processing in 
the human brain [14] where contains two main pathways or 
streams. The dorsal stream (“where” pathway) is related to 
process the object’s spatial location. The ventral stream 
(“what” pathway) is related to object identification and 
recognition. In the training phase, we build an anomalous 
sample penalty mechanism according to the sample 
distribution to establish an optimized feature boundary, which 
can improve the generalization ability of the network. 

Our experimental results demonstrate the effectiveness of 
the bilinear msCNN architecture (in Section VI). With the 
only use of category labels of image, we reduce the gesture 
classification error rate of CIFAR-100 dataset from 18.5% to 
13.2% under single msCNN. On the fine-grained dataset of 
CUB200-2011 [15] and ILSVRC2012_Dog [16], we reach the 
classification accuracy of 85.3% and 74.9% in the bilinear 
msCNN model, respectively, better than other methods that 
even use stronger supervisions. The rest of the paper is 
organized as follows. We first introduce some related works 
of CNN for feature extraction and fine-grained object 
classification in Section II. Details of the msCNN architecture 
are described in Section III. The distributed learning method 
with sample penalty term is introduced in Section IV and the 
training process of bilinear msCNN model is covered in 
Section V. Finally, we discuss what we learned, our 
conclusions and future works in Section VII. 
 

II. RELATED WORKS 

Fine-grained object classification has been paid more and 
more attention by researchers recently [1, 2]. Previous works 
mainly focus on the following three aspects to improve the 
classification accuracy: 1. foreground object localization; 2. 
discriminative features extraction for fine-grained objects; 3. 
human in the loop. Since our purpose is automatic 
fine-grained object classification, we focus on the related 
works of the first two aspects. In the first part, we introduce 
some of the improvement work of traditional CNN in image 
classification. In the second part, we introduce the CNN based 
application on the fine-grained object classification with weak 
supervision. 

A. Traditional CNN 

In recent years, the deep learning technique, represented by 
CNN, transforms the original data into a high-level expression 
to enhance the most discriminant features and to weaken the 
non-correlation features through the combination of nonlinear 
model [17]. Therefore, it has obvious advantages in dealing 
with multi-dimensional signals such as images. In the past 
time, CNN made the best results in the application of 
small-scale image problems like handwriting recognition, but 
the application of large-scale images cannot achieve the 
desired results. In order to solve this problem, the depth of the 
neural network [18] and the selection of hyperparameters [19] 
are gradually being discussed. In theory, it is easier to learn 
more abstract and complex features with a deeper structure of 
the convolution neural network. As the representative of CNN, 
VGGNet [20] and GoogLeNet [21] have also made 
impressive achievements in a variety of image identification 
areas. But these structures are difficult to get effective 
features and are easy to overfit in small sample datasets, 
which require ultra large datasets to get effective training. In 
order to solve the overfitting problem, the dropout [22] is used 
to prevent co-adaptation of feature detectors by omitting some 
perceptions from the hidden layer on each training instance. 
This method is effective, but the theoretical guidance and 
mathematical proof is not yet perfect. Another technique, 
batch normalization [23], reduces the overfitting and 
increases the training speed of the network. The strategy of 
locating discriminant regions and excluding background 
disturbances provides an excellent breakthrough for solving 
the problem [24]. However, the image recognition network 
will lose the speed advantage of end-to-end network structure 
after adding the pre-segmentation step. 

B. CNN-based Fine-grained Object Classification 

Two level attention algorithm [25] is the first attempt to 
complete fine-grained object classification task without using 
additional label information that solve the problem of how to 
detect the local area in the case of only class labels. However, 
the accuracy of local region obtained by clustering algorithm 
in this method is very limited. Zhang [26] proposed an 
algorithm that can select the discriminative local region 
feature from CNN that reduces the computational overhead 
based on the selective search method [47]. But these features 
contain a large number of irrelevant information, which need 
to remove noise. Simon et al. [28] designed a novel local area 
detection and extraction program. By visualizing the features 
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extracted by convolution layers, Simon found that regions 
with relatively strong responses often correspond to some of 
the potential local regions in the original image. The 
convolutional activation features are regarded as detection 
scores, and the regions with high response value represent the 
local areas detected in the original image. Branson [29] 
proposed pose normalized CNN in order to solve the 
interference of pose information. The algorithm makes use of 
the prototype to align the image and extracts the features in 
different layers for different regions, which in order to 
construct a more discriminative feature representation. 
Another important work in multi-scale feature extraction task 
is MOP-CNN [36], which extracts unordered multi-scale 
features of image by using CNN. Then, through the PCA 
dimension reduction and VLDA coding, the three level 
features are cascaded into 3*4096 dimensional features. 
Finally, some better classification results are achieved by 
using the linear one-vs-all support vector machine (SVM). 
Lin [13] designed a novel bilinear CNN model that achieves 
the classification accuracy of 84.1% in CUB200-2011 dataset. 
The two networks coordinate with each other to accomplish 
the most important tasks in the process of fine-grained object 
classification: region detection and feature extraction. Our 
approach employs a similar simplified bilinear model, and the 
feature extraction and object classification is completed by an 
end-to-end training structure without using SVM. 
 

III. THE DETAILS OF MSCNN 

In this section, we introduce the construction of bilinear 
msCNN in detail and explain the rationality of the structure 
from many aspects. The overall framework, as well as the two 
training strategies used in the training process are presented in 
each part. 

A. Structure of msCNN 

In the whole structure, we add Gaussian smoothing layers 
compared to the traditional CNN architecture (e.g., Alexnet 
and VGGNet). The first hidden layer of the structure is set to 
the Gaussian smoothing layer (G1), then add the Convolution 
layer (C1), Down sampling layer (P1), the Gaussian 
smoothing layer (G2), and repeat until the three Fully 
connected layers (Full), and finally we get the results through 
the Softmax layer (see Fig. 2). In each Gaussian smoothing 
layer, we use Gaussian convolution kernels in different scales 
to generate the scale maps and add the feature maps of the 
upper layer to the current layer as the original scale map. The 
feature of the generated scale map is extracted by the 
convolution layer. Finally, multi-scale feature extraction is 
performed on the scale space constructed by down sampling 
layer and Gaussian smoothing layer. The reason for using the 
Gaussian convolution kernels is that it is the only correct 
kernel function to approximate scale space. 

In the first Gaussian smoothing layer, a number of Gaussian 
convolution kernels are set, and the number of Gaussian 
convolution kernels corresponding to each feature map is 
increased as the number of layer increases. It can be found in 
some studies on visualization of neural network [31, 45], the 
bottom layer extracts some low-level features of the image, 
such as colors and edges. The middle layer extracts more 

complex features such as texture. Based on different objects, 
high layers extract more abstract and more complex features. 
We argue that the more complex features require more scales 
to understand. The specific structure of each layer is shown in 
Fig. 2. 

Gaussian smoothing layer. A radial basis function (RBF) 
is a real-valued function whose value only depends on the 
distance from the origin. As the most commonly used radial 
basis function in image processing, Gaussian kernel function 
has the following excellent properties: 1. Rotational 
symmetry, that is, the smooth ness of the filter in all directions 
is the same; 2. Single valued function. It is shown that the 
weighted mean of the neighborhood pixel of the Gaussian 
filter is used to replace the pixel value, and the weight of each 
neighborhood pixel is monotonically increasing with the 
distance between the point and the center point; 3. The width 
of the Gaussian filter, which determines the degree of 
smoothness, is characterized by the parameter σ, and the 
relationship between σ and smoothness is very simple. The 
larger the σ, the wider the band of the Gaussian filter, then the 
better the degree of smoothness. These are also the reasons 
why we choose the Gaussian kernel function to establish the 
scale space. The Gaussian function g controlled by variance 
σ2 is defined by: 
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where x, y represents the position of the pixel in the image. 
Using the formula can produce the corresponding Gaussian 
averaging operator. As shown in Fig. 3, the size of a typical 
Gaussian filter is 5×5 and the variance σ is 1. 

Convolution layer. The main function of convolution 
layers in CNN architecture is to extract features by 
convolution operating of the feature map in the upper layer. In 

 
Fig. 2. The msCNN architecture with Gaussian smoothing layers. The scale 
map in the blue box is the original feature map without Gaussian smoothing. 

0.002 0.013 0.220 0.013 0.002 
0.013 0.060 0.098 0.060 0.013 
0.220 0.098 0.162 0.098 0.220 
0.013 0.060 0.098 0.060 0.013 
0.002 0.013 0.220 0.013 0.002 

Fig. 3. A typical Gaussian filter with 5×5 size (σ=1.0). 
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order to avoid overfitting and increase the generalization 
ability of the network, it is not necessary for each neuron to 
perceive the global image, whereas the neuron only needs to 
be aware of the local area. Then the local information is 
synthesized at the higher level and the global information is 
obtained. In addition, the number of parameters is reduced by 
sharing the weights and bias of convolution kernel. Filter 
parameters are randomly initialized, and will be changed to 
become colour, texture or other specific feature extractors. 
The forward propagation of convolution layer is given by: 

 

)(  
i

iijjj xbfy                           (2) 

 
where xi is the ith input feature map, and yj is the jth output 
feature map. ωij is the weight coefficients of the convolution 
kernel. bj is the bias of the jth output feature map. f (·) 
represents activation function. * denotes the convolution 
operation. The convolution layers in our architecture are 
almost indistinguishable from the traditional network, except 
for the number and size of convolution kernels. 

Down-pooling layer. The down-pooling layer usually uses 
two functions, as shown in Fig. 4. Our architecture uses 
max-pooling for a reason that it preserves more texture 
information. There are two sources of errors in the feature 
extraction process in CNN: one is that the increased estimated 
variance due to the limited size of the neighborhood, another 
one is the deviation of the estimation error caused by the 
precision errors of convolution layer parameters. We reduce 
first types of error by using max-pooling filter. The 
mean-pooling layer reduces the second types of error while 
preserving more background information, which is what we 
do not want to see. 

Analysis of structure. In the msCNN structure, we add 
three fully connected layers in front of the output layer, which 
have been abandoned in many current CNN structures. 
Specific reasons will be given in Section IV. Each kind of 
layer is introduced in the architecture, and the local response 
normalization layer has been abandoned. Next, we analyze 
the significance of this structure. In some traditional network 
architectures [19], the weights of convolution layer are 
initialized as Gaussian convolution kernels, but which do not 
have the advantages of Gaussian smoothing layer. Because in 
the training process, parameters adjustment in each layer 
leads to the collapse of pyramid scale space immediately. And 
the Gaussian smoothing layer only adjusts the size of the scale 
by training, so that the entire learning process is carried out in 
a stable scale space. On the other hand, the SIFT algorithm is 
not clearly defined and contains several free sets of 
parameters, which needs further improvements during testing 
phase. So we build the optimal scale space by training neural 
network to solve the problem. In the training process, the 
network adjusts the scale of feature maps in a bad 
convergence by observing the accuracy of validation set and 
finally establish the most appropriate scale space for feature 
extraction (see Fig. 5). Specifically, there are many separable 
features that are easy to distinguish for coarse-grained image 
classification tasks, such as cars and aircrafts. But for the 
fine-grained image classification such as different types of 
aircraft in a chaotic background, multi-scale analysis has a 
significant effect in this case that the feature configuration is 
almost the same. 

B. Selection of Loss Function and Activation Function 

The network is finally output using softmax layer and 
log-likelihood function is used as the loss function. Suppose 
that neurons in the last layer of a multi-layer neural network 
are linear neurons, which means the outputs are simply aj

L=zj
L. 

For a training example x, if we use the quadratic loss function, 
the output error δL is given by: 

 
Fig. 4. Mean-pooling function and max-pooling function. 

 
(a) 

 
(b) 

Fig. 5. Comparison of pyramid scale space: (a) pyramid scale space in SIFT 
algorithm and (b) pyramid scale space in the msCNN architecture. 
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In the output layer, the partial derivatives of loss function on 
the weights and bias are given by: 
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where C is the quadratic loss function, the entries of the 
weight matrix ωL are just the weights connecting to the lth layer 
of neurons, that is, the entry in the jth row and kth column is 
ωL

jk. Bj
L is the jth components of the bias vector bL. And finally, 

we define an activation vector aL whose components are the 
activations aj

L. y is the corresponding desired output. n is the 
total number of training samples. It is shown that if the output 
neuron is linear, the quadratic loss function will no longer 
cause the learning rate to decline. In this case, the quadratic 
loss function is an appropriate choice. And the cross-entropy 
function and log-likelihood function have the same property. 
In fact, the cross-entropy function [32] is a better loss function 
when the output neuron activation function is a sigmoid 
function. Due to the random initialization of the network 
weights and biases may produce considerable errors for some 
training samples, the quadratic loss function will lead to a 
decline in learning speed. Softmax function is a natural way 
to ensure that the output activations form a probability 
distribution, which has monotonicity and non-locality. The 
combination of softmax and log-likelyhood function is more 
suitable for scenarios where the output activation value needs 
to be interpreted as a probability. It is more effective in the 
classification of fine-grain objects with overlapping features. 
The final experiment also proves the effectiveness of the 
combination. 

Parametric Rectified Linear unit [43] (PReLu) is set to be 
activation function as in (6), which corrects the data 
distribution and avoids the neuronal necrosis caused by an 
inappropriate initialization, that is, some neurons cannot be 
trained after being set zero. 
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where α is a small fixed value (e.g. 0.25). 

C. Bilinear msCNN Model for Fine-grained Object 
Classification 

Bilinear CNN model [13] is a classification model that 
solves several problems of both part-based and texture 
models. Here we employ a simplified bilinear model for 
image classification. It consists of two feature extractors 
based on msCNN and is classified by fully connected layer 
and softmax layer (Fig. 6). The two msCNN are linear in 
parallel, and one of them is used to locate the critical region of 
the object in the ideal state, and the other is used to extract the 
feature. First of all, a quadruple B = (fA, fB, P, C) is defined as 

bilinear model for fine-grained object classification. Here fA 
and fB are feature extraction functions (msCNN). P represent 
the last pooling function for connecting two networks and C is 
the softmax function used to classification. A feature function 
is a feature mapping f: I→Rc×D that takes an image I, which 
maps the input image I to a c×D feature. The bilinear 
combination feature of fA and fB is given by bilinear (fA, fB) = 
fA

TfB. Then the resulting bilinear feature vector x in fully 
connected layer is passed through softmax layer. 

Since the structure of the entire bilinear msCNN model is a 
directed acyclic graph, the parameters can be trained by 
back-propagating the gradients of the loss function 
(log-likelihood). Suppose that the outputs of two msCNN are 
matrices A and B of size L×M and L×N respectively, then the 
bilinear combination feature is x = ATB of size M×N. Let dl / 
dx be the gradient of the loss function l, then according to the 
chain derived rule we can get: 
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The gradient of classification layer is simple and clear, and 
the gradient of the last pooling layer before fully connected 
layers can be computed according to the chain derived rule, as 
shown in (7).  
 

IV. DISTRIBUTED LEARNING METHOD WITH SAMPLE 

PENALTY TERM 

After the network structure has been set up, we give a 
detailed introduction to the improved training methods in this 
section.  

Aiming at the problem that the training of neural networks 
is slow and difficult to converge in the appropriate position, 
we design a distributed multi learning rate training method. 
Inspired by light propagation properties, we consider that 
each octave is different medium in the error back propagation 

 
Fig. 6. Bilinear msCNN model. 

 
Fig. 7. Influence of learning rate under different scales. 
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process. Just like light travels in different mediums at 
different speeds, we use different learning rates in each octave 
in the training progress and adjust them according to the 
change of the scales. In the training process of the traditional 
CNNs, the weights in the front hidden layers are more 
difficult to train than the that in the hidden layers behind it. So 
we used a larger learning rate on the small scale front hidden 
layer, and a smaller learning rate corresponding to the large 
scale hidden layer. For example, as a function of one 
parameter w, the scale of the different layer may lead to 
different densities of the valley. At this time a different 
learning rate will bring different results, as shown in Fig. 7. 
The specific learning rate needs to be set according to the 
specific dataset, and we adjust the learning rate according to 
(8). 
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where 

iold  and 
inew  is the learning rate before and after the 

update of  ith layer, 
kold  and  

knew  is the corresponding 

scales of kth scale map before and after the update of ith layer. 
With the iteration of training, the scale becomes larger and the 
image becomes blurred, the learning rate will gradually 
decrease according to (8), which is consistent with our 
intuitive understanding. 

We apply this learning rate adjustment criterion based on 
the well-known back-propagation (BP) algorithm [35]. The 
current CNN training method consists of two parts: 1. the 
training samples are propagated forward to the final output 
layer of the network, and finally the loss function is calculated; 
2. The error is transmitted back layer by layer from top to 
bottom, and weights are updated in respective layers based on 
the back-propagated errors. Finally, the log-likelihood loss 
function in the output layer is given by 
 

L
yaC ln-                                     (9) 

 
When training the network in general, there are multiple 
images per batch. Then the loss function becomes 
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where m is batch size. When back propagation occurs, the 
first step is to calculate the loss gradient by the partial 
derivative in accordance with (11). 
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where zL represent the weighted input to the neurons in layer L. 
Then update the weights and biases of each layer according to 
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where mt is momentum, αt is the learning rate in octave t. 

A. Optimized Feature Boundary 

In this part, we explain why we still use the fully connected 
layers at the end of the network, and how to use it to seek the 
optimal feature boundary. 

At present, lots of CNNs have abandoned the use of fully 
connected layer, like Deep Residual Network [34]. Fully 
connected layers have a large number of parameters, easily 
lead to overfitting. And the removal of fully connected layer 
makes the whole network similar to a multi-feature voting 
mechanism, which has a better generalization ability for large 
and complex image samples. The network with fully 
connected layer is similar to the single feature classification 
mechanism, which is better for fine-grained images with 
common features. So we still keep it in the structure. Suppose 
that a fully trained, overfitted CNN model has a feature 
distribution of samples as shown in Fig. 8. The circle and 
triangle represent the eigenvectors of two kinds of samples, 
respectively. In this case, wrong and invalid features may be 
extracted from these anomalous samples due to noise and the 
specificity of the sample itself. In order to make these samples 
correctly classified, the training method based on the 
minimization of loss function can only forcibly fit them. Thus 
weakening the feature extraction and classification ability of 
CNN, results in the overfitting problem. In the case of 
insufficient samples, we believe that these anomalous samples 
will have a negative impact on training and produce 
misclassified areas as shown in the shaded section of Fig. 8. 
Therefore, the loss function based on the anomalous degree is 
used to train the network. Based on this assumption, we 
believe that these features extracted from anomalous samples 

 
Fig. 8. Feature distribution of samples under a preliminary model. 
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centered together with features extracted from samples of 
other labels, as shown in the black dashed circle in Fig. 8. 

Therefore, K-nearest neighbor algorithm is used to 
determine the anomalous degree μi of sample xi. As shown in 
(15), the anomalous degree μi of sample xi is determined by 
the proportion of different classes of samples in the 
surrounding k samples. 
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where ci is the number of samples of the same category in the 
nearest k samples, and the distance measure is Euclidean 
distance. 0.01 is added to numerator and denominator to 
avoid the case where anomalous degree is equal to 0. Then we 
can obtain the judgement method of anomalous samples from: 
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where U is the threshold of anomalous degree and ranges 
from 0 to 1, with closed intervals. Then we design the penalty 
factor ηi that used to update the loss function according to the 
threshold U and the anomalous degree μi of sample xi, as in 
(17). 
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where ε represent the step function. Then we can get the new 
loss function fnewloss_i for each sample xi according to (18). 
 

ilossiinewloss ff __ )1(                       (18) 

 
where floss_i is the original loss function, such as the 
cross-entropy function and log-likelihood function. 

B. Drop-path and Freeze-path Technique 

In this section, we introduce a strategy for optimizing the 
msCNN structure. In the training phase, we use dropout 
technique in convolution layer that is adjacent to the Gaussian 
smoothing layer, which is often only applied to the fully 
connected layers in the traditional structure. This means that a 
portion of feature map with smaller dropout weight will be 
removed at each convolution layer after several training 
epochs. The specific application strategy is that we use 
dropout when the classification error rate of the validation set 
is no longer decreasing. In this case, we think that the feature 
extraction ability of network is caught in the bottleneck, and 
some indistinguishable features interfere with the 
classification of networks. In other words, the network no 
longer continues to learn features, but begins to overfit the 
training samples. 

There are two ways to implement dropout technique: one 
way called drop-path is to directly remove the feature map in 
each convolution layer, which means the weights of the 
feature map are set to zero and no longer being trained at the 

same time. Another way called freeze-path is to stop adjusting 
the weights of feature maps, that is, to maintain it unchanged. 
In the final experiment, the convergence rate and the 
classification accuracy of the two methods are compared. In 
order to determine the importance of a feature map in the 
msCNN structure, dropout-weight DW is defined as a 
comprehensive consideration for each feature map in (19). 
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where DWi

t is the Dropout-Weight of tth feature map in ith 
convolution layer of the architecture in octave t, and wi,j is the 
jth weight coefficient of feature map in the ith layer, k is the 
number of weight parameters in each layer. βi is the weight 
coefficient of each convolution layer (β1=1.2, β2=0.7, β3=0.9). 
We consider the weights of adjacent two layers as the basis for 
judging the importance of the scale map. The parameters in 
current layer have the highest weights, and the latter two 
layers have higher weights than the previous two layers. 

Instead of extracting the effective features and then classify, 
the training of small datasets easily leads to a phenomenon 
that the top-level neuron and the input data have a 
point-to-point memory. If the feature cannot be extracted, 
mandatory error monitoring training will make the model 
directly fit the input data. Dropout technique used in the 
convolution layer can dropout the unstable features through 
the training again and again. A good foundation can bring 
beneficial effects to the abstract features extraction of deeper 
layers. And it forces a neuron to work together with selected 
neuron to achieve good results, eliminates the joint 
adaptability between the nodes and enhances the 
generalization ability. So we can prevent co-adaptation in 
learning process and improve the overfitting problem by this 
strategy. 

 

V. TRAINING PROCESS 

In this section, we introduce the parameters setting and the 
whole training process of the linear msCNN model.  

Fig. 9 shows the flow chart of the training process of 
network. In the first stage, we build the whole structure 
consists of several octaves and fully connected layers; we 
finally get the results through the softmax layer. Each octave 
in the pyramid scale space contains a Gaussian smoothing 
layer, two convolution layers and a max-pooling layer. The 
network structure is shown in Table I. The structure consists 
of two basic neural networks: msCNN A and msCNN B. 
msCNN A has a total of 9 convolution layers. In the first three 
layers (Octave 1), each layer consists of 128 convolution 
kernels of size 5×5. In the middle three layers (Octave 2), 
each layer consists of 256 convolution kernels of size 3×3. 
The last three layers contain 512 convolution kernels of size 
3×3 per layer. In order to break the symmetry of the two 
networks, msCNN B uses a slightly different structure that 
includes only 6 convolution layers, and sets different 
parameter initialization. The last two fully connected layers 
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are connected to two networks, each with 4096 neurons. The 
number of neurons in the last layer needs to be determined 
according to the class of the dataset. 

Then we set the initial learning rate at each octave to the 
same value α1=α2=α3=0.005, batch size m=128, momentum 
mt=0.6, and weight decay wd=0.001. Gaussian smoothing 
scales in each octave are shown in Table II. The number of 
kernel functions of Gaussian smoothing layer increases 
gradually, and the size becomes smaller. With all these 
settings completed, we start training the neural network to 
converge and start observing the validation set error rate. If 

the validation set error rate no longer falls, we use the 
drop-path technique or freeze-path technique to solve the 
overfitting problem. At this point, the loss function is replaced 
by a function with a sample penalty term. Then the entire 
network continues to be trained to converge to its best 
position. Throughout the process, validation set is not used to 
train the network. It is only used to observe the convergence 
state of the network as well as a criterion for selecting the 
optimal model. 

 

VI. EXPERIMENTS 

The experiments are divided into the following three parts. 
In the first part, we prove the effectiveness of a single msCNN 
on CIFAR-100 dataset, and evaluate the classification ability 
of the network under various strategies. In the second part, we 
show the classification accuracy of bilinear msCNN on 
CUB200-2011 dataset and ILSVRC2012_Dog dataset. In the 
last part, we illustrate the working mechanism by visually 
analyzing the convolution kernels and samples with the 
highest classification error rate. And all experiments are 
conducted under weak supervision, which means that only 
category labels are available. 

A. Verification of different techniques on CIFAR-100 
Dataset 

In this section, we use the CIFAR-100 dataset to validate 
the effectiveness of the network structure and training strategy, 
which includes 100 categories of 60000 images. 40000 
images of the dataset are used as training sets, 10000 as 
validation sets, and 10000 as test sets. By observing the 
classification error rate and convergence state of the network, 
we can judge the feature extraction ability and object 
classification ability of CNN. 

As shown in Table III, we use different network structure 
and various training strategies to observe the image 
classification accuracy. From the comparison between 
network 1 and network 2, we can see that the distributed 
multi-learning method with the penalty term achieves higher 
classification accuracy. The distributed learning method 
improves the classification accuracy of the network over the 
test set by about 8%. At the same time, it can be found that the 

Training 
samples

Build the 
linear 

msCNN 
network

Freeze-path 
technique used in 
convolution layer

YES

NO

 

Fig. 9. Training flow chart of bilinear msCNN. 

TABLE I 
THE BILINEAR MSCNN NETWORK STRUCTURE 

Input (224 × 224 RGB image) 
msCNN A msCNN B 

Gaussian smoothing layer (Octave 1) 
Conv5-128 
Conv5-128 
Conv5-128 

Conv3-128 
Conv3-128 

Max-pooling layer 
Gaussian smoothing layer (Octave 2) 

Conv3-256 
Conv3-256 
Conv3-256 

Conv3-128 
Conv3-128 

Max-pooling layer 
Gaussian smoothing layer (Octave 3) 

Conv3-512 
Conv3-512 
Conv3-512 

Conv3-256 
Conv3-256 

Max-pooling layer 
Fully connected layer-4096 
Fully connected layer-4096 

Fully connected layer 
Softmax layer 

 

TABLE II 
GAUSSIAN SMOOTHING SCALES OF EACH OCTAVE IN MSCNNS 

Architecture Octave1 Octave2 Octave3 

msCNN A 
(for CIFAR-100) 

σ1=0.5(5*5) σ1=0.7(3*3) σ1=0.9(3*3) 
σ2=0.7(5*5) σ2=0.9(3*3) σ2=1.2(3*3) 
σ3=1.2(5*5) σ3=1.2(3*3) σ3=1.4(3*3) 

no σ4 σ4=1.4(3*3) σ4=1.5(3*3) 
no σ5 no σ5 σ5=1.6(3*3) 

msCNN B 

σ1=0.6(5*5) σ1=0.8(3*3) σ1=1.0(3*3) 
σ2=0.8(5*5) σ2=1.0(3*3) σ2=1.3(3*3) 
σ3=1.1(5*5) σ3=1.3(3*3) σ3=1.5(3*3) 

no σ4 σ4=1.5(3*3) σ4=1.6(3*3) 
no σ5 no σ5 σ5=1.7(3*3) 
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distributed multi learning rate method converges faster than 
the single learning rate method by observing the convergence 
curves of two networks in Fig. 10 (a) and Fig. 10 (b). The 
process of network training to convergence is reduced from 
23 epochs to 17 epochs. From the network 3 and 4, we can see 
that the addition of drop-path and freeze-path technique is 
helpful to improve the performance of network classification 
ability. But as shown in Fig. 10 (c) and Fig. 10 (d), the 
addition of two technologies increases the number of epochs 
and training time. Drop-path has a better effect than 
freeze-path, but the epoch number of convergence is also 
higher than freeze-path. Due to the deletion of the feature map, 
network with drop-path technique takes a long time to 
converge. In the same initial parameter setting, the network 
using freeze-path can reduce the convergence of five epochs. 
Comparing network 4 and 5, we can see that the loss function 
with penalty term can improve the generalization ability of the 
network effectively. Finally, we fuse a variety of strategies in 
the msCNN training process and achieve very good results in 
Network 5. We also compare the effect of training methods on 
several classical structures (Network 6, 7, 8). The 
classification performance of each network has been 
improved by about ten percent. But the classification 
accuracy of bilinear msCNN model is higher than the classic 
three CNN models, even though these models are enhanced 
by improved training methods. 

From the training process of msCNN, it can be seen that the 
classification accuracy of the training set is approaching about 
100%, but the classification accuracy of test set is just over 
85%. Overfitting problems still exist, but according to the test 

set results we can see that the generalization ability of the 
network has been improved. 

B.  CUB200-2011 Dataset and LSVRC2012_Dog Dataset 

In this section, we verify the effectiveness of optimized 
structure and training methods on two fine grained image 
datasets. The CUB-200-2011 dataset contains 11,788 images 
of 200 bird species and ILSVRC2012_Dog dataset contains 
153,773 images of 118 breeds of dog; 1/5 of the whole are 
used as validation set and test set. During the training phase, 
the input to our model is a fixed-size 224×224 RGB image. 
The only preprocessing that we do before training is 
subtracting the mean RGB value and computing over the 
training set from each pixel. Our bilinear msCNN model in all 
experiments is invariant, except the number of neurons of the 
output layer is set as number of categories when required. 
Table IV summarizes the top-1 error rates of two datasets 
under different algorithms. 

From experimental results, our bilinear msCNN model 
achieves the lowest classification error rate on the 
CUB-200-2011 and ILSVRC2012_Dog dataset. Even a single 
msCNN structure has achieved very competitive results. The 
two level attention model [25] can solve the problem of how 
to detect the local region in the case of only class labels. 
However, the accuracy of the local region obtained by the 
clustering algorithm is very limited. And a more effective 
integration of the object-level and part-level attention needs 
to be explored. The Constellations [28] algorithm has 
achieved good results by generating candidate regions, but it 
faces huge computational costs and waste of resources. By 
extracting the convolutional activation features in the CNN 
and fisher coding and then input into the SVM, Chen [39] 
achieved good results, but this method is not an end-to-end 
way to complete the training and classification. The 
end-to-end structure used for image classification has not 
been fully studied yet, but it has obvious advantages from the 
experimental results. B-CNN model combining M-Net [42] 
and the “very deep” network [20] has achieved the 
start-of-the-art accuracy of 74.1% at that time on 
CUB-200-2011 dataset. Compared to this algorithm our 
network has achieved better results with the improved training 
method based on the simplified bilinear model. Szegedy [41] 
made the best results of 83.5% at that time on 
ILSVRC2012_Dog dataset. However, the network structure of 
this method is complex and huge, and the training stage 
consumes a great deal of time. Compared with the past 
state-of-the-art classification methods, we improve the error 
rates of fine-grained object classification on the 
CUB-200-2011 and ILSVRC2012_Dog dataset from 15.9% 

TABLE III 
CLASSIFICATION ERROR RATE OF MSCNN WITH DIFFERENT TECHNIQUE ON CIFAR-100 

Network 
number 

Model Drop-path Freeze-path 
Single learning 

rate 
Distributed multi 

learning rate 
Penalty term 

Test set error 
rate(%) 

1 

msCNN A 

  √   45.5 
2    √ √           37.3 
3 √   √  18.5 
4  √  √            20.7 
5  √  √ √ 13.2 
6 Alexnet     ×/√ 46/36.3 
7 VGG-16     ×/√ 37.9/29.2 
8 GoogLeNet     ×/√ 26.5/17.4 

 

TABLE IV 
TOP-1 ERROR RATE ON CUB-200-2011 AND ILSVRC2012_DOG TEST SET 

Method CUB-200-2011(%) ILSVRC2012_Dog(%) 
Domain Net [25] 30.3 27.2 

Two-level Attention 
(Alexnet) [25] 

30.3 38.1 

Two-level Attention 
(VGGnet) [25] 

22.1 29.7 

Zhang et al. [26] 20.7 25.4 

Constellations [28] 19.0 26.7 

Spatial Transformer 
Net [37] 

15.9 22.4 

J. Krause et al. [38] 18.0 24.1 

B-CNN [D, M] [13] 15.9 19.8 

Chen et al. [39] 17.2 18.3 

Jacobsen et al. [40] 24.5 27.3 

Szegedy et al. [41] 17.4 16.5 

msCNN A 19.6 22.4 

Bilinear msCNN 14.7 15.1 
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to 14.7% and 16.5% to 15.1%, respectively. The experimental 
results show that the classification ability of network and the 
generalization ability on test set are improved compared with 

the past CNN structures. 

C. Visual Analysis 

Confusion matrix [44] is a kind of visualization method of 
classification results commonly used in supervised learning 
(Fig. 11), which can intuitively express the precision rate and 
recall rate of classification model. Element Mi,j in confusion 
matrix represents the number of samples in class i that are 
assigned to class j. The value of the matrix can be normalized 
between 0 and 1. Based on this ratio, we give each element of 
the matrix a hue from blue to red. The elements on the main 
diagonal represent the proportion of samples that are correctly 
classified. The closer the color of the main diagonal of 
confusion matrix is to black, the higher the classification rate. 
We can observe the precision and recall rate according to the 
confusion matrix. Fig. 12 shows the confusion matrix of the  

(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 10. Training curves for each network and corresponding strategies. 
The black and green vertical lines (the first two vertical lines in (c) and (d)) 
represent the locations of network convergence and where two training 
strategies are used, respectively. (a) Network training with single learning 
rate (network number 1 in Table III). (b) Network training with distributed 
learning method (network number 2). (c) Network with drop-path 
technique (network number 3). (d) Network with freeze-path technique 
(network number 4). 

 

 

Fig. 11. The composition and calculation method of confusion matrix. 

 
Fig. 12. Classification confusion matrix on CUB-200-2011 dataset. 

 
Fig. 13. Top four pairs of categories that are most misclassified. In each row 
we show the objects in the left column that are most confidently classified as 
the category in right column. 
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classification results of CUB-200-2011 dataset. In order to 
better represent the samples of error classification, we extend 
the partial color gamut (0-0.2) to make the samples more 
obvious. The sample in the white box is the category with the 
highest misclassification error rate. According to the result of 
confusion matrix, we selected the top four pairs of categories 
that are misclassified by bilinear msCNN model, as shown in 
Fig. 13. The most confused pair of categories is “American 
crow” and “Common raven”, which look remarkably similar. 
The main difference between the two sub categories is 
concentrated in the complex background, and the foreground 
target is difficult to distinguish effectively because of the 
extremely subtle differences. Without the help of some strong 
supervised information, it is difficult to distinguish them right 
now. Investigate features by observing which areas in the 
convolutional layers activate on an image and comparing with 
the corresponding areas in the original images. 

Then, we visualize some of the convolution kernels in the 
first three convolution layers by deconvolution operation, and 
judge the features of the network by observing convolution 
kernels. The calculation method of deconvolution operation is 
given by 
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lk
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k
lkl fzy ,
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                            (19) 

 
where yl represent the deconvolution output, zk,l is the 

convolution kernel parameter and fk,l is the weights of the 
convolution layer. So we get the visualization results of the 
convolution kernels in the msCNN A on CUB200-2011 

      
(a)                                                        (b) 

       

(c)                                                         (d) 

       

(e)                                                          (f) 

Fig. 14. Convolution kernel visualization results in six convolution layers 
of msCNN. 

 
(a) 

 
(b) 

Fig. 15. Feature maps of bottom convolution layers and top level 
convolution layers in CNN.  

 

(a) 

 
(b) 

Fig. 16. Two pairs of feature maps with the highest activation degree. 
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dataset by deconvolution operation. As shown in Fig. 14, (a), 
(b), (c), (d), (e)and (f) represent the visual image of the 
convolution kernels in the first layer, the second layer, the 
forth layer, the fifth layer, the seventh layer and the eighth 
layer of msCNN A respectively. It can be seen that the 
convolution kernels in the shallow layer learns more about the 
bottom features of color, texture, edge and so on. With the 
increase of the number of convolution layers, the content of 
convolution kernels is more abstract. We believe that the 
features extracted by CNN begin to cross the semantic gap 
and turn into high-level semantic features. In the end, these 
features are fused and the classification results are output by 
the softmax layer.  

In order to observe the influence of convolutional kernels 
of CNN on the input samples, we select a part of the output 
feature maps of the bottom convolutional layers and output 
feature maps of the top level convolution layer, respectively, 
as shown in Fig. 15(a) and 15(b). We can investigate features 
by observing which areas in the convolutional layers activate 
on an image and comparing with the corresponding areas in 
the original images. In the image, white pixels represent 
strong positive activations and black pixels represent strong 
negative activations. A channel that is mostly gray does not 
activate as strongly on the input image. The position of a pixel 
in the activation of a channel corresponds to the same position 
in the original image. A white pixel at some location in a 
channel indicates that the channel is strongly activated at that 
position. It can be seen from Fig. 15(a) that the contour and 
edge features of the object are extracted effectively, and the 
features of the key areas such as the eyes and mouth of the 
bird are enhanced. Some of the feature maps are 
complementary, which can be used to express the features in 
different gray levels and thus can effectively avoid the 
influence caused by the inconsistency of illumination and 
color. It can be seen from the Fig. 15(b) that the absolute 
position of the object is weakened after the maximum filtering 
of the pooling layer, and the relative position relationship 
between different regions in the image is enhanced, which 
makes the network invariant to changes in rotation, translation 
and scale to some extent. Many of the feature maps contain 
areas of activation that are both light and dark. These are 
positive and negative activations, respectively. However, only 
the positive activations are used because of the rectified linear 
unit (ReLU), even in PRELU, their role in the testing process 
is very small, only to prevent neuronal necrosis in the training 
process. As shown in Fig. 16, there are two pairs of the feature 
maps that are most strongly activated in the CNN. The left is 
the input image of the object and the right is the feature map of 
the convolution layer in CNN. The feature map in the Fig. 
16(a) reflects the most distinguished local features (beak) in 
birds, while Fig. 16(b) reflects the overall contour features of 
birds. These features are fused and encoded by the fully 
connected layer to form abstract semantic features for final 
classification. 

Previous machine learning approaches often manually 
designed features specific to the problem, but these deep 
convolutional networks can learn useful features for 
themselves. In summary, because of these different kinds of 
convolution kernels in CNNs, the network has the ability to 
extract different features. The processing of the subsequent 

feature maps in the network is based on the results of the 
previous layer, the network can gradually extract and combine 
more clear features. So it has a more comprehensive 
description of the image features and improve the accuracy of 
image classification. 
 

VII. CONCLUSION 

In this paper, we presented a bilinear msCNN model for 
fine-grained object classification and proved their 
effectiveness on various fine-grained object datasets. By 
constructing the scale space in the CNN and the usage of 
freeze-path technique in the convolution layers, we can 
improve generalization ability and obtain stable and effective 
features in the training process for the final classification. In 
the training process of network, the new loss function with 
penalty term based on the sample distribution can be used to 
establish an optimized feature boundary and improve the 
overfitting problem. In the experimental part, we analyze the 
role of CNN in the fine-grained objects classification process 
through the visualization of convolution kernels and feature 
maps. Remarkably, the performance is better than methods 
that rely on manually annotations like part or bounding box 
for training. Theoretically, generalization ability of this 
structure makes it applicable to any graph structures. 

At the same time, the experience points out a few lessons 
and future directions, which we summarize as the followings: 
     Whether the classification ability of CNN is optimal. 

If the effective features can be judged and extracted 
by convolution layers, it needs to be verified if 
fine-grained object classification results will be 
improved by using SVM instead of the fully 
connected layers. 

     More appropriate network connection method. Linear 
parallel may not be the optimal structure. It still needs 
further research on how to break the symmetry of the 
network so that they coordinate with each other. 

     Over-fitting problem still exists in the training process 
of the CNN. We plan to further explore how to 
enhance the generalization ability of CNN from the 
perspective of data distribution and visualization. 

We are actively pursuing the above directions in the future 
studies. 
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