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Abstract—Flower pollination algorithm (FPA) is a new

swarm intelligence optimization algorithm which simulates
flower pollination. For all intelligent optimization algorithms,
the performance analysis of parameters can affect the
convergence speed, convergence precision and global
optimization ability. In this paper, an enhanced variation of
flower pollination algorithm (MFPA) was proposed. The
convergence speed and algorithm searching precision are
determined by the switching probability and  in Levy flight.
The simulation experiments are carried out by using the six
typical test functions to discuss this influence. The simulation
results show that the switching probability is less sensitive to the
MPFA algorithm. With reasonable setting of MFPA parameters,
the search precision and convergence speed can be improved
effectively.

Index Terms—flower pollination algorithm, clonal selection
strategy, improved pollen pollination operator

I. INTRODUCTION
HE process of optimization is essentially the choice of a
vector within a search space. The selected vector can

maximize or minimize an objective function to provide the
best solution. Generally, modern intelligent approaches are
used to deal with these types of optimization problems. Such
optimization approaches can be categorized into two groups
in view of their natures: deterministic and random intelligent
approaches[1].The function optimization presents a
formalized framework for modelling and solving some
certain problems. Given an objective function, it takes a
number of parameters as its inputs, whose goal is to find the
combination of parameters and return the best value. This
framework is abstract enough that a wide variety of different
problems can be interpreted as function optimization
problems [2].
However, the traditional function optimization algorithm

is used to solve the typical problem with small dimension,
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often not applicable in practice. So people focus on the nature.
Nature provides rich models to solve these problems (such as
fireflies, bats, ants). People discovered the swarm
intelligence optimization algorithm by simulating natural
biological systems. These models could stimulate computer
scientists using household non-traditional tools to solve the
application problems [3]. Now a lot of swarm intelligence
optimization algorithm is proposed, such as particle swarm
optimization (PSO) [4], ant colony algorithm (ACO) [5], bat
algorithm (BA) [6], harmonious algorithm (SLO) [7],
chicken swarm algorithm (CSO) [8], firefly algorithm [9] etc.
They can be used in the dictionary learning remote sensing
data, automotive safety integrity level positioning, economic
dispatch, composition and examples of the Cloud Service
Composition of QOS awareness. Obviously, the study of
swarm intelligence optimization has become an important
research direction.
Flower pollination algorithm (FPA) is a swarm

intelligence optimization algorithm proposed by Cambridge
university scholar Yang in 2012 to simulate the flower
pollination [10]. Although this algorithm is simple and has
few parameters, the superiority and convenience are more
prominent. At present, many scholars at home and abroad are
crazed about studying the algorithm. FPA has been used to
solve the economic load dispatch and combined economic
emission dispatch problems in power systems [11], the
placement of distribution transformers in a low-voltage grid
[12], the multi-objective flower pollination algorithm applied
in electrical load forecasting [13], the assembly sequence
optimization [14], the hybrid flower pollination algorithm
(HFPA) used to solve the dynamic multi-objective
optimization scheduling (DMOOD) thermal system [15] and
the combined economic and emission dispatch solution [16].
In this paper, FPA and clone selection (CS) strategy are
combined to form MFPA algorithm to solve the function
optimization problems. In order to prove the superiority of
this algorithm, the comparison and analysis of parameter
performance are carried out through the simulation
experiments. The paper is organized as follows. In Section 2,
the improved FPA are introduced. The simulation
experiments and results analysis are introduced in details in
Section 3. Finally, the conclusion illustrates the last part.

II. IMPROVED FLOWER POLLINATION ALGORITHM

A. Flower Pollination Algorithm
Flower pollination algorithm (FPA) is swarm intelligence

optimization algorithm proposed by to simulate flower
pollination [10]. The dynamic control on the process of
global search and local search is realized by adjusting
parameter P. This method solves the balance between global
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search and local search and uses the Levy flight to make it
have a good global optimization capability [17]. Flower
pollination process is achieved through cross-pollination or
self-pollination in the nature. The position of the pollinator is
random or similar to random in the process of pollination. In
order to simulate the way of flower pollination, the following
four rules are set.
Rule 1: The biotic and cross-pollination can be recognized

as a global pollination, where the pollinators follow the Levy
distribution.
Rule 2: The abiotic and self-pollination can be interpreted

as a local pollination.
Rule 3: The flower constancy property can be considered

as a reproduction ratio that is proportional to the degree of
similarity between two flowers.
Rule 4: Due to the physical proximity and wind, local

pollination has a slight advantage over global pollination.
Both are controlled by the value of the variable [0,1]P .
In the global pollination, the fittest reproduction is ensured

through insects that can travel for long distances. If the fittest
is represented as *g , the flower constancy and the first rule
can be mathematically formulated as follows:

1 ( )t t t
i i ix x L g x    (1)

where, t
ix is a solution vector at iteration t , *g is the best

found solution at iteration t ,  represents the step size
scaling factor, and L is the pollination strength or the step
size. The insect’s long moves can be mimicked using Levy
flight. For this reason, the step size L is derived from the
Levy distribution.

1

( )sin( ) 12L
s 

 

 


 (2)

where, 1.5  and  represents the typical Gamma
function.
The local pollination based on Rule 2 can be formulated as

follows:

1 ( )t t t t
i i j kx x x x    (3)

where, t
jx and t

kx are pollens (solution vectors) that are
transferred from different flowers, but these flowers belong
to a single plant species. It simulates the flower constancy in
a small neighborhood. The variable  is derived from a
uniform distribution in the range [0,1] .
The pollination process can be either local or global, so a

switch probability P is presented to switch between the two
types of pollination (Rule 4).

B. Clonal Selection Strategy
CSA is inspired by the clonal selection theory that is

presented in 1959 [9]. The main characteristics of the
immune system can be summarized as follows.
1) The immune system has a memory set that remembers

the previous attacks.
2) The most stimulated antibodies are selected for cloning.
3) The poorly and nonstimulated antibodies are removed.
4) The activated immune cells have undergone a

hypermutation process.
5) The human antibodies’ diversity is maintained

(repertoire diversity).
The resultant clones are enhanced through mutation, for a

better matching with the antigens. CSA is a population-based
algorithm. The population consists of a set of antibodies or
solutions that are designed for a specific problem. The
cloning process generates typical copies from the highest
affinity antibodies, so there is a direct relationship between
an antibody’s affinity and its cloning ratio. The resultant
clones are enhanced through mutation for a better matching
with the antigens. The mutated antibodies (solutions) are
added to the current population, then all antibodies are ranked.
After that, the best antibodies are chosen as memory cells.
The memory cells are considered the best set of solutions for
the optimization problem we are intending to solve.
Performing meta-dynamics is the last step in the CSA, where
the lowest affinity solutions are replaced by randomly
generated ones. This step is performed to keep the population
diversity.

C. Improved Pollen Pollination Operator
On the basis of pollen pollination function, an enhanced

variation of flower pollination algorithm MFPA was
introduced. The running speed and the convergence speed are
optimized. There are better capability for nonlinear problems
or more complex problems in practice. Experimental results
showed that the solutions generated from random walks, in
the local pollination, converge faster than the Levy flight
ones, so we replaced the Levy flights by random walks.
Random walks are drawn from random uniform

distribution in [0,1] . Before applying local pollination, high
affinity solutions are cloned proportional to their affinity;
then local pollination is performed. The local pollination was
modified by introducing a step-size scaling factor 2 . A
preliminary parametric study showed that 2 =3 works well
for all test cases. Eq.(4) was used to analyze the modified
pollen pollination algorithm.

1 i
N m Ki
iMAE

N





(4)

Where, im indicates the mean of optimal values, iK is the
corresponding global optimal value, and N represents the
number of samples. In our case, N is the number of test
functions.
In order to avoid sticking in the local minimum the

algorithm checks if the best solution *g is not changed for
100 successive iterations with a value not greater than 10e-6.
If so, all the population Pop is replaced by a new randomly
generated one after keeping the best found solution *g . This
step increases the exploration to a high extent and is similar to
the meta-dynamics step in the CSA.
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III. SIMULATION EXPERIMENTS AND RESULTS ANALYSIS

A. Test Functions
In the simulation experiments, six typical functions are

adopted to verify the performance of MFPA. The simulation
environment adopts the WINDOW7 operating system,
MATLAB software for simulation. The testing functions are
shown in Tab.1, where 1f - 2f are unimodal functions and

3f - 6f are the multimodal functions.

B. Simulation Experiments and Results Analysis

(1) Change of Single Variable P
The initialization parameters of MFPA are set as: the

population size n is 50, the number of iterations max_it is 500,
2ix  ， 1.5  , 1 1  and 2 3  .In order to reduce the

influence of random disturbance, the independent operating for
each test function is carried out 10 times. The optimal value and
average values of MFPA in different probability of switch P
are shown in Tab. 2. The simulation results of the six test
functions are shown in Fig. 1.

TABLE 1. SIMULATION TESTING FUNCTIONS

Function Name Expression Range

1f Ackley    2
1

1 1

1 120exp 0.2 exp cos 2 20
n n

i i
i i

f x X x e
n n


 

               
  [-32,32]

2f
Rotated

Hyper-Ellipsoid
2

2
1 1

( )
d i

j
i j

f x x
 

 [-5.536,65.536]

3f Schwefel 3
1

( ) 418.9829 sin( )
d

i i
i

f x d x x


  [-100,100]

4f Michaelmas
2

2
4

1

( ) sin( )sin ( )
d

m i
i

i

ixf x x


  [0,π]

5f Drop-Wave
2 2
1 2

5 2 2
1 2

1 cos(12 )
( )

0.5( ) 2
x x

f x
x x

 
 

 
[-5.12,5.12]

6f Rastrigin’ 2
6

1

( ) 10 ( 10cos(2 ))
d

i i
i

f x n x x


    [-5.12,5.12]

TABLE 2. PERFORMANCE COMPARISON OFMFPA UNDER DIFFERENT

Function Result
Simulation results of MFPA under different

0.8 0.7 0.6

1f

optimum 8.8818e-016 8.8818e-016 8.8818e-016

average 0.015709 0.012521 0.014927

std 0.1811 0.16682 0.1775

2f

optimum 3.1246e-046 2.4306e-048 9.8397e-052

average 0.030934 0.014937 0.032911

std 0.48667 0.26264 0.40367

3f

optimum 2.5455e-005 2.5455e-005 2.5455e-005

average 0.22287 0.33214 0.14301

std 2.9657 8.0506 4.3608

4f

optimum -1.8013 -1.8013 -1.8013

average -1.8010 -1.8008 -1.8010

std 0.0043 0.0103 0.0045

5f

optimum -1 -1 -1

average -0.9978 -0.9990 -0.9991

std 0.0207 0.0072 0.0075

6f

optimum 0 0 0

average 0.0091 0.0104 0.0136

std 0.2302 0.1239 0.2479
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(f) Function 6f

Fig. 1 Simulation results of MFPA under different.
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It can be seen from the convergence curves and the
numerical results of six functions after 500 iterations run
independently 10 times. When P from 0.8 to 0.6, the optimal
values of 1f - 6f are the same. The ability to search for the
optimal is the same. In other words, the change of P will not
affect the optimization result of the functions. With the decrease
of P the optimal value of function 2f gradually decreases and
the searching ability gradually increases. The basic trend of the 6
function curves is almost the same. The most obvious is function

1f and the worst is function 4f . Compared with other
convergent curves, 3f has the largest fluctuation. It can be seen
from the trend of all curves that the convergence speed is not
increased or decreased regularly with the increase of P .
However, it affects the optimal solution of the spatial
distribution of different functions and has some relationship with
the solution space. The maximum or minimum value of
parameter P has little effect on function optimization. So
whatever the value of P , you can get the optimal value for

1f , 3f , 4f , 5f , 6f and have no effect on the function itself.

For the function 2f , when P =0.6, the optimization of function
is the best.

(2) Change of Single Variable

The initialization parameters of MFPA are set as: the

population size n is 50, the number of iterations max_it is 500,
2ix  ， 0.8P  , 1 1  , and 2 3  . In order to reduce the

influence of random disturbance, the independent operating for
each test function is carried out 10 times. The optimal value and
average values of MFPA in different Levy flight  are shown
in Tab. 3. The simulation results of the six test functions are
shown in Fig. 2.
It can be seen from the convergence curves and the

numerical results of six functions after 500 iterations run
independently 10 times. With the decreasing of  , the
optimal solution and the precision of the optimization of
function 1f and 2f gradually increase. However, the
optimal solution and the precision of the optimization of
function 3f - 6f remain the same. The biggest fluctuation
is the function 3f . From the trend of the curves, the
function 2f is most obvious, and the function 4f is
worse.It can be seen from convergence curves that the rate
of convergence rate becomes slower with the decrease of
 for unimodal functions. For multimodal functions, the
change of  has no regular change in its convergence
speed but it affects the optimal solution of the spatial
distribution of different functions and has some
relationship with the solution space.

TABLE 3. PERFORMANCE COMPARISON OF MFPA UNDER DIFFERENT

Function Result
Simulation results of MFPA under different

1.5 1 0.5

1f

optimum 8.8818e-016 8.8818e-016 2.2204e-014

average 0.0189 0.0324 0.0319

std 0.2548 0.3063 0.2907

2f

optimum 6.6973e-045 1.3048e-038 5.6656e-023

average 0.0081 0.0129 0.0194

std 0.1054 0.1524 0.1317

3f

optimum 2.5455e-005 2.5455e-005 2.5455e-005

average 0.3125 0.0585 0.9943

std 3.6581 1.0581 14.8181

4f

optimum -1.8013 -1.8013 -1.8013

average -1.8012 -1.8010 -1.8012

std 0.0019 0.0040 8.2125e-004

5f

optimum -1 -1 -1

average -0.9987 -0.9989 -0.9986

std 0.0088 0.0118 0.0118

6f

optimum 0 0 0

average 0.0073 0.0129 0.0293

std 0.2171 0.1416 0.2484
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Fig. 2 Simulation results of MFPA under different.
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IV. CONCLUSION
Based on the basic principle of the improved pollen

pollination algorithm MFPA, the optimization
performance is verified by carrying out the simulation
experiments on six test functions. The value of parameter
P has little influence on the convergence precision and the
convergence speed of the functions. For unimodal
functions, with the decreasing of parameters  , the
convergence precision gradually decreases and the
convergence speed gradually slows down. For the
multimodal functions, the convergence precision and the
convergence speed of the function are not sensitive to the
variation of parameters  . Different functions have
different requirements for parameters P and  , so we
need to get proper parameter setting according to different
functions. In conclusion, the simulation results show that
the convergence speed and optimization precision are
closely related to the parameter setting.
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