
MMVMi: A Validation Model for MVC and
MVVM Design Patterns in iOS Applications

Mariam Aljamea, and Mohammad Alkandari

Abstract—Design patterns have gained popularity as they
provide strategies for solving specific problems. This paper
explores two common design patterns in iOS development field:
Model View Controller (MVC) and Model View ViewModel
(MVVM) design patterns. The paper investigates the problems
with MVC design pattern. Then, it introduces a validation
model that detects MVC problems, and helps programmers
make the decision to switch between MVC and MVVM design
pattern. The proposed validation model consists of two phases:
phase one is to detect MVC problems, and phase two is
to validate the relation between MVVM objects. The model
was then applied to a Cloudy app as a case study. As a
result, the model was able to detect MVC problems. The
relation between MVVM objects was also validated. Further,
this research provided some recommended solutions to satisfy
the relations between MVVM objects in the project.

Index Terms—design pattern, mvc, mvvm, validation, model.

I. INTRODUCTION

OVER the years, softwares have been grown and
changed to accommodate users’ demands. Users need

to interact with softwares through interfaces, where the
emerge of interfaces has catalyzed a new demand of design
patterns to help keep interfaces user friendly and to improve
them [1]. Since then, several design patterns appeared then
evolved and matured [2]. Design patterns reuse the same set
of ideas to construct a solution to solve certain problems
occur commonly [3]. Model View Controller (MVC) design
pattern is used frequently to architect interactive software
systems [4]. MVC design pattern offers a way to struct
application’s components into different separate roles [3].
In fact, recent technologies encourage separating the roles
of application early in design phase [4]. Thus, roles sepa-
rating improves the implementation of the application as it
composes a robust and flexible application. MVC separates
roles as follow: View objects in MVC displays data to users,
while user interaction is processing by Controller objects
[4]. Application logic and data are the responsibility of
Model objects [4]. The Model View Controller (MVC) de-
sign pattern is recommended by Apple since its frameworks
built based on it [5]. Consequently, any iOS developer will
start programming an iOS application based on Model View
Controller (MVC) design pattern. For some projects MVC
will work perfectly: as desired leading to reusable objects,
easily extensible objects and much more numerous benefits.
However, for some other projects, MVC design pattern will

Manuscript received October 3, 2017; revised May 9, 2018.
M. Aljamea is a graduate student in the Department of Computer

Engineering at College of Engineering and Petroleum - Kuwait University,
Kuwait e-mail: (mrm259@gmail.com).

M. Alkandari is an Assistant Professor in the Department of Computer
Engineering at College of Engineering and Petroleum - Kuwait University,
Kuwait e-mail: (m.kandari@ku.edu.kw).

not work as desired as it will lead to a famous problem
in iOS community: the Massive View Controller problem.
When Controller objects exceed 150 lines, this is an indicator
of Massive View Controller problem. Controller objects will
be massive when they handle many responsibilities more than
their own. The Model View ViewModel (MVVM) design
pattern rescuers gracefully by strictly distributing the roles
and responsibilities among objects [6]. By using MVVM
design pattern Controller objects will just set the values
for UI components while all data logic preparation for UI
will be located in ViewModel objects. As a rule of thumb,
both of MVC and MVVM have their own advantages and
disadvantages, choosing one of them as a design pattern is
highly dependents on the project architecture. For instance,
JavaScript has different frameworks each of them used either
MVC or MVVM according to the framework needs. Namely
AngularJS, Angular 2, and Vue.js are based on MVC, while
Ember.js is built based on MVVM [7]. In essence, the
objectives of this study are:

1) To understand the impact, role and importance of
Design Patterns in iOS development.

2) To help developers to make a decision when to use
MVC or MVVM.

3) To provide a method to check and validate the relations
between MVVM objects.

To address these objectives, we proposed a model that will
help developers to indicate the time to switch from MVC
design pattern to MVVM design pattern. The proposed model
consists of two phases. Phase one will detect if the project
has a Massive View Controller problem. The second phase,
will check the relations between project’s objects if they obey
to MVVM correctly or not. Hence, there are three significant
contributions in this paper. First, MVC problems is presented.
Then, this paper develops a validation model that accomplish
these objectives: detecting massive controller objects, and
validate the relations between MVVM objects.

The remainder of this paper is organized as follows:
section 2 provides a background knowledge of Model View
Controller (MVC) and Model View ViewModel (MVVM)
design patterns. Section 3 presents the related work. Sec-
tion 4 introduces MMVMi, our model to validate MVC or
MVVM in iOS applications, and explains its two phases. Fol-
lowed by applying MMVMi to two cases and demonstrating
the results. After that, MMVMi evaluation by comparing it
with other tools in section 6. The conclusion is described in
section 7. The paper concludes with a future work in section
8.

II. BACKGROUND

Design patterns have been part of application development
process as they help and guide developers to develop efficient

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_03

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



Fig. 1. The traditional MVC design pattern

Fig. 2. Apple’s MVC design pattern

and robust applications. Design patterns provide a strategy
to solve common problems in software development projects
[8]. The provided solution is an abstract that is not related
to a specific programming language or platform [8]. Design
patterns help avoiding or solving a problem but they do not
provide an exact solution as they require additional works
in order to be adapted into specific projects [8]. Design
patterns improve the flexibility of the code which is a good
investment as it makes the code adaptable and robust [8].
Developers choose the desired design pattern according to
projects’ requirements and their experiences [9]. Presentation
design patterns are used for GUI-based applications [2].
Separation of Concerns (SoC) is the fundamental concept
of presentation design patterns [2]. This section provides
a background knowledge about two common presentation
design patterns the Model View Controller (MVC) design
pattern and the Model View ViewModel (MVVM) design
pattern.

A. Model View Controller (MVC) Design Pattern

In 1979 Trygve Reenskaug introduced Model View Con-
troller (MVC) design pattern during his work on Smalltalk
at Xerox PARC [2]. The intent of MVC is to separate
application’s concerns into three objects each of these objects
has its own tasks to handle [10]. MVC separates the concerns
as follows: object to store and manage data, object to
display data, and object to handle user interactions [10].
With this strict separation among application logic and its
interface, MVC supports developing extremely maintainable
well structured applications [10].

Figure 1 depicts the traditional MVC design pattern. It
consists of three entities: Model objects, View objects, and
Controller objects. As shown in Figure 1, each of the three
entities recognizes the other two entities [6]. Thereby, entity
reusability will be reduced and this is considered as a main
drawback that makes the traditional MVC design pattern not
applicable for iOS applications [6]. In addition, the evolution

of iOS applications with their new demands introduced
and revealed weak spots in the traditional MVC design
pattern [10]. Therefore, to overcome all the limitations in
the traditional MVC design pattern, Apple enhanced it as
shown in Figure 2 [6]. In Apple’s MVC, Controller objects
know about View objects and Model objects [11]. Also,
Controller objects have the ability to update View objects and
Model objects when it needed [11]. While it is not required
for Model objects to know anything about View objects or
Controller objects [11]. Similarly, it is unnecessary for View
objects to know about Model objects or Controller objects
[11]. However, View objects respond to user interactions,
then they send these interactions to Controller objects by
delegation pattern or target-action pattern [11]. Thereby,
View objects are totally decoupled from Model objects in
Apple’s Model View Controller design pattern [12]. As a
result, application logic is separated from user interface [13]
that leads to more reusable objects and more extensible
applications [14]. Apple’s MVC divided the roles between
objects as follow: (1) Model objects hold and manage
application’s data, (2) View objects render the interactive
visual elements, and send user actions to Controller objects
(3) Controller objects bind Model objects and View objects
together and contain application logic [15]. In more details
Controller objects have the following roles: create views,
update views, validate the input, query models, modify
models, map user actions to update model, handle segues to
other controllers, and hold network logic [5]. Indeed, View
objects and Controller objects do their tasks as a pair by
allowing user to interact with the rendering objects in the
user interface. These rendering objects are View objects.
While user interactions are handled by Controller objects
[10]. However, MVC decouples View objects from Controller
objects and treats each of them as a separate object [10]. With
this decoupling, MVC enhances separation of concerns (SoC)
concept [10]. Obviously, Apple UIKit frameworks obey to
MVC design pattern as their names reveal its philosophy.
For example, a UIViewController tells the UIView what
to render in the screen, which is according to MVC a
UIViewController is a Controller object and a UIView is a
View object [11]. To illustrate that, a data source (model)
provides a UIPickerView with its data, so UIPickerView is
a View object that got its data from a Model object [11].
Apple’s MVC design pattern separate application’s roles
loosely between three main objects: Model object, View
object, and Controller object. This loosely separation leads
to downside effects by assigning many different roles to
Controller objects. Also, there are some parts of the code
that developers don’t know where to write them as these
parts do not belong to View objects or Model objects. For
example: table view delegate methods, network requests,
loading data from databases, view layout, and much more.
Mostly, all these parts will be written in Controller objects.
As a result, application based code will end up with massive
controllers, which are complex [5]. Consequently, it will be
difficult to test these massive controllers as they contain
several unrelated roles [5]. In addition, these unrelated roles
with their different responsibilities make massive controllers
hard to reuse and hard to maintain. Undoubtedly, Controller
objects should not contain any logic, they should only act
as an intermediary between Model objects and View objects.

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_03

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



Fig. 3. MVVM design pattern

Also, massive controllers will increase the chance of writing
errors in the code without recognizing them as they are long
and they are difficult to test [5]. The next subsection will
explain a solution to the Massive View Controller problem.

B. Model View ViewModel (MVVM) Design Pattern

In 80s the Model View ViewModel (MVVM) design
pattern was introduced in Smalltalk to overcome the lim-
itations of MVC and to gain from some of its strengths
[2]. In fact, both MVC and MVVM assert the concept
of Separation of Concerns (SoC), which increases code
quality [9]. However, MVVM separates concerns more than
MVC which reduces complexity and maximizes testability
and reusability. MVVM introduced a new object named
it ViewModel object. This object has the logic to prepare
the data for View object, which was the responsibility of
Controller object in MVC [5]. Furthermore, similar to MVC
View objects and Controller objects work as pair, but MVVM
merged them into one single object and called it View
objects [10]. Thereby, MVVM increases data independent
and application logic encapsulation [9]. A recent study [16]
exploits MVVM design pattern to show that it compacts
the based code and makes it flexible. Absolutely, there are
various versions of MVVM, iOS community use Microsoft
MVVM [10]. Moreover, the study in [17] demonstrates Pro-
tocol Oriented Model View View Model (POP MVVM) by
using it in developing Tintm3 iOS application. POP MVVM
takes advantage of Protocol Oriented Programming paradigm
to enhance the original MVVM. The intent of MVVM is
to separate application’s logic concerns from user interface
concerns by distributing distinct responsibilities between
three objects: first, View objects to render user interface,
Second, ViewModel objects take the responsibility of user
interactions and view state, Third, Model objects to handle
data [10]. Additionally, to work with application’s data,
ViewModel objects own Model objects and have a direct
access to them [10], as it is demonstrated clearly in Figure 3
[6]. On the other hand, View objects and ViewModel objects
cooperate in a new way that is introduced by Microsoft
and it is Data Binding [10]. Data Binding improves logic
separation between View objects and ViewModel objects
[10]. In MVVM, View objects and Model objects have
the same roles as in MCV. Indeed, MVVM reduces the
roles of Controller objects, by moving some of them to
ViewModel objects. As shown in Figure 3, ViewModel
objects sit between Model objects and View/ViewController
objects [2]. Controller objects in MVVM design pattern

have the following roles: create views, update views, map
user actions to update model, and handle segues to other
controllers [5]. In contrast, the roles of ViewModel objects
include: gathering data from Model objects, preparing data
for presentation, input validation, and hold network logic [5].

III. RELATED WORK

This section discusses the related work and shows how
the proposed model related to other existed work. The
founded related work are available on GitHub which is a
website to host code or software repositories by using Git
Source Code Management (SCM) tool [18]. GitHub satisfied
the demand of Open Source Software (OSS) projects as it
helps developers and programmers to share their code and
to collaborate with each other. GitHub enables its users
to track other users actions by offering community-visible
profiles [18]. This transparent social integration improvs
learning from each other by observing and by following
other programmers actions such as: the way they code,
the recommended ways to solve problems, inspiring the
programmers with ideas from observing other works, and
much more activities [19]. Luft [20] is a Xcode Plugin that
aims to improve the quality of view controllers by helping
programmers keep view controllers shorter, and lighter. The
main advantage of Luft is: it’s availability during coding as
it colors Xcode gutter depending on the view controller’s
status. According to number of lines, Luft has three status
for view controller: (1) a light view controller that is less
than 150 lines, (2) a bit heavier view controller which is
greater than or equal to 150 lines or less than or equal
to 300 lines, and (3) a massive view controller that has
more than 300 lines. Luft colors Xcode gutter with a green
color in the case of a light view controller. However, in
a massive view controller case, Luft colors Xcode gutter
with a red color. When a view controller gets a bit heavier
Luft warns programmers by turning Xcode gutter to yellow
color. Currently, the latest stable release of Xcode is version
9.2 which comes with many improvements. Since Xcode
version 8, code signing requirements have been changed and
the introduction of Xcode extensions. Both of these two
factors made adding Xcode Plugin more complicated and
sometime impossible [20]. As a result, there is no simple
way to use Luft with Xcode current version so this is
considered as a huge drawback. It is clear that Luft is related
to Massive Controller Detection (MCD) phase in MVC &
MVVM Validation Model for iOS (MMVMi). Both of Luft
and MCD have the same three status: a light view controller,
a bit heavier view controller, and a massive view controller.
However, MCD counts view controller lines more accurate
than Luft because MCD counts the code without counting
comments and empty. Moreover, MCD is a python script
that is independent of Xcode. Therefore, any update to Xcode
will not affect Massive Controller Detection (MCD) python
script. According to Object Relations Validation (ORV)
phase, we found the following open sources that are related
to our work: objc dependency visualizer [21], and Depcheck
[22]. Objc dependency visualizer is a tool that visualizes
the dependency in Objective-C project or in Swift project.
Objc dependency visualizer produces dependency graph that
visualizes classes coupling [21]. This tool used d3js library to
give the visualizations a nifty style [21]. On the other hand,

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_03

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



Fig. 4. MVC and MVVM Validation Model for iOS (MMVMi)

Depcheck is a tool that analyzes the dependency in Swift
projects. For each class, Depcheck generates a dependency
report, that enables programmers to detect classes that are
dependent on many other classes. Also, the generated reports
help to detect independent classes and the most used classes.
Depcheck has the ability to generate a dependency graph
for Swift projects. Nevertheless, none of the aforementioned
tools visualize the relations in iOS project as the relations
between objects in Model View ViewModel (MVVM) design
pattern. As far as we know, Object Relations Validation
(ORV) is the first tool to generate a dependency graph that
visualizes the relations between objects in iOS project and
demonstrates project’s objects in point view of Model View
ViewModel (MVVM) objects.

IV. MVC & MVVM VALIDATION MODEL FOR IOS
(MMVMI)

The previous section clearly demonstrates the problem
with Apple’s MVC design pattern. This section, provides
a detailed explanations of the proposed Validation Model.
Figure 4 depicts MVC & MVVM Validation Model for iOS
(MMVMi). The first phase is: Massive Controller Detection
(MCD). Then, the second phase is Object Relations Valida-
tion (ORV). The next two subsections discuss each of these
phases in details.

A. Phase one: Massive Controller Detection (MCD)

The first phase of the proposed Validation Model is
Massive Controller Detection (MCD). As shown in Figure 4,
MCD consists of two steps: the first step is finding all con-
trollers in the iOS project. Then the second step is for each
controller check if it is massive or not. Basically, there are
three major controller types in Cocoa frameworks: coordinat-
ing controllers, view controllers, and mediating controllers
[23]. Coordinating controllers are available on both iOS and
OS X, in iOS the role of coordinating controller is involved
in view controllers [23]. However, the second type, view
controllers are available just on iOS [23]. While the third
type which are mediating controllers, are available just on OS
X [23]. Our model is developed for iOS. Thus, the model
implementation is based on the second type of controller
types, which are view controllers. View controller classes
in iOS are instances of UIViewController subclasses [24].
These view controller classes are provided by UIKit [23].

UIKit provides programmers with variety of UIViewCon-
troller subclasses, each subclass has its own special-purpose
[23], including UITabBarController, UITableViewController,
UICollectionViewController, and more. In addition, pro-
grammers can customize UIViewController by subclassing
UIViewController or by subclassing any of its subclasses.
To illustrate the subclassing: a programmer will subclass
UITabBarController to give the app a unique user interface.
Therefore, the proposed model have to be intelligent to detect
all these cases by finding all the UIViewController and its
subclasses that are provided by UIKit, and also the model
have to find all the customized classes that are created by
programmers to satisfy programmers needs. To accomplish
this intelligent detection, MCD used python Regular Expres-
sion (RE). The next subsection explains the methodology of
Massive Controller Detection (MCD).

Algorithm 1 Massive controllers detection in iOS project
INPUT: iOS project directory F .
OUTPUT: All controllers in the project with detection for
the massive ones.

1: for all files fi in F do
2: if fi is an instance of a subclass of UIViewController

then
3: Store fi in Co

4: end if
5: end for
6: for all controllers ci in Co do
7: if line is not a comment or not an empty line then
8: increment the total number of lines L
9: end if

10: if L < 150 then
11: not a massive controller
12: end if
13: if L >= 150 or L <= 300 then
14: not a massive controller but warn the programmer

to take care
15: end if
16: if L > 300 then
17: a massive controller
18: end if
19: end for

Massive Controller Detection (MCD) Methodology: Reg-
ular Expression (RE) used to match a set of specifics strings
[25]. Patterns in Regular Expression (RE) identifies the
format of input values [26]. Thus, MCD used a pattern
regular expression to detect controller objects. Algorithm
1 demonstrated MCD methodology. The directory of iOS
project contains all the files including model objects, view
objects, controller objects, configuration files, etc. MCD’s
pattern regular expression has the ability to find all controller
objects (files) that belong to one of the following controllers:
UIViewController, subclass of UIViewController, subclass
of UIKit’s UIViewController subclasses, custom UIView-
Controller, subclass of custom UIViewController, or even
any class that is inherited from UIViewController. In fact,
there is no such strict rules to determine number of lines
of the massive controller. However, there are conventions

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_03

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



in iOS community that determine the massive controller as
the following: when controller has more than 300 lines,
it is a massive controller. In contrast, any controller that
has less than 150 lines is considered as a thin controller.
Another key contribution to mention, MCD aims to help
programmers more and to let them get the most benefits of
the proposed model, so Massive Controller Detection model
warns them when it detects a controller which has 150 lines
or more but less than or equal 300 lines. This warning is
important because keeping controller objects less than 150
lines not only helps in testing but also helps in maintaining
the project, which in terms, helps improving the performance
of the project overall. It is obvious that programmers write
comments to help them in several ways such as documen-
tations, or posting comments for other programmers. Also,
programmers insert new lines to make the file readable and
to follow conventions in coding style. With these two reasons
in mind, Massive Controller Detection model counts the lines
in an accurate way by ignoring all comments and all empty
lines.

B. Phase two: Object Relations Validation (ORV)

After phase one, object relations validation (ORV) phase
comes, ORV used dot [27] language to draw a directed
graph that represents the relations between objects in iOS
project. These objects are MVVM objects: Model object,
View object, and ViewModel object. The generated graph
from ORV shows how MVVM objects are related to each
other. For wrong relations cases, ORV will draw these wrong
edges with a dotted arrow. It will also detect the exact line
number which cases the wrong relation and display it to the
user. The methodology of object relations validation (ORV)
phase will be explained in the next subsection.

Algorithm 2 MVVM objects relations validation in iOS
project
INPUT: iOS project directory F .
OUTPUT: A directed graph with all relations between
MVVM objects.

1: for all MVVMObjects fi in F do
2: write fi in its cluster
3: if fi has a relation with any other MVVM Objects

then
4: draw the relation
5: if fi is a wrong relation then
6: draw it with a dotted arrow
7: detect the line number that causes the wrong

relation
8: display a WARNING message
9: end if

10: end if
11: end for

Object Relations Validation (ORV) Methodology: ORV
follows the same strategy that is used in MCD to find
all Controller objects. Additionally ORV will find all View
objects. In order to find View objects, ORV modifies MCD
pattern regular expression instead of finding all UIViewCon-
troller. It will find all View objects (files) which are subclass

of UIView or any of its subclasses such as: UIButton,
UITableViewCell, UILabel, UIImageView, UISwitch and the
rest of the subclasses that UIKit provides. All these view
classes are provided by UIKit framework for iOS, while
OS X view classes are provided by AppKit framework [12].
Furthermore, there are dozens of View objects in Interface
Builder Library [12]. On the other hand, there is no direct or
simple way to find Model objects, and ViewModel objects
because they are not subclasses of known classes. In addition,
programmers create Model objects, and ViewModel objects
in variety ways. As a result, when users run ORV script,
it will ask users to enter the name of Model objects, and
ViewModel objects. Then, ORV will generate a dot file
that has the attributed graph text. As shown in Algorithm
2, in line 1 to generate the dot file, the script will col-
lect all MVVM objects: Controller objects, View objects,
ViewModel objects, and Model objects. Then, in line 2 the
script will start writing each object in its cluster: Controller
objects in controller cluster, View objects in view cluster,
ViewModel objects in view model cluster, and Model objects
in model cluster. After that, in line 3 ORV will open each
file (object) of MVVM and read it to check if the object
has a relation with other objects. If the relation exist, ORV
will connect the objects, otherwise ORV will not generate
a connection. Also, ORV will check the existing relations
are they obey to MVVM rules or not. Then, ORV will draw
all illegal relations with a dotted arrow as written in line
6 in Algorithm 2. Moreover, ORV will search carefully to
detect the exact line number that is the reason of the wrong
relation. After that, ORV will display this line number in a
warning message. To accomplish this checking successfully,
ORV used python regular expression (RE) pattern to find a
match. The used RE pattern is accurate since it checks the
file line by line: searching for other objects if they exist in
this file. Moreover, sometimes programmers name methods
or variables with the same name of other files or part of
it. For example, suppose we have a Model object its name:
Students, and suppose that in ViewModel object there is a
method named: findAllStudents. ORV used word boundaries
in the used RE pattern, therefore it will be intelligent enough
to ignore findAllStudents and avoid partial matches. The
result of running ORV script is a dot file that has all the
relations between MVVM objects written as attributed graph
text. Finally, the user will run the dot file to generate the
directed graph that depicts the relations between MVVM
objects in the project. If there is any wrong relation, ORV
will depict a dotted arrow. For instance, according to Model
View ViewModel design pattern, it is not allowed for Model
objects to communicate with View objects. Consequently, if
ORV finds Model object that is communicated with View ob-
jects, ORV will draw this relation arrow with a dotted arrow
to indicate that this relation is a wrong relation. Thereby,
object relations validation phase will help programmers or
developers to construct a robust application architecture by
writing a valid MVVM design pattern with correct relations
between all objects.
Figure 5 shows the flow chart of MVC & MVVM Validation
Model for iOS (MMVMi). Any iOS project can be written
by following Model View Controller design pattern, Model
View ViewModel design pattern, or mix of them, or even
any other available design patterns. As depicted in Figure

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_03

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



Start

iOS
project
directory

MCD

Massive
controllers

ORV

Warn
the user

Draw
relations

Stop

no

yes

Fig. 5. MMVMi Flow chart

5, the input to MMVMi is iOS project directory. First,
MCD detects massive controllers. In case the project has
massive controllers, MMVMi advises the user to switch to
MVVM design pattern. Next, ORV checks the relations, if
all relations are satisfied, MMVMi ends processing. ORV
advices the user to fix the wrong relations if it finds relations
that are not satisfied by MVVM design pattern.

V. CLOUDY APP CASE

In the previous section, MVC & MVVM Validation Model
for iOS (MMVMi) was introduced with its two phases. In
this section, we apply MMVMi model on iOS application
named Cloudy with different two cases. Case one has a valid
relations between MVVM objects, while the second case
has invalid relations between MVVM objects. The section
begins with an introduction to the application. After that, the
two phases of MMVMi model are explained and applied on
Cloudy app which has valid relations. Then, MMVMi model
is applied on Cloudy app with invalid relations.

A. Introduction to Cloudy App

Cloudy is an iOS application that is developed by Bart
Jacobs, the founder of Code Foundry. Cloudy is a weather
application that provides daily and weekly weather forecasts.
Cloudy gets the user current location, and then fetches the
weather information from Dark Sky API after ”Cloudy”
displays the weather information for the user. As depicted

Fig. 6. Cloudy App: (a) Main view, and (b) Settings view

in Figure 6(a), the main view shows the weather information
including temperature, windSpeed, summary of the current
weather status, and an icon to represent the current weather
status. In addition, Cloudy app offers two different formats
for time, temperature, and windSpeed. Users can choose their
preferences in the Settings view as illustrated in Figure 6(b).
Initially, Cloudy app was built with Model View Controller
(MVC) design pattern. Then, the author aims to let Cloudy
app architecture: robust, and scalable. So, this architecture
should have lighter view controllers and should separate
concerns in a way that improves testability, and maintain-
ability. To achieve all these goals, the developer refactored
Cloudy app from Model View Controller (MVC) design
pattern to Model View ViewModel (MVVM) design pattern.
Both implementations of Cloudy app MVC-based [28] and
MVVM-based [29] are available as open sources on GitHub.
The next two subsections provide detailed explanations about
applying MMVMi on Cloudy app that has valid relations
between MVVM objects. Then, the final section shows the
invalid relations between MVVM objects.

B. Case one: Massive Controller Detection phase on Cloudy
App

Massive Controller Detection (MCD) is the first phase of
MMVMi. We applied it on Cloudy app MVC implementa-
tion. Figure 7 shows MCD result, it is obvious that Cloudy
application doesn’t have any massive controller, even though
it is implemented based on Model View Controller (MVC)
design pattern. This is common: even if MVC project doesn’t
have any massive view controller, the developer aims to
refactor the code to MVVM design patter. This refactoring
has several benefits, one of the main benefits is concerns
separation that enhances many non functional requirements
such as: testability, maintainability, and many more. So, after
refactoring the code, we ran Massive Controller Detection
on Cloudy MVVM implementation, the result is shown in
Figure 8. This result proves that MVVM improves Cloudy
based code by reducing the total number of lines for many of
its Controller objects. From the result, we can conclude that

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_03

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



Fig. 7. MCD result for Cloudy app MVC-based

Fig. 8. MCD result for Cloudy app MVVM-based

the following Controller objects got benefits from refactor-
ing: SettingsViewController was 102 lines after refactoring
it became 91 lines. WeekViewController was 94 lines, while
in MVVM implementation WeekViewController is just 66
lines. Thus, with MVVM design pattern WeekViewCon-
troller got rid of 28 lines. In addition, with Model View
Controller design pattern DayViewController was 68 lines.
In contrast with Model View ViewModel design pattern,
DayViewController has 48 lines. Moreover, it is obvious that
both RootViewController and WeatherViewController remain
the same. After Cloudy app has been passed MCD phase
successfully, it is time to apply ORV phase and validate the
relations between objects.

C. Case one: Object Relations Validation phase on Cloudy
App

The output of Object Relations Validation phase is two
directed graphs where the first graph represents the relations
between MVVM objects without depicting the interrelations
between objects in the same cluster. This graph is shown in
Figure 9. On the other hand, the second graph as illustrated
in Figure 10, shows the relations in more details. As demon-
strated in Figure 9, the WeatherViewController is not related
to any object. However, Figure 10 shows that the Weath-
erViewController has two relations with two objects in the
same cluster: DayViewController and WeekViewController.

Cloudy app has five controller objects: RootView-
Controller, SettingsViewController, WeekViewController,
DayViewController, and WeatherViewController. All these
controller objects are grouped in Controller cluster as shown
in Figure 9. While View Model cluster consists of the follow-
ing ViewModel objects: SettingsViewTimeViewModel, Set-
tingsViewUnitsViewModel, SettingsViewTemperatureView-
Model, DayViewViewModel, WeekViewViewModel, and
WeatherDayViewViewModel. In Figure 9, the upper right
corner contains Model cluster that has Model objects: Weath-
erDayData, and WeatherData. On the other hand, as shown
in the bottom of Figure 9 View cluster has the following
View objects: SettingsTableViewCell, and WeatherDayTable-

Fig. 9. Object Relations Validation without relations between objects in
the same cluster

ViewCell. According to MVVM objects relations: con-
troller objects act as intermediary between View objects and
ViewModel objects. These controller’s relations are clearly
demonstrated in Figure 9. To illustrate, it let us consider
the following example: WeatherDayTableViewCell is a View
object, its user actions are interpreted by WeekViewCon-
troller that is a Controller object. Next, WeekViewCon-
troller maps user actions to WeekViewViewModel. After that,
WeekViewViewModel can update WeatherDayData. Weath-
erDayData is a Model object so as shown in Figure 3
ViewModel objects own Model objects and update them,
that is clearly depicted in Figure 9. Consequently, Cloudy
app successfully passed Object Relations Validation phase
as all the relations between Cloudy app objects are valid
and they satisfied the constraints of Model View ViewModel
(MVVM) design pattern.

D. Case two: Cloudy App with invalid relations

In the previous case RootViewController communicates
with WeatherDayData via WeekViewViewModel. Because
RootViewController is a controller object, and WeatherDay-
Data is a model object. As one of MVVM rules: controller
objects are not allowed to communicate with model objects
directly, there should be view model objects to manage
these communications. In this case, WeekViewViewModel
was deleted from Cloudy app. As a result, all its code was
moved to RootViewController. Thus, when MMVMi ran on
Massive Controller Detection phase as shown in Figure 11, it
warned the developer to take care about RootViewController
as it has a chance to be a massive controller. Next, Relations
Validation phase detects exactly where the wrong relations
occur. Then, it shows a warning message with the objects of
the wrong relation and the line number that causes this wrong
relation. The warning message for our case is illustrated in
Figure 12, it shows that in line 16 RootViewController com-
municates with WeatherDayData which is a wrong relation.
Finally, MMVMi generated a directed graph which colored

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_03

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



Fig. 10. Object Relations Validation with relations between objects in the same cluster

Fig. 11. MCD result for Cloudy app case 2

Fig. 12. Warning message for wrong relations between MVVM objects

the wrong relation arrow with a dotted line as depicted in
Figure 13.

VI. EVALUATION AND RESULTS

This section evaluates MMVMi model by comparing it
with relevant tools such as Depcheck and Objc Dependency

Fig. 13. Invalid relations between MVVM objects

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_03

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



Fig. 14. Detecting massive controllers by using Krzysztof Zablocki script
on Cloudy MVC version

Visualizer tool. The first subsection, evaluates Massive Con-
troller Detection phase. While Object Relations Validation
phase is evaluated in the next two subsections. Subsection
two, compares Object Relations Validation phase with De-
pcheck by running both of them on Cloudy app MVVM
version. The next subsection, applies Objc Dependency Visu-
alizer on Cloudy app MVVM version. All results and graphs
output of the aforementioned tools will be discussed in detail
in this section.

A. Massive Controller Detection phase Comparison

Massive Controller Detection phase helps developers to
detect massive controllers in iOS projects. In a Good iOS
Application Architecture: MVVM vs. MVC vs. VIPER talk,
Krzysztof Zablocki proposed a script that triggers warnings
when the project has massive controllers. Krzysztof Zablocki
script outputs all files in the project with their full path and
the total number of lines for each file. The results of running
Krzysztof Zablocki script on Cloudy app MVC version is
shown in Figure 14. Indeed there is no doubt that the output
of MCD in Figure 7 is much more abstract than Figure 14.
In addition, Krzysztof Zablocki script ran on Cloudy app
MVVM version and its output is depicted in Figure 15. On
the other hand, the same project was run on MCD and its
output is illustrated in Figure 8. By comparing all those
different outputs, it is obvious that Krzysztof Zablocki script
has a major drawback as it computes the total number of
lines for all files, not just the controller files. Accordingly,
developers have to scan through all the output files to
check the total number of lines for each controller file. In
contrast, MCD script searches for controller files implicitly,
and then it displays just controller files. Thus, MCD pro-
vides a convenient method for developers to detect massive
controllers. Furthermore, Krzysztof Zablocki script counts
all lines including comments and empty lines, unlike MCD
which ignores comments and empty lines and just counts
code lines. Thereby, MCD is more accurate. For example, the
total number of lines in WeatherViewController is 38 lines as
shown in Figure 7 and Figure 8. While Krzysztof Zablocki
script shows that WeatherViewController has 72 lines in total
as illustrated in Figure 14 and Figure 15.

B. Comparison with Depcheck

This subsection compares MMVMi with Depcheck, in
terms of visualizing the relations in iOS project. As men-
tioned in the related work section, Depcheck is an analyzer
tool for Swift projects [22]. Basically, Depcheck has three
command: analyze, usage, and graph. To report dependencies
per classes, run analyze command. While, to count each class

Fig. 15. Detecting massive controllers by using Krzysztof Zablocki script
on Cloudy MVVM version

Fig. 16. Depcheck analyze command output

dependencies, run usage command. To generate a depen-
dency graph, run graph command [22]. Figure 16 shows
a screenshot of terminal output, when analyze command
ran on Cloudy App MVVM version. Obviously, analyze
command output is useless as it reports class name with
the number of dependencies. Actually, when developers used
visualizing tools, they aim to visualize projects details with
useful information that help them to inspect the project
smoothly. Depcheck’s analyze command should be improved
by displaying the name of all the dependencies not just the
number. Furthermore, even though in case a class is not de-
pendent on any other classes, analyze command will display
this class with zero number beside it. For example, in Figure
16, AppDelegate, DataManagerError, SettingsRepresentable,
TimeNotation, JSONDecoderError, WeatherViewController
and much more all of them have zero dependencies. This
is really worthless.

Figure 17 illustrates part of the dependency graph which
is generated by running Depcheck’s graph command on

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_03

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



Fig. 17. Depcheck graph command output

Cloudy App MVVM version. Roughly, this graph helps view
the relations between objects in the project. However, the
graph is huge which makes it unclear and difficult to find a
specific relation. On the contrary, Figure 9 depicts MMVMi
dependency graph for the same project: Cloudy App MVVM
version. Definitely MMVMi graph is more helpful than
Depcheck graph for several reasons. Such as MMVMi graph
omits unnecessary relations, whereas Depcheck graph draws
all relations between objects even the relation between the
object and itself as shown in Figure 17: RootViewController
has an arrow from its node to itself. Moreover, MMVMi
graph assists developers to observe the relations between
MVVM objects easily. However, using Depcheck graph
might help but in a complex way as it has numerous arrows.

C. Comparison with Objc Dependency Visualizer

Objc dependency visualizer tool illustrates the relations
between classes in iOS project in an interactive way. In
this subsection, objc dependency visualizer graph will be
compared with MMVMi graph. Figure 18 displayed objc
dependency visualizer graph for Cloudy MVVM version. In
the top right corner, there is a Live editor that gives users
the ability to control circle size, charge multiplier, and link
strength. Users can control all these options in a simple way
by moving and adjusting the sliders according to their needs.
Also, there is ”show names” option where when it checked
all classes name will be appeared on their corresponding
nodes. Last but not least, filter option where users can type
a regular expression to filter nodes. By comparing Figure 9
with Figure 18, it is clear that Figure 18 shows how each
class is linked to other classes which made it crowded and
messy. Therefore, in Figure 19 we applied filter to show just
Controller objects. After applying Controller objects filter,
the arrows relations will be illustrated between only nodes
that have controller within their name. It will be better if the
Live editor has an option to omit unrelated nodes, and other
option to show the relations between the filtered nodes and
other nodes.

Figure 20 depicts ViewModel filter, the filter is re-
ally useless as it just shows the relation between
WeekViewViewModel node and WeatherDayViewView-
Model node. However, there are many ViewModel
nodes including DayViewViewModel, SettingsViewTemper-
atureViewModel, SettingsViewTimeViewModel, and Set-
tingsViewUnitsViewModel. Objc dependency visualizer tool

dismissed all these ViewModel nodes relations because these
relations are not with other ViewModel nodes. Indeed, de-
velopers need to check how ViewModel nodes are linked
with Model nodes and Controller nodes. This relations check
is clearly illustrates in MMVMi graph as shown in Figure
9. Moreover, filter option can be considered as a drawback
because in order to use it, users must have a good knowledge
in regular expression to write a regular expression that fulfills
their need.

VII. CONCLUSION

Design patterns have a huge impact that affects several
aspects of software engineering including development, and
architecture. In this work, we focused on iOS application
development with two design patterns: Model View Con-
troller (MVC) design pattern, and Model View ViewModel
(MVVM) design pattern. MVC suffers from many limitations
as discussed earlier. Consequently, developers tend to use
Model View ViewModel to overcome MVC limitations. The
overall objective of our work is to help developers to stick
to the rules of MVC design pattern, and help them to check
and detect if they have Massive View Controller problem. In
this case, they have to switch to MVVM design pattern. We
aim to advice developers to switch to MVVM design pattern
as it separates concerns in a better way and it distributes the
roles more productively. To achieve these objectives, we have
developed a validation model: MVC & MVVM Validation
Model for iOS (MMVMi). The presented validation model
addressed our goals and aims as it helps developers to
validate their projects with MVC rules. The proposed model
validates the relations between project objects and check if
they satisfy the MVVM objects relations rules. We assert that
such a validation model will aid developers and programmers
to successfully apply MVC or MVVM on their iOS projects
and get the main benefits from applying design pattern
correctly. We hope this work will help iOS community and
guide them to build robust iOS applications that are well
structured with a valid design pattern.

VIII. FUTURE WORK

Currently, Object Relations Validation phase in MMVMi
used dot language to produce the directed graph. We see that
this is an aspect that needs to be improved. The output of
ORV phase is a simple directed graph that does not allow

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_03

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



Fig. 18. Objc dependency visualizer output for Cloudy MVVM version

the user to interact with it. User interactions can come in
different forms such as giving the user the ability to move
a cluster or nodes to anyplace. All these interactions can
be done with d3js library and they will be visualized in a
powerful interactive way. In fact, in iOS community there
are many projects that use both design patterns: Model View
Controller, and Model View ViewModel. So, we plan to
improve the proposed model in which, the model should have
the ability to specify the project type, and it should be able
to deal with projects that use both of MVC, and MVVM.
Hence, the aforementioned improvements will enhance the
MMVMi and will make it more powerful.

REFERENCES

[1] E. Sorensen and M. Mikailesc, “Model-view-viewmodel (mvvm) de-
sign pattern using windows presentation foundation (wpf) technology,”
MegaByte Journal, vol. 9, no. 4, pp. 1–19, 2010.

[2] R. Vice and M. S. Siddiqi, MVVM Survival Guide for Enterprise
Architectures in Silverlight and WPF. Packt Publishing Ltd, 2012.

[3] D. Patterns and C. Pattern, “Model-view-controller,”
Microsoft Patterns & Practices, http://msdn. microsoft.
com/practices/type/Patterns/Enterprise/DesMVC, 2003.

[4] A. Leff and J. T. Rayfield, “Web-application development using the
model/view/controller design pattern,” in Enterprise Distributed Object
Computing Conference, 2001. EDOC’01. Proceedings. Fifth IEEE
International. IEEE, 2001, pp. 118–127.

[5] D. A. Lo, Sensor Plot Kit: An iOS Framework for Real-time plotting
of Wireless Sensors. University of California, Irvine, 2015.

[6] B. Orlov, “ios architecture patterns,” https://medium.com/
ios-os-x-development/ios-architecture-patterns-ecba4c38de52,
(Accessed on 04/03/2018).

[7] T. Lee and T. Brunner, “A prototype to increase social networking
between staff: A web application for companies,” 2017.

[8] A. Freeman, Pro design patterns in swift. Apress, 2015.
[9] J. Patel, S. Okamoto, S. M. Dascalu, and F. C. Harris Jr, “Web-

enabled toolkit for data interoperability support,” in Proceedings of
the 21th International Conference on Software Engineering and Data
Engineering (SEDE-2012), Los Angeles, CA, 2012, pp. 161–166.

[10] A. Syromiatnikov and D. Weyns, “A journey through the land of
model-view-design patterns,” in Software Architecture (WICSA), 2014
IEEE/IFIP Conference on. IEEE, 2014, pp. 21–30.

[11] M. Neuburg, IOS 8 Programming Fundamentals with Swift: Swift,
Xcode, and Cocoa Basics. ” O’Reilly Media, Inc.”, 2015.

[12] “Model-view-controller,” https://developer.apple.com/library/content/
documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html,
(Accessed on 04/03/2018).

[13] A. Allan, Learning iOS Programming: From Xcode to App Store. ”
O’Reilly Media, Inc.”, 2013.

[14] R. B’far, Mobile computing principles: designing and developing
mobile applications with UML and XML. Cambridge University Press,
2004.

[15] K. Topley, F. Olsson, J. Nutting, D. Mark, and J. LaMarche, Beginning
IPhone Development with Swift: Exploring the IOS SDK. Apress,
2014.

[16] H. Sun, J. Zhang, G. Sun, and Y. Li, “Agricultural traceable and
marketing system based on ios-platform and wireless sensor network,”
Journal of Computer and Communications, vol. 5, no. 06, p. 45, 2017.

[17] L. Nguyen and K. Nguyen, “Application of protocol-oriented mvvm
architecture in ios development,” 2017.

[18] K. Peterson, “The github open source development process,” url:
http://kevinp.me/github-process-research/github-processresearch.pdf
(visited on 05/11/2017), 2013.

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_03

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



Fig. 19. Applying Controller filter on Cloudy MVVM version

[19] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: transparency and collaboration in an open software repository,”
in Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work. ACM, 2012, pp. 1277–1286.

[20] “Github - k0nserv/luft: The xcode plugin that helps you write
lighter view controllers,” https://github.com/k0nserv/luft, (Accessed on
04/03/2018).

[21] “Github-paultaykalo/objc-dependency-visualizer: Objective-c and
swift dependency visualizer. it’s tool that helps to visualize current
state of your project. it’s really easy to see how tight your classes are
coupled.” https://github.com/PaulTaykalo/objc-dependency-visualizer,
(Accessed on 04/03/2018).

[22] “Github-wojteklu/depcheck: Dependency analyzer tool for swift
projects,” https://github.com/wojteklu/depcheck, (Accessed on
04/03/2018).

[23] “Controller object,” https://developer.apple.com/library/content/
documentation/General/Conceptual/DevPedia-CocoaCore/
ControllerObject.html#//apple ref/doc/uid/TP4000895-CH11-SW1,
(Accessed on 04/04/2018).

[24] “Uiviewcontroller-uikit — apple developer documentation,”
https://developer.apple.com/documentation/uikit/uiviewcontroller,
(Accessed on 04/03/2018).

[25] S. Brin, “Extracting patterns and relations from the world wide web,”
in International Workshop on The World Wide Web and Databases.
Springer, 1998, pp. 172–183.

[26] H. Hosoya and B. Pierce, “Regular expression pattern matching for
xml,” in ACM SIGPLAN Notices, vol. 36, no. 3. ACM, 2001, pp.
67–80.

[27] E. Koutsofios, S. North et al., “Drawing graphs with dot,” Technical
Report 910904-59113-08TM, AT&T Bell Laboratories, Murray Hill,
NJ, Tech. Rep., 1991.

[28] “bartjacobs/cloudy at mvc,” https://github.com/bartjacobs/Cloudy/tree/
mvc, (Accessed on 04/03/2018).

[29] “bartjacobs/cloudy: Mastering model-view-viewmodel with swift,”
https://github.com/bartjacobs/Cloudy, (Accessed on 04/03/2018).

Mariam Aljamea earned bachelor degree in computer engineering from
Kuwait University in 2012. Currently she is a master student in computer
engineering at Kuwait University and she is working on distribution systems
using Apache Spark for her thesis. Also, she is an iOS Developer in Ministry
of Education. She is a researcher in apache spark and bioinformatics.

Mohammad Alkandari is an Assistant Professor of computer engineering
at Kuwait University, Kuwait, where he has been on the faculty since 2012.
He received his Ph.D. degree in computer science at College of Engineering
from Virginia Polytechnic Institute and State University (Virginia Tech).
He was the director of the Office of Engineering Education Technology at
Kuwait University, College of Engineering and Petroleum for 3 years. He
is currently the coordinator of Software and Systems Engineering Research
Group at Computer Engineering Department. He is a researcher in software
engineering, requirements engineering, software project management, soft-
ware quality assurance, privacy and data protection, and human-computer
interaction.

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_03

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 



Fig. 20. Applying ViewModel filter on Cloudy MVVM version

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_03

(Advance online publication: 28 August 2018)

 
______________________________________________________________________________________ 




