TAENG International Journal of Computer Science, 45:3, IJCS 45 3 05

An Enhanced Real-Time Deferrable Server
Scheduler for Xen Virtualization Systems

Jun Wu and Jian-Fu Li

Abstract—Real-time deferrable server (RTDS) scheduler is
an experimental CPU scheduler for Xen virtualization systems
since version 4.5. Under RTDS, each virtual CPU (VCPU)
is guaranteed to have a predefined amount of physical CPU
(PCPU) capacity so that the performance can be better pre-
dicted. However, the guaranteed capacity might not fit the
requirement of a VCPU at the run-time because it is defined
offline. Therefore, the performance of virtual machines (VMs)
might be deteriorated at the run-time. In this paper, an RTDS-
based CPU scheduler is proposed, called enhanced real-time
deferrable server (ERTDS), to provide an additional amount
of PCPU capacity to a VCPU when its run-time requirement
is higher than expected. We have implemented ERTDS in Xen
version 4.7 and a series of experiments has been conducted for
which we have some encouraging results.

Index Terms—Xen virtualization system, CPU Scheduler,
real-time deferrable server

I. INTRODUCTION

EN was originally proposed by Keir Fraser [1] as a

research project at the University of Cambridge. It
enables multiple virtual machines (VMs) to be running on
a single physical machine (PM) isolatedly. Later, Xen has
been released as an open source project [2], and it has
become a leading virtualization platform. Based on Xen,
many researchers have explored the use of virtualization
technology for various application domains, such as fault
tolerance [3], encryption [4], simulation [5], and cloud
computing [6]. When different applications are considered,
the VMs of a Xen virtualized system may have different
resource requirements. Therefore, the allocation of limited
underlying physical resources, such as CPU and memory,
has become an active research topic. In this paper, we are
interested in scheduling of physical CPUs (PCPUs) to virtual
CPUs (VCPUs) since it is the major performance-dominated
resource for VMs.

In the past decade, Xen has released several CPU sched-
ulers to schedule the virtual CPUs (VCPUs) of VMs on the
underlying PCPUs of the PM, such as Credit [7], simple
earliest deadline first (SEDF) [8], borrowed virtual time
(BVT) [9], and real-time deferrable server (RTDS) [10].
Note that SEDF and BVT were not supported since Xen 4.6
and 3.0, respectively. At the current stage, Credit and RTDS

Manuscript received January 15, 2018; revised June 1, 2018. This work
was supported in part by the Ministry of Science and Technology (MOST)
of Taiwan under grants MOST-105-2628-E-153 -001-MY2 and MOST-104-
2815-C-153-004-E.

Jun Wu and Jian-Fu Li are with the Department of Computer Science
and Information Engineering, National Pingtung University, 900 Pingtung
City, Taiwan, R.O.C. e-mail: junwu@mail.nptu.edu.tw

An earlier version of this paper, entitted "ERTDS: A Dynamic CPU
Scheduler for Xen Virtualization Systems”, was presented at the 2017 IEEE
International Conference on Applied System Innovation (ICASI). The results
have been extended in exploring the schedulability and the analysis of
capacity guarantee for VCPUs. More examples, figures, experimental results,
and proofs are included in this extension.

are two major CPU schedulers but with different design
philosophies: Credit is a proportional fairness scheduler
while RTDS is a real-time CPU scheduler built to provide a
guaranteed PCPU capacity to every VCPU on SMP or multi-
core hosts. Since Credit (and its successor Credit2 scheduler
[11]) is the default scheduler of Xen, many excellent work
has been proposed for improving the performance of Credit
(such as [12], [13], [14], [15], [16], [17], [18], [19], [20]),
however, little work has been done for RTDS. To the best
of our knowledge, only very few work has been addressed
for RTDS. In particular, Xi et al. [21] have proposed an
RTDS-based CPU resource management approach for real-
time cloud computing.

RTDS uses a static resource allocation strategy to al-
locate the underlying PCPU to VCPUs, i.e., in an off-
line fashion. In particular, the PCPU allocation (i.e., the
guaranteed PCPU capacity) of each VCPU is defined off-
line by two parameters: budget and period'. According to the
pre-defined parameters, RTDS guarantees that every VCPU
can be running on a PCPU for up to the time defined by
its budget for every period of time. In other words, RTDS
provides a guaranteed and predictable PCPU capacity to each
VCPU such that it is capable to support VCPUs with real-
time workloads. Nowadays, many applications that run on a
Xen virtualized system are with different criticalities. Such a
system, called Xen virtualized mixed-criticality system [22],
consists of RT-VMs and NRT-VMs which are VMs with real-
time and non-real-time workloads, respectively.

Since the timing requirements of RT-VMs are known a
prior, their required PCPU capacities can be guaranteed by
RTDS in terms of well parameter settings. However, the
performance of NRT-VMs cannot be guaranteed because the
on-line requirements of non-real-time workloads are vary
and unpredictable. As the results, the performance of a
NRT-VM might be deteriorated even if RTDS provides a
guaranteed PCPU capacity (which might not fit the run-time
requirements of the NRT-VM). To improve the performance
of VMs, the underlying physical resources must be allocated
wisely and to be adjusted dynamically at the run-time so that
the on-line requirements can be met.

In this paper, an RTDS-based CPU scheduler, called
enhanced real-time deferrable server (ERTDS) scheduler, is
proposed to solve such a performance deteriorated problem.
Based on the schedulability analysis of RTDS, ERTDS
assigns a proper amount of PCPU capacity to every VCPU
(note that such an amount is still guaranteed at the run-
time) and creates a fake VCPU with a preserved amount
of PCPU capacity. The fake VCPU will provide additional
PCPU capacity to a VCPU at the run-time when its run-

INote that the parameters are allowed to be adjusted manually at the
run-time.

(Advance online publication: 28 August 2018)

TAENG International Journal of Computer Science, 45:3, IJCS 45 3 05

vepuy || vepur 2 vepus 1 || vepusg o
|

cpU
run@ pcpus

Global EDF

Scheduler
Replenisher bepuz

depletedQ
I_ D E—

Fig. 1. Real-Time deferrable server (RTDS).

time requirement is higher than expected. Therefore, when
ERTDS is adopted, the performance deteriorated problem can
be solved while still provide a guaranteed amount of PCPU
capacity to each VM. Note that ERTDS was first proposed in
our previous work [23]. In this paper, the results have been
extended in exploring the schedulability and the analysis of
capacity guarantee for VCPUs. Furthermore, more examples,
figures, experimental results, and proofs are included in this
paper.

The major contributions of this research are two-fold: (1)
We explore the schedulability and the properties of ERTDS
scheduler. Therefore, a proper amount of guaranteed PCPU
capacity can be determined for each VCPU off-line such
that the utilization of the PCPU and the performance of
RT-VMs can be better predicted; and (2) Our proposed
ERTDS scheduler provides an additional PCPU capacity to
each VCPU when its run-time requirements is higher than
expected for which the performance of NRT-VMs could be
improved greatly. Note that our proposed ERTDS scheduler
has been implemented in Xen 4.7 and a series of experiments
has been conducted for which some encourage results were
obtained. In particular, the experimental results show that
ERTDS outperforms the original RTDS.

The rest of this paper is organized as follows: Section II
presents the preliminary and the motivations of this research.
Section III proposes ERTDS and provides an example to
illustrate the details. Section IV provides the properties
and the schedulability analysis of our proposed ERTDS.
Section V reports the performance evaluation. Section VI
is the conclusion and the future work.

II. PRELIMINARY AND MOTIVATIONS

In this section, the preliminary of this research and the
system model are presented. We also discuss a potential
performance deterioration problem of the original RTDS
scheduler which motivates this research.

A. System Model

We consider a Xen virtualization system which con-
sists of a set of n + 1 virtual machines VM =
{vmg,vmq, - -+, vm, }, where vmy is initially started by Xen
at the boot time with a higher privilege for the management
purposes (such as to create or to terminate other VMs,
to control the scheduling behaviors, and to allocate the
physical resources). Although there are several types of

physical resources, we are only interested in the physical
CPUs (PCPUs) as we mentioned earlier. We assume that
there exists a set of m PCPUs in the system, denoted as
PCPU = {pcpus,pcpus,---,pcpu,,} . Note that each
pcup; represents a processing core in the physical machine
(PM). Each VM vm; has n; virtual CPUs (VCPUs) denoted
by VCPU;, = {vcpu; 1, vepu; 2, - -+, VCPU; n, }. We also use
VCPU to denote the set of all VCPUs in the system, i.e.,
VCPU = |J VCPU..

1<i<n

B. The original RTDS scheduler

Real-time deferrable server (RTDS) scheduler provides a
guaranteed PCPU capacity to each VCPU of each VM in a
static manner. In particular, RTDS scheduler models a VCPU
as a deferrable server [24]. It assigns two parameters period
and budget to each VCPU statically. Let period and budget
of a vepu;; denote as P;; and B; ;. Under RTDS, it is
guaranteed that every vcpu; ; can be running on a PCPU
for up to B;; ps (not necessarily continuously) for every
P; ; ps. In other words, RTDS guarantees a B; ;/P; ; PCPU
utilization to every vcpu; ; at the run-time.

As shown in Figure 1, RTDS uses two global queues run()
and depleted(to manage the PCPU scheduling of VCPUs
with and without budget. Note that we use b; ; to denote
the current value of the budget of a vcpu; ;. In particular,
the global run@ is an ordered priority queue holds all
VCPUs which have a positive value of budget (i.e., b; ; > 0,
Yvepu; ; € run@) and sorted by VCPU’s deadlines. Note
that the deadline of a VCPU is at the end of its current
period. The depleted@ holds all VCPUs whose budget is
depleted (i.e., b; ; = 0, Yvcpu; ; € depleted() and it is a
unordered queue. The budget exhaustion and replenishment
of RTDS as follows:

Initially, the value of each vcpu; ;’s budget is set as B; ;,
i.e., b; ; = B; ;. Whenever a vcpu; ; becomes runnable (i.e.,
there are jobs required to be executed on vcpu; ;, or more
simply, vepu; 4 is not idle.), it will be added into the global
run@, while it will be removed from the run@ when it
becomes idle. All VCPUs in the run(@ are scheduled by the
preemptive global earliest deadline first (G-EDF) algorithm
[25]. It always selects the highest priority VCPU from the
run(@ to run on a feasible PCPU. Note that the highest
priority VCPU is the one with the earliest deadline among
all VCPUs in the run(@. Also note that a PCPU is feasible if
it is idle or it has a lower priority VCPU running on it (i.e.,

(Advance online publication: 28 August 2018)

TAENG International Journal of Computer Science, 45:3, IJCS 45 3 05

[rstarting of a period D running on a PCPU current budget

first period

vcpui.jT : ,

second period

fon

(a) The PCPU schedule of ﬁcpui.]E

time

Inu)gel

bij

— : — : time
2¢ 28 33 3941 48

(b) The value of VCPU; ;’s budget

03 12
Fig. 2. An example schedule of vcpu; ; and its budget b; ;.

a running VCPU with a longer deadline). When a vepu; ; is
running on a PCPU, its budget is continuously burned. Note
that the budget of a VCPU is preserved within each of its
periods. In other words, it will be guaranteed that a VCPU
vepu; ; can be running on a PCPU up to B; ; us for every
Pi,j us.

Also note that a VCPU’s budget will be preserved within
each period. In particular, the remaining budget of a VCPU
is preserved until its deadline (i.e., the beginning of its
next period) when it changes from activated status to idle.
However, the remaining budget (if any) will be discarded at
the end of each period. On the other hand, a VCPU will
be moved from the run@ to the depleted(if its budget is
depleted earlier than its deadline. More specifically, it cannot
be run on any PCPU until its next period. Note that a VCPU
has its budget replenished at the beginning of each of its
periods. The following lemma shows the major feature of
RTDS:

Lemma I: RTDS provide a guaranteed PCPU capacity
% for each VCPU wvcpu;,, i.e., each vepu; ; is guaranteed
to be running on a feasible PCPU up to B; ; us for every
Pi,j Hs.

We use the following example to illustrate the details of
RTDS:

Example 1: Consider a VCPU which has a period F; ; =
24pus and a budget B; ; = 9pus. In other words, vepu; ; has
a guaranteed 9/24=37.5% PCPU utilization, i.e., it can be
running on a PCPU up to 9 us for every 24 us. Figure 2
shows an example PCPU schedule and its corresponding
budget for vepuy; ;s first two periods. As shown in Figure 2,
at time 0, vepu; ; starts its first period, later at time 3, it
becomes the highest priority VCPU in the run@ (i.e., it has
an earliest deadline among all VCPUs in the run@) and
starts its execution on an allocated PCPU and burns its budget
continuously. Note that we use white boxes to represent the
running of VCPUs.

Since the budget of vepuy; ; is 9 s, vepu; ; is only allowed
to be running on a PCPU up to 9 ps. As the result, vepu,
continuously runs and burns its budget until its b; ; = 0, i.e.,
at time 12. Note that at time 12, vcpu; ; must stop running
and has been moved to the depleted@ since its budget is
already depleted. At time 24, vcpu; ; starts its next period

?starting of a period D running on a PCPU |:| the execution of], current budget

first period

vcpul’j : .

second period

S ou

(a) The PCPU schedule of t€puy 1 |

time

bm?get

time

2428 2933 3941 48
(b) The value of TCPU1,1's budget

03 12

Fig. 3. An example schedule of vcpu;,; with a job Jy;, where the budget
of vepu; ; is 9 ps and the computation time of Jy is 10 us.

and its budget has been replenished, i.e., b;; = B;; = 9.
Also note that, at time 24, vcpu; ; has been moved to the
run@ since its b; ; > 0. Later, at time 28, vcpu; ; becomes
the highest priority VCPU in the run(), it starts its execution
and its budget also starts to burn. Suppose that at time 33,
vepu; ; becomes idle or has been preempted by other higher
priority VCPUs. Note that the remaining budget is preserved
for its further execution before its deadline (i.e., before its
next period). Later at time 39, vcpu; ; Tesumes its execution
and burns its remaining budget. Suppose that at time 41,
vepu; ; becomes idle or has been preempted again. Note
that its remaining budget will be discarded at the end of
its deadline. Also note that it will be replenished to B; ; at
the beginning of its next period. [

C. Motivations

The following example shows a potential performance
issue:

Example 2: Consider the example schedule shown in
Figure 2 again. Suppose that there is a job with 10 us
computation time has arrived at time 3 on wvcpu, ; and it
starts its execution immediately since vepu; ; is just allocated
to a PCPU (note that we assume the job J, is the highest
priority job on vepu; ;). Figure 3 shows the schedule and the
corresponding budget for vcpuy ;. As shown in the figure,
the job J, cannot complete within vcpuy; ;’s first period since
the budget of vepu; ; is 9 ps. Thus, at time 12, the job J,
has been suspended. Later, at time 28, vcpu; ; resumes its
execution and J,’s remaining computation is completed at
time 29. In this case, the response time of the job is 29-3 =
26 us. Now, suppose we can increase the budget of vepu; ; to
10 us, as shown in Figure 4, the job .J, can be completed at
time 13, thus, its response time is reduced to 10 us. Compare
to 26us, it is a great improvement. [

The major purpose of RTDS scheduler is to provide a
predefined amount of PCPU capacity (i.e., utilization) to
each VCPU, i.e., vepu, ; is guaranteed to have a 9/24=37.5%
PCPU capacity in Example 1 for which it can be running on a
PCPU up to 9 us for every 24 us. However, Example 2 shows
the predefined budget of vcpu,; ; might not fit its on-line
requirement since the on-line workload is not predictable.
When the on-line requirement of a VCPU is higher than

(Advance online publication: 28 August 2018)

TAENG International Journal of Computer Science, 45:3, IJCS 45 3 05

?starting of a period D running on a PCPU |:| the execution of], current budget

first period

”C}mﬂl,ﬁ :

second period

L0

(a) The PCPU schedule of tiepuy 1} |

time

bmiget
10--4—

time

03 13 2428 33 3941 48
(b) The value of TCPU1,1's budget

Fig. 4. An example schedule of vcpu;,; with a job Jy;, where the budget
of vepu;, j is 10 ps and the computation time of J is 10 us.

its predefined budget, the performance of the jobs might be
deteriorated. We observed in Example 2 that a minor increas-
ing of VCPU’s budget could result in a great performance
improvement (as shown in Figure 4). Such an observation
motivates this research. We shall present our approach in the
next section.

III. ERTDS: ENHANCED REAL-TIME DEFERRABLE
SERVER SCHEDULER

In this section, we shall propose a CPU scheduler for
Xen to solve the potential performance deterioration problem
mentioned in Example 2. The proposed scheduler is called
enhanced real-time deferrable server (ERTDS) which is a
RTDS-based scheduler. The main purposes of ERTDS are
two-fold:

1) To increase the predictability of the performance of
each VCPU, ERTDS provides a guaranteed PCPU
capacity to each VCPU;

2) To improve the responsiveness of each VCPU, ERTDS
provides additional PCPU capacity to a VCPU when
it has depleted its budget.

We now present ERTDS as follows: our proposed ERTDS
scheduler is the same as RTDS scheduler except it can
provide additional budget to VCPUs. In particular, ERTDS
creates a fake VCPU vcpu® with a period P* and a budget
B*, respectively. For convenient, we also denote the current
value of its budget as b*. The period of vcpu* is set as
the least common multiple (LCM) of all VCPUSs’ periods.
In other words, its period equals to the hyperperiod of all
VCPUs. Note that the budget of vcpu™ can be treated as
a global budget which can be provided to other VCPUs
dynamically at the run-time. As we mentioned earlier, all
VCPUs in the run@ are scheduled by the G-EDF algorithm.
In other words, a VCPU with the earliest deadline among
all others will be selected to be running on a feasible
PCPU. Since the period of the fake VCPU is equal to the
hyperperiod of all VCPUs, it will has the lowest priority
among all VCPU when G-EDF is adopted. Therefore, the
fake VCPU wvcpu* will be scheduled to be running on a
feasible PCPU only if it is the only one VCPU in the run@.

Whenever ERTDS selects the fake VCPU, it will not be
running on a feasible PCPU. Instead, ERTDS will select

TABLE I
THE PARAMETER SETTINGS OF EXAMPLE 3.
VCPU period | budget | guaranteed utilization
vepu g 8 us 2 pus 0.25
vepu2, 1 12 ps 6 us 0.5
vepu™ 24 us 6 us 0.25

?starting of a period D running on a PCPU D using additional budget

UCPULI‘T_\: |E| T : :D: T : : : : T " time

i (a) The PCPU schedule

budget
A :

0 2 45 89 1112 16 18 20 22 24
(b) The current budget of the fake VCPU

Fig. 5. An example ERTDS schedule.

a VCPU from the depleted@ to be running on a feasible
PCPU. Since a VCPU selected from the depleted(has
depleted its budget, it will be running by using the additional
budget, i.e., the global budget, from the fake VCPU. Such an
additional budget provides the VCPU a chance to be running
earlier (i.e., before the beginning of its next period). Also
note that the priority of the selected VCPU is set as the
priority of the fake VCPU (i.e., the lowest priority) when
it is running with the additional budget. It allows another
VCPU to preempt the execution of the selected VCPU when
it budget has been replenished or it becomes activated from
idle.

Since ERTDS is the same as RTDS except the additional
budget supplement, ERTDS not only provides a guaranteed
PCPU capacity to each VCPU, but at the same time, it also
provides an additional budget to the VCPUs which have been
depleted their budgets. As the result, the performance of the
selected VCPUs can be improved. When the depleted(@ has
more than one VCPU, it raises an important question: how to
select a VCPU to provide additional budget? We shall use the
following example to answer this question and to illustrate
ERTDS scheduler.

Example 3: Consider a Xen virtualization system consists
of two VCPUs vcpuy 1 and vepus 1 which belong to vm; and
vme. The parameter settings (including periods and budgets)
of these two VCPUs and the fake VCPU vcpu* are given
in Table I. For ease of discussion, we assume that there is
only one PCPU in the system. As a result, the G-EDF will
deteriorate to the uniprocessor earlier deadline first (U-EDF)
scheduler [26]. Note that the period and the budget of the
fake VCPU wvcpu* is set as 24 us (which is the LCM of the
periods of all VCPUs) and 6 pus. This means that the fake
VCPU wvepu* can provide up to 6 ps additional budget to the
two VCPUs for every 24 us. Figure 5(a) shows the schedule
of these VCPUs under ERTDS.

We examine some special time points as follows: initially,

(Advance online publication: 28 August 2018)

TAENG International Journal of Computer Science, 45:3, IJCS 45 3 05

at time 0, the budget of vcpuy 1, vepuo,1 and vepu™ are set
as 2, 6 and 6, respectively. Since vcpuq,; has the earliest
deadline, it is selected to be running on the PCPU. At
time 2, the budget of vcpuy; is depleted. According to the
U-EDF, vcpusg,; starts to run on the PCPU. Suppose that
vepuo,1 becomes idle at time 4. Therefore, the fake VCPU
vepu® becomes the highest priority VCPU and its budget is
provided to vcpuy 1 such that vepuy i can be running on the
PCPU even its budget has been depleted. As the result, the
response time of vepug 1’s jobs can be shortened.

We also assume that vcpuo; becomes activated at time
5. Since wepug,; is running on the PCPU with the lowest
priority (i.e., the priority of the fake VCPU), it will be
preempted by vcpus 1. Note that, in Figure 5(a), the white
box with the label A is to represent vcpu™’s budget is used.
The gray box with the label B is to represent the additional
budget is used by vcpu; 1. Also note that the Figure 5(b)
shows the value of vcpu™’s budget. At time 8, vcpug i’s
budget is replenished. However, it is not the highest priority
VCPU, thus vcpusg 1 continues its execution until its budget is
depleted at time 9. Thus, vcpuy; starts its execution at time
9. Later, at time 11, the budget of vcpuy ; is also depleted.

Since both the budget of vcpuy 1 and vepus 1 are depleted
at time 11, vepu™ becomes the highest priority VCPU again.
Although both vepuq 1 and vepug ; might use the additional
budget from the fake VCPU, ERTDS selects the one which
has the latest deadline, i.e., vcpu; 1, to be running by using
the additional budget. We have discussed the reason in
Example 2. It greatly improves the performance since the
response time of jobs can be shortened as much as possible.
Once again, the white box labeled by C and the gray box
labeled by D represent the additional budget from vepu™ is
used and it is used by vepuq ;.

Later at time 18 and 20, the budget of vcpus 1 and vepug 3
are depleted. We also assume that vcpus 1 and vepug g
become idle at time 18 and 22. As a result, vepug ;1 uses the
additional budget from time 20 as shown by the white box
labeled by E and the gray box labeled by F. Since vcpuy ;1 is
idle from time 22, there is no any other VCPU can use the
additional budget, thus the gray box labeled by G represents
the vepu™’s budget did not be used by any VCPU. It can be
considered that vepu™’s budget is used by itself. Note that all
VCPUs’ budget (including the fake VCPU) are replenished
at time 24. [

Example 3 shows that the fake VCPU can provide ad-
ditional budget to vcpuy,; so that its performance can be
improved. Note that ERTDS always selects the VCPU with
the latest deadline among the VCPUs in the depleted@. It
is because the performance of the VCPU with the latest
deadline can be improved greatly than other VCPUs (as
shown in Example 3).

IV. PROPERTIES

In this section, the properties of our proposed ERTDS
will be discussed for uniprocessor’ and multi-core pro-
cessor environments. When uniprocessor Xen virtualization
system is considered, the G-EDF scheduling algorithm is

2In this paper, the term ’uniprocessor’ represents a processor which has
only one processing core.

downgraded to the uniprocessor EDF scheduling [26]. The
uniprocessor periodic real-time task scheduling problem [26]
is to schedule a set of tasks without violating their timing
constraints (i.e., deadlines). Consider the following theorem:

Theorem 1: (Liu and Layland [26]) For a uniprocessor

system, a set of periodic real-time tasks 7 = {7;, 72, -+, 7n}
can be scheduled by EDF if and only if
Ci
— <1 1
2 5 < M

rneT "

where C; and P; are the worst-case computation time and
the period of task 7;.

Theorem 1 helps us to develop the following theorem:

Theorem 2: When RTDS is adopted for a uniprocessor
Xen virtualization system, it guarantees that each vcpu; ;
€ VCPU can be running on a feasible PCPU up to B; ;
us for every P; ; ps if and only if

S @)

vepu;, ; €EVCPU J

Proof: This theorem can be proven by transforming the
VCPU scheduling problem into the uniprocessor periodic
real-time task scheduling problem. In particular, each VCPU
vepu; ; can be transformed into a corresponding periodic
real-time task 7;, where the worst-case computation time and
the period of 7; are set as the budget B; and the period P;
of vepu; ;. After we transformed the problem into real-time
task scheduling problem, this theorem follows directly from
Theorem 1. []

When our proposed ERTDS is considered, the following
lemma shows the activation of the fake VCPU:

Lemma 2: Under ERTDS, the fake VCPU wvcpu* will
be selected to be running on a feasible PCPU only if all
VCPU have depleted their budgets, i.e., b; ; = 0, Yucpu, ; €
VCPU.

Proof: Since ERTDS is based on RTDS and G-EDF
is the scheduling policy for selecting a VCPU, it always
select the VCPU with the earliest deadline among all VCPUs
in the run@. The fake VCPU wvcpu* is selected only if its
deadline is earlier than all other VCPUs in the run(). Note
that the period of the fake VCPU is the hyperperiod of all
VCPUs. The only possibility that ERTDS selects the fake
VCPU wcpu™* is because it is the only one VCPU in the
run@. Thus, it is implied that all VCPUs have depleted their
budgets. [|

Since ERTDS only activates the fake VCPU at the time
that there is no any activated VCPU, it will not affect the
guaranteed PCPU capacity of VCPUs. However, ERTDS
must guarantee the PCPU capacity of all VCPUs even if
it will provide additional budget to a VCPU (which has
been depleted its budget). Therefore, the following theorem
shows the global budget (the additional budget from the fake
VCPU) must be considered:

(Advance online publication: 28 August 2018)

TAENG International Journal of Computer Science, 45:3, IJCS 45 3 05

Theorem 3: When ERTDS is adopted for a uniprocessor
Xen virtualization system, it guarantees that each vcpu; ;
€ VCPU can be running on a feasible PCPU up to B; ;
us for every P; ; ps if and only if

B; ; B*
(X hems ®
vepug, ; EVCPU >

Proof: This theorem can be proven in a similar way to
the proof of Theorem 2. Every VCPU wvcpu, ; € VCPU is
transformed into a corresponding periodic real-time task 7; €
T, where the worst-case computation time C; and the period
P; of a task 7; are set as the corresponding budget B; and the
period P; of vcpu; ;. Note that the fake VCPU vepu™ is also
transformed into a corresponding task 7*, where its worst-
case computation time and period are defined as C* and P*,
respectively, where their values are set as the corresponding
budget B* and the period P* of the fake VCPU wcpu*.
According to Theorem 1, the transformed task set 7 and
7* are schedulable if (Y %) +S= ¥ <1

€T T ETU{rT*}
Thus, this theorem is proved.

As astute readers might pointed out that Theorem 3 is
not correct since ERTDS violates the EDF policy, i.e., the
additional PCPU capacity is provided to the VCPU which
has latest deadline. However, it is correct when the following
facts are considered: (1) the additional PCPU capacity exe-
cuted by the VCPUs is also the guaranteed PCPU capacity of
the fake VCPU, and (2) it is only can be used at the time that
the fake VCPU has the earliest deadline among all VCPUs
which follows the EDF policy.

Recall that the main purpose of RTDS is to provide
a guaranteed PCPU capacity to every VCPU so that the
performance of VMs can be better predicted. Also recall
that the design goal of our proposed ERTDS is to provide
additional PCPU capacity to VCPUs when they depletes their
budgets. However, according to Theorem 3, the predefined
values of budget and period of all VCPUs have to be
restricted such that the sum of the guaranteed PCPU capacity
and the global budget (provided by the fake VCPU) does
not exceed 1. Otherwise, the predefined PCPU capacity for
each VCPU cannot be guaranteed. The following theorem
provides the maximum value of the global budget, i.e., the
budget of the fake VCPU:

Lemma 3: For a uniprocessor Xen virtualization system,
the following condition must be hold such that ERTDS can
guarantee the predefined PCPU capacity of all VCPU:

B. .
B*<(1- —ud) p* 4
<(> o @)
vepuq, ; EVCPU ’
Proof: This lemma is correct by considering that Equa-

tion (3) of Theorem 3 must be hold for guaranteeing the
predefined PCPU capacity of all VCPU.]

When multi-core environments are considered, the follow-
ing theorem provides the schedulability of periodic real-time
tasks scheduling problem:

Theorem 4: (Goossens, Funk, and Baruah [27]) For a
mulit-core system, a set of periodic real-time tasks 7 =

{Tiy T2, ,Tn} can be scheduled by G-EDF if and only if
C; B;

— <m—max{—=}(m—1))
€T P P

where m is the number of cores in the system.

According to Theorem 4, we can derive the following the-
orem and lemma for mulit-core Xen virtualization systems:

Theorem 5: When ERTDS is adopted for a multi-core
Xen virtualization system, it guarantees that each vcpu; ;
€ VCPU can be running on a feasible PCPU up to B; ;
us for every P; ; ps if and only if

B,;. B* B,
(vcpui,jze;fcpu RN {5 m =1 ©

Lemma 4: For a mulit-core Xen virtualization system, the
following condition must be hold such that ERTDS can
guarantee the predefined PCPU capacity of all VCPU:

—_\P* (7
Y. P M

B;
B* < (mfmax{F}(mfl)f
i vepuq, ; EVCPU ©J

V. PERFORMANCE EVALUATION

To evaluate the performance of our proposed ERTDS,
we have implemented ERTDS in Xen version 4.7. The
experimental environment was built upon a PC with an
Intel Quad Core 15-6500 3.2GHz processor and 8GB RAM.
We have conducted four experiments for evaluating the
performance of our proposed ERTDS and the original RTDS.
In particular, one of the experiments was performed based
on RUBIS benchmark [28], [29] so that the performance
of our proposed ERTDS could be better understood. In the
rest of this section, the experimental results of uniprocessor
(single core) and multi-core environments are presented in
subsections V-A and V-B. Subsection V-C is the experimental
results of RUBiS benchmark.

A. Experimental Results of Uniprocessor Environments

In this subsection, two experiments are presented to verify
the performance of our proposed ERTDS and the original
RTDS in a uniprocessor environment. The first experiment,
called Experiment A, was set up as follows: 2 VMs were
configured to be running on one core and each VM only has
one VCPU. When these VCPUs were scheduled by ERTDS,
their budgets and periods are given in Table II. Note that the
sum of the guaranteed PCPU capacity satisfies Equation (3)
and (4) so that it can be guaranteed by ERTDS. For compar-
ison, we also designed different settings of VCPU’s budgets
and periods for the original RTDS. Since RTDS does not
provide additional budget to a VCPU which has depleted
its budget, its guaranteed PCPU capacity of VCPUs can be
higher than that of ERTDS.

Table III shows the parameter settings for RTDS. Note that
the guaranteed PCPU capacity of VCPUs in Table III satisfies
Equation (2). Also note that the lower PCPU capacity of
ERTDS is the price to paid for providing additional budget

(Advance online publication: 28 August 2018)

TAENG International Journal of Computer Science, 45:3, IJCS 45 3 05

TABLE II TABLE IV
THE PARAMETER SETTINGS OF EXPERIMENT A (ERTDS). THE PARAMETER SETTINGS OF EXPERIMENT B (ERTDS).
VCPU vCpu1,1 vCpu2 1 vepu™ VCPU vCpu1 1 VCpuU2 1 vepus, 1 vCpu4 1 vepu™
budget (us) 2000 4500 4500 budget (us) 1000 2000 3000 7500 4500
period (us) 5000 10000 30000 period (us) 5000 10000 15000 30000 30000
guaranteed PCPU capacity 0.4 0.45 0.15 guaranteed
PCPU 0.2 0.2 0.2 0.25 0.15
TABLE III capacity
THE PARAMETER SETTINGS OF EXPERIMENT A (RTDS).
TABLE V
bu(;/gcef)tjus) U62p3’l.st(1)1 chi?sél THE PARAMETER SETTINGS OF EXPERIMENT B (RTDS).
period (us) 5000 10000 VCPU vepul,1 | vepuz1l | vepusi vepuy, 1
guaranteed PCPU capacity 0.47 0.53 budget (us) 1200 2400 3600 8400
period (us) 5000 10000 15000 30000
guaranteed
1¢ Py : A A A A A PCPU 0.24 0.24 0.24 0.28
GEJ capacity
= RTDS —&—
2 o !
3 £
0 o6f 1 [RTDS —&—
S 8 08l ERTDS —o— J
o 3
2 o0af] g
5 06 .
g 5
® oot < ©
= 0.2 5
5 Z 04r 1
= 3
0 1 1 1 1 1 1 1 _N
02 03 04 05 06 07 08 09 1.0 =
Utilization goar]
5]
Fig. 6. Normalized average response time of Experiment A. z
00.3 0.4 0.5 06 07 0.8 0.9 1.0
Utilization
to VCPUs so that the performance could be improved. For Fig. 7. Normalized average response time of Experiment B.

the different settings of the VCPUs in Table IV and V,
we randomly generated a set of tasks such that the total
utilization of VCPUs varied from 20% to 100% stepped by
10%. In more detail, the utilization of vcpuy 1 was set to 10%
during the experimental time, and the utilization of vcpus 1
was evaluated from 0% to 80%. Such an experimental setting
is to evaluate the performance of our proposed ERTDS when
a VCPU’s run-time requirement is higher than its guaranteed
PCPU capacity. For each total utilization setting, 10 task sets
were evaluated and their results were averaged.

Figure 6 shows the averaged response time of tasks.
For ease of comparison, the averaged response time are
normalized with respect to the results of RTDS. As shown
in Figure 6, ERTDS outperforms the original RTDS. In
particular, the averaged response time of ERTDS starts to
decrease when the total utilization is higher than 50%,
and it decreases greatly when the total utilization is higher
than 60%. Astute readers might point out that the averaged
response time of ERTDS increases when the total utilization
is higher 70%. It is because the run-time requirements of all
VCPUs were lower than their guaranteed PCPU capacities
for both of RTDS and ERTDS when the total utilization is
lower than 50%. Recall that the utilization of vcpu ; is no
more then 10%. Therefore, the utilization of vepus 1 will be
lower than 40% which is lower than its guaranteed PCPU
capacity for both of RTDS and ERTDS (i.e., 53% for RTDS
and 45% for ERTDS). However, the utilization of vcpus i
will be higher than its guaranteed PCPU capacity when the
total utilization is higher than 60%. Under ERTDS, a VCPU
might has a chance to obtain additional PCPU capacity by

using the global budget provided by the fake VCPU. In
contrast, RTDS cannot obtain additional budget such that
its performance will be deteriorated greatly. Therefore, our
proposed ERTDS outperforms RTDS when the utilization of
vepug 1 1s higher than the guaranteed PCPU capacity, i.e.,
when the total utilization is higher than 60%.

For ERTDS, the guaranteed PCPU capacity of vcpus ; is
45%, and it might obtain additional PCPU capacity from the
fake VCPU up to 15%. Thus, it might get up to 60% PCPU
capacity for task executions. When the total utilization is
higher than 70%, the utilization of vcpus; will be higher
than 60%. Hence, the performance of ERTDS will be deterio-
rated. This is the main reason that the averaged response time
of ERTDS increases when the total utilization is higher than
70%. Note that, both for RTDS and ERTDS, vcpuso ;1 cannot
use the redundant PCPU capacity from vcpu, ;. Because
their predefined PCPU capacity must be guaranteed even if
their requirements are lower.

The second experiment, called Experiment B, is presented
to evaluate the performance of ERTDS and RTDS with
more VMs in a uniprocessor environment. The settings of
Experiment B is similar to that of Experiment A except the
number of VMs in the system. In particular, Experiment B
has 4 VMs which were configured to be running on one core
and each VM has one VCPU. Table IV and Table V show
the parameter settings of ERTDS and RTDS, respectively.

(Advance online publication: 28 August 2018)

TAENG International Journal of Computer Science, 45:3, IJCS 45 3 05

TABLE VI
THE PARAMETER SETTINGS OF EXPERIMENT C (ERTDS).

VCPU vepul, 1 vCpu2, 1 vepu3,1 vepu4 1 vepu®
budget (us) 1720 3440 5160 13125 8415
period (us) 5000 10000 15000 30000 30000
guaranteed

PCPU 0.344 0.344 0.344 0.4375 0.2805

capacity

TABLE VII

THE PARAMETER SETTINGS OF EXPERIMENT C (RTDS).

VCPU vepul 1 VCpu2, 1 vepus, 1 vepug 1
budget (us) 2064 4128 6192 14448
period (us) 5000 10000 15000 30000
guaranteed
PCPU 0.4128 0.4128 0.4128 0.4816
capacity
1688 BB b5 B A A A A A BB
5 o
) = o
E RTDS -4 !
‘© o.g ERTDS -©o- ; ol]
© 08 |
S @
o} ;
3 i
Lopt 1
[0)
=)
o
Qo f i
(% 0.4 i]
° : i
Qo |
£ o2f Oeng 1
S
pz4

00.6 07 08 09 1.0 1.1 12 13 14 15 16 17 18 19 20
Utilization

Fig. 8. Normalized average response time of Experiment C.

For the different settings of the VCPUs in Table IV and V,
the total utilization of VCPUs was varied from 30% to 100%
stepped by 10%. In particular, the utilization of vcpuq 1,
vepua, 1, and vepugz 1 do not exceed their guaranteed PCPU
capacities, i.e., for these 3 VCPUs, each was given a fixed
10% utilization. In other words, the utilization of vepuy, 1 was
evaluated from 0% to 70%. For each total utilization setting,
10 task sets were evaluated and their results were averaged.
Figure 7 shows the averaged response time of tasks. We also
normalize the results with respect to the RTDS for ease of
comparison.

Figure 7 shows that the performance of ERTDS outper-
forms RTDS in all cases, which is consistent with that of
Experiment A. In particular, the averaged response time
of ERTDS decreases greatly when the total utilization is
higher than 50%, and it increases when the total utilization
is higher 70%. However, on the one hand, the performance
of ERTDS and RTDS are similar since all VCPUs have
sufficient PCPU capacity for both RTDS and ERTDS when
the total utilization is lower than 50%. On the other hand,
the performance of ERTDS outperforms RTDS greatly when
the total utilization is higher than 50%. It is because vcpuy 1
obtained the additional PCPU capacity from the fake VCPU
when its utilization is higher than the guaranteed PCPU ca-
pacity. While RTDS cannot obtain additional PCPU capacity
such that its performance will be deteriorated.

B. Experimental Results of Multi-Core Environments

Our third experiment, called Experiment C, is to evaluate
the performance of RTDS and ERTDS for a mulit-core envi-
ronment. Similar to Experiment A and B, Experiment C was
set up for 4 VMs and each has 1 VCPU but it will be running
on two cores. When VCPUs were scheduled by ERTDS, their
budgets and periods are given in Table VI. Note that the sum
of the guaranteed PCPU capacity satisfies Equation (6) and
(7) so that it can be guaranteed by ERTDS. In particular,
the global budget is set according to Equation (7), were
B* = (m — max{Z}(m — 1) - > Buypeo

‘ vepu;, ; €EVCPU o
((2—0.4375) — (0.344 4+ 0.344 + 0.344 + 0.4375))30000 =
8415. In other words, the fake VCPU can provide up to
S45. = 28.05% PCPU capacity to other VCPUs. The
parameter settings for RTDS is given in Table VIL

According to Theorem 4, the sum of the guaranteed PCPU
capacity cannot exceed m —max{2:}(m—1) =2-0.28 =
1.72. The guaranteed PCPU capacit§ of VCPUs in Table VII
satisfies Equation (5). We randomly generated a set of tasks
such that the total utilization of VCPUs varied from 60% to
200% stepped by 10%. For vcpus 1, vepusg 1, and vepus 1,
their utilization is fixed to 20%. Thus, the utilization of
vepuy,; was evaluated from 0% to 140%. We also generated
10 task sets for each utilization setting and their results were
averaged. Figure 8 shows the normalized averaged response
time of tasks.

Figure 8, 6 and 7 share a similar trend in the results. In
particular, Figure 8 shows that ERTDS outperforms RTDS
greatly when the total utilization is higher than 90%, and the
averaged response time of ERTDS increases when the total
utilization is higher than 140%. Note that the reason is the
same as that for Experiment A. Based on the experimental
results from this section, it is shown that the additional global
budget provided by ERTDS improves the performance of
VCPUs greatly.

C. Experimental Results Based on the RUBIS Benchmark

In this subsection, an experiment, called Experiment D,
was conducted based on the RUBiS benchmark version
1.4.3 [28], [29]. RUBIS is a popular open source benchmark
which is a multi-tier web-based auctioning system modeled
after eBay.com. The experiment was set up as follows:
3 VMs (i.e., vmy,vmo and vmg) were configured to be
running on one core and each VM only has one VCPU. The
RUBIS benchmark was performed on the three VMs, where
vm is the Apache web server and PHP frontend, vms is
the backend MySQL database, and vmg is the RUBIS client
and workload generator. When these VCPUs were scheduled
by ERTDS and the original RTDS, their budgets and periods
are given in Table VIII and IX, respectively.

Figure 9 shows the throughput (the number of requests
completed per second) of Experiment D when the RUBIiS
benchmark was performed under ERTDS and original RTDS.
The result shows that our proposed ERTDS outperforms the
original RTDS (up to 11.68%). In particular, the throughput
of ERTDS and RTDS are 86 and 77, respectively. This is be-
cause our proposed ERTDS is capable to provide additional
PCPU capacity to an overcommitted VCPU (i.e., vepug 1 and
vepug 2 for the frontend and backend servers) by using the

(Advance online publication: 28 August 2018)

TAENG International Journal of Computer Science, 45:3, IJCS 45 3 05

TABLE VIII
THE PARAMETER SETTINGS OF EXPERIMENT D (ERTDS).
VCPU vCpU1,1 vepu2 1 VCpu3, 1 vepu™
budget (us) 3500 3000 1000 1500
period (us) 10000 10000 5000 10000
guaranteed
PCPU 0.35 0.3 0.2 0.15
capacity
TABLE IX
THE PARAMETER SETTINGS OF EXPERIMENT D (RTDS).
VCPU vepul,1 vepu2, 1 vepug, g
budget (us) 4100 3500 1200
period (us) 10000 10000 5000
guaranteed PCPU capacity 0.41 0.35 0.24
100
=)
5
§ 80
3
°
Q.
£ 60
o
[$)
_fe
8
% 40
c
2
2 20
o
£
0
ERTDS RTDS

Fig. 9. Throughput of Experiment D.

global budget from the fake VCPU. However, the original
RTDS cannot obtain any additional budget.

VI. CONCLUSION AND THE FUTURE WORK

In this paper, an RTDS-based CPU scheduler, called
enhanced real-time deferrable server (ERTDS), is proposed
for Xen virtualization systems. Under ERTDS, each VCPU
has a guaranteed PCPU capacity and might has chances
to obtain additional PCPU capacity at the run-time so that
the performance of VMs can be improved greatly. We have
implemented ERTDS in Xen 4.7 and performed a series
of experiments. Our experimental results show that ERTDS
outperforms the original RTDS. Our future work will focus
on the analysis of performance guarantee as well as the run-
time overheads.

ACKNOWLEDGMENT

The authors would like to thank Mr. Chen-Yuan Wang
and Mr. Shou-Liang Sun for their help in implementation of
ERTDS.

REFERENCES

[1] K. Fraser, S. Hand, T. Harris, I. Leslie, and 1. Pratt, “The Xenoserver
computing infrastructure,” Computer Laboratory, University of Cam-
bridge, Tech. Rep. Technical Report UCAM-CL-TR-552, January
2003.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of virtual-
ization,” in Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP’03), Bolton Landing, New York, USA,
October 19 — 22 2003, pp. 164-177.

[3]

[4]

[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Z. Chen, Y. Zhu, Y. Di, and S. Feng, “Optimized self-adaptive fault
tolerance strategy in simulation system based on virtualization tech-
nology,” IAENG International Journal of Computer Science, vol. 42,
no. 4, pp. 305-312, 2015.

Z. Kartit and M. E. Marraki, “Applying encryption algorithm to
enhance data security in cloud storage,” Engineering Letters, vol. 23,
no. 4, pp. 277-282, 2015.

M. Noorafiza, K. Ishak, H. Maeda, M. Shiratori, T. Kinoshita, and
R. Uda, “Characteristic patterns of timestamps from android operating
system on mobile device and virtual machine,” JAENG International
Journal of Computer Science, vol. 43, no. 2, pp. 212-218, 2016.

Z. Wang, J. Wang, B. Li, Y. Liu, and J. Ma, “Online cloud provider
selection for QoS-sensitive users: Learning with competition,” JAENG
International Journal of Computer Science, vol. 43, no. 3, pp. 310—
317, 2016.

E. Ackaouy, “The xen credit CPU scheduler,” in Xen Summit, San
Jose, CA, USA, September 7-8 2006.

D. Chisnall, The Definitive Guide to the Xen Hypervisor.
Hall, 2007, iSBN: 978-0133582499.

K. Duda and D. Cheriton, “Borrowed-virtual-time (BVT) scheduling:
Supporting latency-sensitive threads in a general-purpose scheduler,”
in Proceedings of the 17th ACM Symposium on Operating Systems
Principles (SOSP’99), Charleston, South Carolina, USA, December
12-15 1999, pp. 261-278.

S. Xi, M. Xu, C. Lu, L. Phan, C. Gill, O. Sokolsky, and I. Lee, “Real-
time multi-core virtual machine scheduling in Xen,” in Proceedings of
the 4th International Conference on Embedded Software (EMSOFT),
12-17 October 2014.

A. Makkar, “Scope and performance of credit-2 scheduler,” in Xen
Summit, Toronto, Canada, August 25-26 2016.

H. Chen, H. Jin, K. Hu, and M. Yuan, “Adaptive audio-aware schedul-
ing in xen virtual environment,” in Proceedings of the 2010 IEEE/ACS
International Conference on Computer Systems and Applications
(AICCSA), May 16-19 2010.

B. Kim, J. Lee, S. Lee, and K. YW, “Low latency scheduling on multi
boost environment,” in Proceedings of the International Conference
on Hybrid Information Technology (ICHIT), 26-28 August 2010, pp.
720-724.

Z. Chang, J. Li, R. Ma, Z. Huang, and H. Guan, “Adjustable credit
scheduling for high performance network virtualization,” in Proceed-
ings of the 2012 IEEE International Conference on Cluster Computing,
2012, pp. 337-345.

C. Tseng and Y. Chung, “An enhanced CPU scheduler for xen
hypervisor to improve performance in virtualized environment,” in
Proceedings of the International Conference of Ubiquitous Computing
and Multimedia Applications (UCMA), Bali, Indonesia, June 2012, pp.
62-67.

X. Ding, A. Xiong, and C. Yang, “Optimation of xen scheduler for
multitasking,” in Proceedings of the 4th IEEE International Confer-
ence on Software Engineering and Service Science (ICESS), 23-25
May 2013.

L. Zeng, Y. Wang, W. Shi, and D. Feng, “An improved xen credit
scheduler for i/o latency-sensitive applications on multicores,” in Pro-
ceedings of the 2013 International Conference on Cloud Computing
and Big Data, 16-18 December 2013, pp. 267-274.

H. Guan, R. Ma, and J. Li, “Workload-aware credit scheculer for
improving network i/o performance in virtualization environment,”
IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp. 130-142,
April-June 2014.

C. Shen, X. Liu, and W. Tong, “WARS : A workload-aware cpu
resources scheduling for the cloud computing environment,” Advanced
Science and Technology Letters, vol. 63, pp. 6-11, 2014.

J. Wu, C. Wang, and J. Li, “LA-Credit: A load-awareness scheduling
algorithm for Xen virtualized platform,” in Proceedings of the 2nd
IEEE International Conference on High Performance and Smart
Computing (HPSC), April 2016, pp. 234-239.

S. Xi, C. Li, C. Lu, C. Gill, M. Xu, L. Phan, I. Lee, and O. Sokolsky,
“RT-OpenStack: CPU resource management for real-time cloud com-
puting,” in Proceedings of the SthIEEE International Conference on
Cloud Computing (CLOUD), June 2015, pp. 179-186.

A. Burns and R. I. Davis, “A survey of research into mixed criticality
systems,” ACM Computing Surveys (SUR), vol. 50, no. 6, article no.
82, January 2018.

J. Wu and J. Li, “ERTDS: A dynamic CPU scheduler for xen
virtualization systems,” in Proceedings of the 2017 IEEE International
Conference on Applied System Innovation (ICASI), May 13-17 2017.
J. Lehoczky, L. Sha, and S. JK, “Enhanced aperiodic responsiveness in
hard real-time environments,” in Proceedings of the IEEE Real-Time
Systems Symposium (RTSS), 1987, pp. 261-270.

Prentice

(Advance online publication: 28 August 2018)

TAENG International Journal of Computer Science, 45:3, IJCS 45 3 05

[25] T. Baker, “A comparison of global and partitioned EDF schedulability
tests for multiprocessors,” Department of Computer Science, Florida
State University, Tech. Rep. Technical Report TR-051101, 2005.

[26] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming
in a hard-real-time environment,” Journal of the Association for
Computing Mahinery (JACM), vol. 20, no. 1, pp. 46-61, 1973.

[27] J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling
of periodic task systems on multiprocessors,” Journal of Real-Time
Systems, vol. 25, no. 2-3, pp. 187-205, 2003.

[28] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “Performance and
scalability of EJB applications,” in Proceedings of the 17th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, 2002, pp. 246-261.

[29] OW?2 Consortium, “RUBIS: Rice university bidding system,” Website
(available at http://rubis.ow2.org).

Jun Wu received his Ph.D. degree in Computer
Science and Information Engineering from Na-
tional Chung Cheng University, Chiayi, Taiwan,
in 2004. Currently, he is an Associate Professor
at Department of Computer Science and Infor-
mation Engineering, National Pingtung University,
Pingtung, Taiwan. His research interests include:
(1) Energy-Efficient Task Scheduling and Synchro-
nization for Real-Time Embedded Systems, and
(2) High Performance Resource Management for
Virtualization Platforms. Dr. Wu is a member of
the IEEE and the IAENG. He has also been a visiting researcher in
University of York, UK, and a visiting scholar in Academia Sinica, Taiwan.

Jian-Fu Li received his Master degree in Com-

puter Science and Information Engineering from

National Pingtung University, Pingtung, Taiwan, in

& 2017. His research interests include: (1) Xen Vir-

- i tualization Systems, and (2) Real-Time Embedded
Systems.

(Advance online publication: 28 August 2018)

