
Fault-Tolerant Scheduling Algorithm with
Re-allocation for Divisible Loads on

Homogeneous Distributed System
Wuning Tong, Song Xiao, Hongbin Li

Abstract—High performance computing is facing a major
challenge due to its increasing failure rate. Fault tolerance
needs to be used to ensure the efficient progress and correct
termination of its applications when failures occur. In this
paper, the divisible load fault-tolerant scheduling problem
on the homogeneous distributed system is addressed, where
communication is in the non-blocking message receiving mode,
and both processors and communication links have the same
speed and start-up overhead. First, the workload for each
processor has been derived with the fault checkout overhead
and checkout time consumption taken into account. Second,
a checkout strategy which works better for divisible loads
has been employed to reduce time consumption and checkout
overhead. Third, an efficient algorithm for fault workload re-
distribution has been proposed. Finally, some simulation experi-
ments have been conducted. The result shows that the proposed
algorithm is effective. It can minimize the expected execution
time and reduce the time consumed by fault-tolerance.

Index Terms—divisible loads, distributed system, re-
allocation, fault tolerance

I. INTRODUCTION

IN recent years, efforts have been made to handle large
computation problems(e.g. big data) by using distributed

computing systems[1], [2]. In this novel field, researchers
have been working to find an optimized algorithm to end the
load of massive processors to minimize the span[3]. Divisible
loads are parallel tasks which can be partitioned into fractions
discretionarily, all of which can be processed irrelevantly.
The Divisible Loads Theory(DLT) has been investigated
in the past decades[4].More literature has focused on the
application of Divisible Loads Scheduling(DLS) with high-
performance computing to heterogeneous and homogeneous
distributed systems[5], [6], [7], [8], [9], [10].Varied schedul-
ing algorithms for homogeneous or heterogeneous systems
with different network topologies or conditions have been
derived to minimize the makespan [11], [12]. Heteroge-
neous systems with different computation and communica-
tion speeds have been used to solve the realistic computation
problems. For heterogeneous star/tree networks, some ex-
pressions for optimal processing time were obtained by a va-
riety of methods. Meanwhile, some researchers analyzed the
effect of load distribution sequences on the processing time
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of the load. The optimal distribution sequence of the task
scheduling algorithm was obtained in some literature[13],
[14]. It is shown that the distribution order depends not
on the computation speed of the processors but on the
communication speed between processors in the distributed
system. The order of communication speed reduction is
the optimal sequence of load distribution. Shang[12] took
communication and computation start-up overheads into ac-
count and proposed a more common and practical model
for heterogeneous distributed systems depending on the non-
blocking mode of communications. Meanwhile, it is shown
that the start-up overhead and workload distribution sequence
have an effect on the processing time. For the purpose
of fault-tolerance, we take checkout start-up overhead and
checkout time consumption into account in this paper. In
order to simplify the problem, a closed-form expression
for optimal processing time is obtained on a homogeneous
distributed system. High performance computing is facing a
major challenge due to its increasing failure rate[15]. Fault
tolerance needs to be used to ensure the efficient progress
and correct termination of its application when failures
occur. A large number of fault-tolerant techniques have been
developed[16], [17], [18], [19]. Several techniques have been
developed with varying levels of granularity. There are two
major methods: (1)Primary backup (PB), and (2)Checkpoint.
Fault-tolerant scheduling is designed on the heterogeneous
system[18], [20]. Mohammad proposed a dynamic fault tol-
erant scheduling method[21], the loads classified into critical
and noncritical ones based on load utilization and the time it
takes the scheduler to allocate resources to the incoming load.
Noncritical loads are scheduled on a single processor, and
checkpoint with rollback is applied to them when a failure
occurs. These methods are all designed for independent real-
time tasks. In other words, they are not suitable for divisible
loads. There is a large amount of literature focusing on the
checkpoint strategies for divisible loads. The corresponding
scheduling is to divide the load into several chunks and do
checkpointing after each of the chunks. Daly[22] studied
periodic checkpoint strategies(chunks of the same size) for
exponentially distributed failures and improved his study on
the effect of approximate optimal checkpoint periods. Robert
investigated the complexity of scheduling computational
loads for exponentially distributed failures in literature[23].
If a failure occurs, rollback and recovery are adopted for re-
execution to be done from the last checkpoint. Guillaume
in[24] aimed to minimize energy consumption when ex-
ecuting a divisible workload within a bound in the total
execution time, and he took a checkpoint at the end of the
execution of each chunk. A large amount of evidence shows
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that divisible loads scheduling is an efficient approach to high
performance computing in distributed parallel systems. A
variety of scheduling algorithms have been proposed and an
optimal scheduling algorithm has been determined for homo-
geneous and heterogeneous distributed systems for divisible
loads applications in the past decades. However, no work
has been done on the divisible loads scheduling algorithm
when it is needed to take checkout start-up overhead and
checkout time consumption into account. Re-execution on the
same processor is a common strategy for the fault-tolerant
scheduling algorithm for divisible loads. However, it is not an
optimal technique for divisible loads’ fault-tolerance, since it
will take a long time to re-execute the fault tasks on the idle
processor or on a processor whose finish time is early. In
order to minimize time consumption, we can distribute parts
of the tasks to another processor. The major contributions of
this study are summarized as follows:

1) For the homogeneous system, we have derived a
closed-form expression for optimal processing time
when checkout start-up overhead and checkout time
consumption are considered.

2) We employ a checkout strategy that works for divisible
loads. The checkout is not performed until all the loads
are executed.

3) In order to minimize time consumption, we propose an
optimal algorithm with a fault load unit re-allocation
strategy.

The rest of this paper is organized as follows: Section
2 presents the mathematical model, derives a closed-form
expression for optimal processing time when checkout start-
up overhead and checkout time consumption are considered.
A checkout strategy applied to divisible loads is given in
Section 3. Section 4 demonstrates the optimal algorithm for
fault load unit re-allocation. In Section 5, several numeric
experiments and discussions are provided to verify our result.
Finally, conclusions are drawn in Section 6.

II. SCHEDULING MODEL

In this paper, the platform considered is a homogeneous
distributed system. Processors are connected in a star/tree
topology, where p0 is the master processor, and p =
{P1, P2, · · ·, Pm} are worker/slave processors. The master
processor divides the load Wtotal into n(n ≤ m) load
fractions, denoted as α1, α2, ···, and αn, and distributes them
among all the n-professors. Therefore, we have

n∑
i=1

αi = Wtotal. (1)

where Wtotal is the total workload size. The processors
start computing their load fractions upon receiving them.
The problem is how to determine the optimal sizes of these
load fractions that are distributed to the slave processors
to minimize the makespan. In Table 1, some notations to
be used throughout the paper are introduced. What follows
is an essential condition used in related works in the DLT
to derive the optimal solution [14]: to obtain an optimal
processing time, it is necessary and sufficient to require that
all the processors participating in the computation finish their
computing simultaneously. The time diagram of divisible
loads scheduling on homogeneous distributed systems is

shown in Fig.1. Because the finish times of all the slave
processors are equal, Eq.(2) can be obtained using T 0

i =
T 0
i+1(i = 1, 2, · · ·, n− 1).

TABLE I
NOTATIONS.

Notations Description

α Fraction of the load assigned to processor.
li Processor P0 connected with processor Pi by li.
g Time taken to communicate with a unit load.
w Time taken to process a unit workload.
s A constant additive computation start-up overhead.
o Communication start-up overhead.
c Checkout start-up overhead.
βw The time taken to process a unit load, β < 1.
T 0
i The finish time of checkout on processor Pi.

T c
i The checkout time consumption on processor Pi.

T 1
i The time from T 0

i to the fault-tolerant finish time of Pi.

What follows is a primary principle used in earlier s-
tudies in DLT to derive an optimal solution [14]: in order
to obtain an optimal processing time, it is necessary and
sufficient to require that all the processors participating in the
computation stop computing at the same time instantly. The
time diagram of divisible loads scheduling on homogeneous
distributed systems is shown in Fig.1.
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Fig. 1. Optimal timing diagram of DLS in a particular sequence.

Because the finish times (checkout finish time) of all pro-
cessors are equal, Eq.(2) can be obtained using T 0

i = T 0
i+1.

s+ wαi + c+ βwαi = gαi + s+ wαi+1 + c+ βwαi+1

(2)
where i = 1, 2, · · ·, n − 1. Using a similar approach in
literature[12], [25], we obtain αi as

αi = µiα1 + λi (3)

where

α1 =

Wtotal −
n∑

k=2

λk

1 +
n∑

k=2

µk

, (4)

µi =
i∏

k=2

(
−o

(1 + β)w

)
, (5)

λi =
i∑

k=2

(
(1 + β)w − g

(1 + β)w

) i∏
j=k+1

(
−o

(1 + β)w

). (6)
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Thus, the closed-form expression of the checkout finish time
T 0 is given by Eq.(7)

T 0 = T 0
1

= o+ s+ c+ (1 + β)wα1

= o+ s+ c+ (1 + β)w

Wtotal −
n∑

k=2

λk

1 +
n∑

k=2

µk

(7)

III. THE CHECKOUT STRATEGY FOR DIVISIBLE LOADS

In order to detect the tasks carried out incorrectly, a
strategy of checkpointing is adopted. As a technique for
improving the reliability and availability of fault-tolerant
computing systems, it has been an active area of research
in the fault-tolerance aware task scheduling system. It is
designed mostly for the real-time system[23], [26]. There
are many related researches, but how to select the inter-
val between the checkpointings remains unsolved. When a
computing error occurs in some task interval it will be re-
executed from the last checkpointing. If the interval between
two checkpointings is bigger, the task re-execution time will
be increased. On the other hand, if it is smaller, the checkout
will start several times and the checkout overhead will be
increased. Other researches on divisible loads focus mainly
on the failure, which satisfies a certain distribution[23]. In
this paper, a checkout strategy which works for divisible
loads is employed and it does not depend on the distribution
model of computing failures.

For divisible loads, tasks are independent of one another.
We can check the task when the task execution is finished, as
is shown in Fig.1. Therefore, the checkout time consumption
is computed using Eq.(8).

T c
i = c+ βwαi. (8)

where T c
i is the checkout time consumption on Processor

Pi. It should be noted that we do not consider the distri-
bution model of computing failures since divisible loads do
not depend on other tasks. To decrease the checkout time
consumption, the checkout starts only once and the checkout
is applied to the load unit. It does not divide the workload
into several units. When a computing error occurs in some
units, it will be marked as a fault load unit and re-executed
or re-allocated when checkout finishes.

IV. FAULT-TOLERANT TASK UNITS RE-ALLOCATION

A. The necessity for re-allocation

In previous work[23], fault-tolerant scheduling algorithms
for divisible loads re-executed the tasks incorrectly on the
original processor when some failures occurred. The fault-
tolerant mechanism we have proposed can re-execute the
units correctly. This indicates that the previous algorithms
need to be further improved. Assume such a scenario: if a
processor has several failure task units, it will take a long
time to re-execute the failure load units. Meanwhile, some
processors have few failure task units and their re-execution
time is shorter. Thus, some processors are idle when the
others are busy in re-executing the failure task units. In this
case, the total time is bound to increase. The task units can
be re-executed not only on the original processor but also on
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Fig. 2. The diagram of fault task units re-execution on original processor.

0
T

0
P

c 1
w

1
P

c
i

w

c
j

w

c
n

w

i
P

n
P

j
P

s

s

s

s

T

o 2g

T

 

Fig. 3. The diagram of fault task units re-allocation.

other processors in order to minimize the total time. To do
so, we selected two processors, one having failure task units
and the maximum re-execution time, and another having the
minimum sum of start-up overheads and computing speeds.
Then, we re-allocated parts of the failure task units to the
processor whose sum of start-up overheads and re-execution
time was a minimum.

As is shown in Fig.2, Processor Pi has five fault task units
and a small computing speed, so it has the longest finish re-
execution time of all the processors. It will make execution
of all the workloads continue for a long time and increase the
total time. In this case, suppose the finish time of the system
is T

′
. Processor Pj has only one fault task unit and a much

higher computing speed than Processor Pi. It has the shortest
re-execution time of all the processors. It is reasonable to
re-allocate parts of the fault task units of Processor Pi to
Processor Pj . The master processor can transfer three fault
task units of Processor Pi to Processor Pj . As a result, the
finish time of Processor Pi will be shortened and the system’s
finish time will be decreased. As shown in Fig.3, the finish
time of the system is T

′′
. Obviously, T

′′
is much smaller

than T
′
.
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B. The principle of fault task units re-allocation

From the previous analysis, we know that task units re-
allocation can decrease the system’s execution time. Howev-
er, there are three problems that need addressing. First, which
processor should be selected as the source processor. Second,
which processor should be selected as the target processor to
which the fault task units should be re-allocated. The last is
how many fault task units should be re-allocated to the target
processor. In this section, these problems will be solved.

1) The source processor selected: The purpose of fault
task units re-allocation is to minimize the time consumption
of the system. The objective is to minimize the makespan,
i.e., the processing time of the entire load. Let T denote the
makespan, then

T = max
1≤i≤n

{
T 0 + s+ w ×NF

i

}
(9)

Eq.(9) shows that the makespan is the finish time of the pro-
cessor which has the maximum processing time. Therefore,
if we wish to minimize the makespan, we must minimize the
maximum processing time of the processor. The makespan of
the load can be reduced as long as the maximum processing
time is reduced. According to this principle, the processor
with the maximum processing time is selected as the source
processor. Processor Psour is selected as the source processor
when sour satisfies Eq.(10) as follows.

sour = arg max
1≤i≤n

{
T 0 + s+ w ×NF

i

}
, (10)

where NF
i is the number of fault task units on Processor

Pi(i = 1, 2, · · ·, n), n being the number of the processors
required in computation.

2) The target processor selected and the number of task
units re-allocated: The processor which has the maximum
processing time among all the processors is selected as the
source processor. Since our research is on the homogeneous
distributed system, the processors have the same start-up
overhead, communication, checkout and computing speed.
Therefore, the selection of the target processor does not de-
pend on the start-up overhead or the speed of the processors.
The processor that has the minimum re-execution time should
be selected as the target processor. We determine the target
processor according to Eq.(11) as follows and Ptarg is the
target processor selected.

targ = arg min
1≤i≤m

{j × o+ s+ w ×NF
i } (11)

where j×o is the sum of the start-up overheads of the jth re-
allocation, NF

i is the number of fault task units on Processor
Pi, and m is the number of processors in the distributed
system.

How to determine the number of fault task units re-
allocated to the target processor is another critical issue to
be solved. From Eq.(9), we know that we must minimize the
maximum time of the source processor and the finish time of
the target processor after transferring the fault units from the
source processor to the target processor. The number of fault
task units that should be re-allocated to the target processor

can be obtained by solving Eq.(12).
min
x

f(x) = min{max{s+ w × (NF
sour − x),

j × o+ s+ w × (NF
targ + x)}}

s.t.
1 ≤ x ≤ NF

sour

x ∈ Z

(12)

where j × o is the sum of the start-up overheads of the last
but (j − 1) installment while re-allocation NF

sour and NF
targ

are the number of fault task units on the source processor
Psour and target processor Ptarg , respectively.

Theorem 4.1: In the homogeneous distributed system, to
minimize the maximum processing time of the source and
target processor, the number of fault task units x re-allocated
from the source processor to the target processor must satisfy
x ∈ [η − 1, η + 1] and x ∈ Z, where η =

(NF
sour−NF

targ)

2 −
j×o
2w .

Proof: In order to minimize the makespan of the work-
load, we should minimize the maximum processing time
of the source and target processor. Therefore, the source
and target processor should terminate their re-execution
simultaneously after a re-allocation, and the optimal finish
time is

(
w ×

(
NF

sour +NF
targ

)
+ j × o

)
/2 + s. Since the

start-up overhead exists, the finish time is not equal to
but approximates the optimal finish time. What is more,
assuming s+w×(NF

sour−x) ≥ j×o+s+w×(NF
targ+x),

Eq(13) is satisfied. That is to say, the finish time of the source
processor is less than the sum of the optimal finish time and
the time to process a task unit.

s+ w × (NF
sour − x) ≤ δ + s+ w (13)

j × o+ s+ w × (NF
targ + x) ≥ δ + s− w (14)

where δ =
w×(NF

sour+NF
targ)+j×o

2 . The processing time of the
target processor satisfies Eq.(14). In other words, the finish
time of the target processor is greater than the difference
between the optimal finish time and the time to process a
task unit. According to Eq.(13) and Eq.(14), we have

η − 1 ≤ x ≤ η + 1 (15)

From what has been discussed above, Theorem 4.1 is proved.

From Theorem 4.1, we can re-write Eq.(12) as Eq.(16).
The optimal value of the number of fault task units re-
allocated can be obtained quickly by solving the optimal
model shown in Eq.(16).

minx f(x) = min{max{s+ w × (NF
sour − x),

j × o+ s+ ω × (NF
targ + x)}}

s.t.
η − 1 ≤ x ≤ η + 1
x ∈ Z

(16)

Theorem 4.2: T ∗ is the makespan of fault-tolerant
scheduling with the re-execution strategy for the former
processor. T ∗∗ is the makespan of fault-tolerant scheduling
with the re-allocation strategy. T ∗∗ ≤ T ∗ is obtained.

Proof:
1) When the first re-allocation is executed and the number

of fault load units re-allocated x = 0, that means ∀x ̸=
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0 cannot satisfy In-equation (17). Therefore, there is no
need for re-allocation, and T ∗∗ = T ∗.

max
{
T 1
sour − w × x, T 1

targ + o+ w × x
}
< T 1

sour

(17)
where T 1

i is the time from T 0
i to the fault-tolerant finish

time of Pi and i ∈ {sour, targ}.
2) When the first re-allocation is executed and the number

of fault load units re-allocated x ̸= 0, that means
∃x ̸= 0 satisfies In-equation (17). Therefore T ∗∗ < T ∗.

3) From(2), we know that as long as one installment of
re-allocations is implemented successfully, T ∗∗ < T ∗

is satisfied. Therefore, if j > 1 (j being the number
of successful re-allocations), In-equation (17) can be
obtained.

T ∗∗ = T ∗∗
j < T ∗∗

j−1 < · · · < T ∗∗
1 < T ∗ (18)

where T ∗∗
k is the makespan of the kth(1 ≤ k ≤ j)

installment of re-allocations implemented successfully,
and j is the number of successful re-allocations. From
what has been discussed above, T ∗∗ < T ∗ is proved.

C. Fault-tolerant scheduling algorithm

From the analysis above, if the fault task units are not re-
allocated to other processors, the utilization of the processors
will be decreased and the makespan of the system will
be increased. Since the re-execution time of the source
processor is much longer than that of the target processor,
the method of fault task units re-allocation is designed to
decrease the makespan and increase the utilization of the
processors. When the fault task units are re-allocated to the
target processor, they will be processed on the processor. The
pseudocode of the fault-tolerant scheduling algorithm with
task re-allocation for divisible loads scheduling (FTR DLS)
in heterogeneous computing systems is outlined in Algorithm
1.

V. EXPERIMENTS AND ANALYSIS

A. Experiments

1) Comparison of Experiments: In this subsection, some
experiments are compared. The experiments were carried out
on the personal computer of HP with Intel(R) Core(TM)
i7 CPU, 8G RAM and a 64-bit OS. The experimental
parameters of the homogeneous distributed system in our
simulation studies were generated randomly, for which please
refer to literature[12]. Literature[12] does not provide the
ratio of computing speed to checkout speed. Some data
were generated randomly and added. Since the failure rate
is an exponential distribution in literature[23], it is also an
exponential distribution in the experiments compared.

Literature[24] proposes an algorithm (HOEOCI) for min-
imizing energy consumption when a divisible workload is
executed within a bound in the total execution time. Failures
may occur in the execution of a load. Re-execution of the
fault load units is done only on the former processor, and
not on other processors[24]. Therefore, the makespan is
greater than that when the re-allocation strategy is employed.
Literature[23] proposes a method (CSCW) to deal with the

Algorithm 1: Fault Tolerance with Task Re-allocation
for DLS(FTR DLS).
Input: o, s, g, w, c, β
Output: Makespan

1 Task scheduling according to the decrease of gi and
computing T 0 using Eq.(7).

2 Initialization:reallocated flag = 1;j = 1,K =
ϕ, sum overheads = 0;

3 Computing max Loc,min Loc and num transfer
using Eq.(10), Eq.(11) and Eq.(16)

4 while reallocated flag == 1 do
5 current reallocated flag == 1;
6 if num transfer == 0 then
7 current reallocated flag = 0;
8 else
9 update the T 1

max Loc and NF
min Loc

10 if min Loc ∈ K then
11 sum overheads1 = j × o; flag = 0;

sum overheads = m× o; %
m is the position in K.

12 else
13 sum overheads = sum overheads+ s;

K(1, j) = min Loc;
sum overheads1 = sum overheads;
flag = 1, j = j + 1;

14 end
15 updating T 1

min Loc and computing max Loc
using Eq.(10);

16 Computing min Loc and num transfer by
solving Eq.(11) and Eq.(16);

17 current reallocated flag = 1;
18 end
19 reallocated flag = current reallocated flag;
20 end
21 Makespan = max

i
{T 0 + T 1

i };

complexity of scheduling computational workflows in the
presence of exponentially distributed failures. When such
a failure occurs, rollback and recovery are used so that
the execution can resume from the last checkpointing. The
goal is to minimize the expected execution time(makespan).
However, the fault loads will be re-executed on the former
processor, and we can see that the makespan is greater than
that by the re-allocation strategy employed by Theorem 1.
For divisible loads, tasks are independent of one another. We
check out the task when the task execution is finished, which
also decreases the checkout time consumption. Therefore,
the FTR DLS algorithm has more advantages over the other
algorithms in decreasing execution time. Figs. 4(a) to (f)
show the makespan of several different workloads.

To evaluate the stability of the proposed algorithm and
the compared algorithms, we give the statistical results
(Mean and Variance) in the experiments with the different
experimental scenes. Table II shows the mean and variance
results of the makespan with different scenes. In the sta-
tistical results, the workloads are set as Wtotal = χ × ν,
and χ = 10000, 20000, · · · , 60000; ν = 2, 4, · · · , 10. From
the statistical results, we can see that proposed algorithm
(BiHMA) is better than the compared algorithms. Not only
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Fig. 4. The makespan of FTR DLS, CSCW and HOEOCI.

the statistical results of mean but also the statistical results of
variance are smaller than the compared algorithms. In addi-
tion, the variance are increased with the workload increased.

TABLE II
STATISTICAL RESULTS (MEAN AND VARIANCE) OF THE MAKESPAN.

χ ν FTR DLS CLCW HOEOCI

10000

2 5.2304 (2.58E-2) 5.3222 (3.13E-2) 5.3617 (3.24E-2)
4 5.4771 (2.98E-2) 5.6232 (3.45E-2) 5.6128 (3.64E-2)
6 5.6232 (3.37E-2) 5.7853 (3.95E-2) 5.8325 (4.02E-2)
8 5.7482 (3.92E-2) 5.9138 (4.31E-2) 5.9494 (4.68E-2)

10 5.8062 (4.36E-2) 6.0414 (4.81E-2) 6.0086 (4.79E-2)

20000

2 5.5788 (4.67E-2) 5.6610 (5.24E-2) 5.7051 (5.19E-2)
4 5.8357 (4.68E-2) 5.9515 (5.34E-2) 5.9818 (5.42E-2)
6 5.9697 (4.85E-2) 6.1438 (5.47E-2) 6.1919 (5.64E-2)
8 6.1167 (4.99E-2) 6.2874 (5.85E-2) 6.3008 (5.79E-2)

10 6.1702 (5.12E-2) 6.4086 (6.07E-2) 6.3572 (6.13E-2)

30000

2 6.0054 (5.58E-2) 6.0895 (6.48E-2) 6.1274 (6.34E-2)
4 6.2512 (5.84E-2) 6.3779 (6.59E-2) 6.4031 (5.67E-2)
6 6.3893 (5.93E-2) 6.5640 (6.79E-2) 6.6195 (6.81E-2)
8 6.5325 (6.07E-2) 6.7179 (6.90E-2) 6.7289 (6.93E-2)

10 6.5868 (6.37E-2) 6.8241 (7.09E-2) 6.8353 (7.15E-2)

40000

2 6.5430 (6.59E-2) 6.6244 (7.31E-2) 6.6651 (7.29E-2)
4 6.7883 (6.71E-2) 6.9179 (7.54E-2) 6.9467 (7.66E-2)
6 6.9289 (6.89E-2) 7.1037 (7.84E-2) 7.0853 (7.78E-2)
8 7.0729 (7.06E-2) 7.2514 (8.14E-2) 7.2677 (8.07E-2)

10 7.1277 (7.37E-2) 7.3571 (8.54E-2) 7.3696 (8.60E-2)

50000

2 7.1939 (7.60E-2) 7.2773 (8.91E-2) 7.3168 (8.86E-2)
4 7.4343 (7.89E-2) 7.5668 (9.16E-2) 7.5627 (9.08E-2)
6 7.5774 (8.14E-2) 7.7486 (9.42E-2) 7.7367 (9.39E-2)
8 7.7232 (8.37E-2) 7.8964 (9.86E-2) 7.9136 (9.79E-2)

10 7.7799 (8.96E-2) 8.0031 (1.09E-1) 7.9622 (1.08E-1)

60000

2 7.9128 (9.45E-2) 7.9962 (1.22E-1) 7.9835 (1.19E-1)
4 8.1520 (9.86E-2) 8.2897 (1.38E-1) 8.2149 (1.33E-1)
6 8.2955 (1.02E-2) 8.4694 (1.45E-2) 8.5290 (1.50E-2)
8 8.4443 (1.09E-1) 8.6170 (1.59E-1) 8.6328 (1.62E-1)

10 8.4999 (1.23E-1) 8.7267 (1.67E-1) 8.7329 (1.70E-1)

2) Performance evaluation: In this subsection, we present
several groups of experimental results obtained from exten-
sive simulations to evaluate the performance of FTR DLS.
The parameters of the homogeneous distributed system
given were generated randomly, for which please refer to
literature[12]. To study the influence of the failure rate
on Performance Improvement Ratio (PIR), several groups
of experiments with different probabilities of failure were
conducted. In this paper, the failure rate in every group of
experiments was generated randomly among 0.5%-1%, 1%-
2%, 2%-3%, 3%-4%, and 4%-5%, respectively.

To show the advantage of fault task units re-allocation, a
definition of PIR is used. PIR is computed using Eq.(19)
as follows

PIR =
T c
0 − T c

1

T c
0

. (19)

where T c
0 is the fault-tolerant time from T 0 to T

′
in Fig.3

without the use of the re-allocation strategy, T c
1 is fault-

tolerant time from T 0 to T
′′

in Fig.3 with the re-allocation
strategy employed.

Figs.5(a), (b), (c) and (d) show the statistical results of
PIR when the workload size ranges from 104 to 108, and the
failure rate was generated randomly in 1%-2%. Some repre-
sentative workload sizes were simulated and every workload
size was re-executed 1000 times. Fig.6 shows the variation
of the mean of PIR when the workload size ranges from
104 to 108 with different probabilities of failure.

B. Experiment analysis

PIR increases monotonically because the number of fault
load units is approximately equal to the expected number
and the condition of re-allocation is easy to satisfy due to
the increase of the workload size. Therefore, the variation of
PIR is stable and increases slowly as shown in Figs.5(a), (b),
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(c) and (d). Fig.6 shows the variation of the mean of PIR
with the workload size and the failure rate. We can see that
the mean of PIR reaches 44% when the load size is large
enough. That is to say, fault-tolerant scheduling with the re-
allocation strategy can save 44% of the time consumed by
fault tolerance, compared with re-execution on the original
processor without re-allocation. When the workload size is
large enough, we can re-write Eq.(19) as Eq.(20).

PIR =

max
1≤i≤n

{pαi} −
(
pα+

n∑
i=1

(c+ s)

)
max
1≤i≤n

{pαi}
(20)

where α = Wtotal/n. When the workload size is large
enough, θ → 0, where

θ =

n∑
i=1

(c+ s)

max
1≤i≤n

{pαi}
, (21)

then, Eq.(22) can be obtained.

PIR ≈
max
1≤i≤n

{pαi} − pα

max
1≤i≤n

{pαi}

=
pαmax − pα

pαmax

= 1− wtotal

nαmax
= 1− wtotal

nα1

= 1−
wtotal (1 +

∑n
k=2 µk)

n (wtotal −
∑n

k=2 λk)

(22)

From Eq.(22), we know that the PIR does not depend on
the failure rate. The PIR reaches the same value and is close
to a constant as shown in Fig.(6) when the workload size is
large enough.

VI. CONCLUSION

This paper aims to find an optimal fault-tolerant schedul-
ing method for divisible loads in heterogeneous distributed
systems. We have successfully achieved the aim by designing
a scheduling algorithm with a fault task units re-allocation
strategy. First, we derived a closed-form expression for the
optimal processing time and optimal scheduling sequence.
Second, we employed a checkout method which works for
divisible loads. Finally, we proposed a novel fault-tolerant
scheduling algorithm with a fault task units re-allocation
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strategy. In order to examine the performance of the proposed
algorithm, we conducted a set of experiments. From the
experimental results, we can see that fault-tolerant scheduling
with the re-allocation strategy can save some time consumed
by fault tolerance, as compared with re-execution on the
original processor without re-allocation.
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