
A Simple Linear Space Algorithm for Computing
a Longest Common Increasing Subsequence

Danlin Cai, Daxin Zhu, Lei Wang, and Xiaodong Wang∗

Abstract—This paper presents a linear space algorithm for
finding a longest common increasing subsequence of two given
input sequences in a very succinct way. The simple linear space
algorithm based on a new formula can find a longest common
increasing subsequence of sizes n and m respectively, in time
O(nm) using O(n+m) space.

Index Terms—longest common increasing subsequence, dy-
namic programming, time complexity

I. INTRODUCTION

The study of the longest common increasing subsequence
(LCIS) problem originated from two classical subsequence
problems, the longest common subsequence (LCS) and the
longest increasing subsequence (LIS). The classic algorithm
to the LCS problem is the dynamic programming solution
of Wagner et al. [9], [10], with O(n2) worst case running
time. Masek et al. [7] improved this algorithm by using
the ”Four-Russians” technique to reduce its running time to
O(n2/ log n) in the worst case. Since then, there has not
been much improvement on the time complexity in terms of
n found in the literature. There is also a rich history for the
longest increasing subsequence problem, e.g., see [2], [3],
[5], [12]. The problem can be solved in O(n log n) time for
the input sequence of size n. The maximal length k of an
increasing subsequence of a permutation of the set of integers
{1, 2, · · · , n} can be computed in time O(n log log k) in the
RAM model [2].

The LCIS problem for input sequences X and Y consists
of finding a subsequence Z of X and Y which is both
an increasing sequence and a common subsequence of X
and Y with maximal length among all common increasing
subsequences of X and Y . Yang et al. [11] designed a
dynamic programming algorithm that finds an LCIS of two
input sequences of size n and m in O(nm) time and space.

Manuscript received January 18, 2015; revised May 22, 2015.
This work was supported in part by Fujian Provincial Key Laboratory of

Data-Intensive Computing and Fujian University Laboratory of Intelligent
Computing and Information Processing.

Danlin Cai is with Quanzhou Normal University, Quanzhou, China.
Daxin Zhu is with Quanzhou Normal University, Quanzhou,

China.(email:dex@qztc.edu.cn)
Lei Wang is with Facebook, 1 Hacker Way, Menlo Park, CA 94052, USA.
Xiaodong Wang is with Fujian University of Technology, Fuzhou, China.
∗Corresponding author.

Subsequently to [11], several faster algorithms were obtained
for the LCIS problem in special cases. If the length of the
LCIS, l, is small, Kutz et al. [6] gave a faster algorithm
which runs in O(nl log n) time. If xi = yj , then we say
the ordered pair of position (i, j) is a match of the input
sequences X and Y . If r, the total number of ordered pairs
of positions at which the two input sequences match, is
relatively small, Chan et al. [1] gave a faster algorithm
which runs in O(min(r log l, nl+r) log log n+n log n) time
where n is the length of each sequence. A first linear space
algorithm was proposed by Sakai [8]. The time and space
costs of the Sakai’s algorithm are O(mn) and O(m + n)

respectively. The space cost of the algorithm of Yang et
al. was reduced from O(mn) to O(m + n) by a careful
application of Hirschberg’s divide-and-conquer method [4].
The space complexity of the algorithm of Kutz et al. [6]
was also reduced from O(nl) to O(m) by using the same
divide-and-conquer method of Hirschberg [4].

In this paper, we find a very simple linear space algorithm
to solve the problem based on a novel recursive formula.
In particular, the algorithm of Kutz et al. [6] has the same
linear space complexity as our algorithm, although the time
complexities of these algorithms are incomparable when the
length of the LCIS of X and Y is unrestricted. Our new algo-
rithm shows that the longest common increasing subsequence
(LCIS) problem can be solved in a very similar approach
to the standard Wagner algorithm for the longest common
subsequence (LCS) problem, which is definitely not obvious.
Still, it is a rather basic dynamic-programming algorithm,
and essentially follows from just two basic observations:

(1) An LCS can be found by computing
LCS((x1, ..., xi), (y1, ..., yj)), the length of the LCS of the
length-i and length-j prefixes of X and Y , respectively,
for all i, j. This does not seem to work directly for LCIS.
Instead, we can compute f(i, j), which is the length of the
LCIS of the length-i and length-j prefixes of X and Y that
ends on yj . This additional restriction is crucial.

(2) By computing the entries in the appropriate order over
i, j, there are simple update rules for computing f(i, j) and
an additional auxiliary quantity θi,j .

The most fundamental idea of our algorithm using only
linear space is as follows. The Hirschberg’s divide-and-

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_11

(Advance online publication: 28 August 2018)

__

conquer algorithm for the LCS problem consists of the
following two steps. In the first step, two linear-length arrays
containing information about a midpoint are constructed
in quadratic time. In the second step, A midpoint, which
divides the problem into two sub-problems, from information
contained in the arrays is extracted in linear time. However,
if the second step is applied naively to the LCIS problem,
the midpoint cannot be extracted correctly in linear time.
In order to overcome this situation, our algorithm takes a
split algorithm such that the second step can be executed in
quadratic time.

II. DEFINITIONS AND TERMINOLOGIES

In the whole paper we will use X = x1x2 · · ·xn and
Y = y1y2 · · · ym to denote the two input sequences of size
n and m respectively, where each pair of elements in the
sequences is comparable.

Some terminologies on the LCIS problem are usually
referred to in the following way.

Definiton 1:
A subsequence of a sequence X is obtained by deleting

zero or more characters from X (not necessarily contiguous).
If Z is a subsequence of both sequences X and Y , then Z
is called a common subsequence of X and Y . If z1 <

z2 < · · · < zk, then Z = z1z2 · · · zk is called an increasing
sequence. The longest common increasing subsequence
of X and Y is defined as a common increasing subsequence
whose length is the longest among all common increasing
subsequences of the two given sequences.
Example.

Let X = (3, 5, 1, 2, 7, 5, 7) and Y = (3, 5, 2, 1, 5, 7). We
have that n = 7 and m = 6. Z = (3, 1, 2, 5) is a subsequence
of X with corresponding index sequence (1, 3, 4, 6).

The subsequence (3, 5, 1) and (3, 5, 7) are common sub-
sequences of both X and Y , and the subsequence (3, 5, 7)

is an LCIS of X and Y .
Definiton 2:
For a sequence X = x1x2 · · ·xn, its substring

xixi+1 · · ·xj , 1 ≤ i ≤ j ≤ n, is denoted as Xi,j . When
i = 1, X1,j is also denoted as Xj . The empty prefix of X
is defined as X0.

For each pair (i, j), 0 ≤ i ≤ n, 0 ≤ j ≤ m, the set
of all LCISs of Xi and Yj that ends on yj is denoted by
LCIS(Xi, Yj). The length of an LCIS in LCIS(Xi, Yj) is
denoted as f(i, j).

The length of a string S is denoted by |S|. The concate-
nation of two strings S1 and S2 is denoted by S1S2.

Definiton 3:
A match of the two sequences X = x1x2 · · ·xn and Y =

y1y2 · · · ym is defined as an ordered pair (i, j), 1 ≤ i ≤
n, 1 ≤ j ≤ m such that xi = yj .

Definiton 4:
For each index j, 1 ≤ j ≤ m, the index set β(j) is defined

as follows:

β(j) = {t | 1 ≤ t < j and yt < yj} (1)

III. A RECURSIVE FORMULA

Similar to the O(nm) solution of Wagner and Fischer for
computing the length of an LCS, a standard dynamic pro-
gramming algorithm can be built based on the following re-
currence for the length f(i, j) of an LCIS in LCIS(Xi, Yj),
1 ≤ i ≤ n, 1 ≤ j ≤ m.

Theorem 1:
Let X = x1x2 · · ·xn and Y = y1y2 · · · ym be two input

sequences over an alphabet
∑

of size n and m respectively.
For each 0 ≤ i ≤ n, 0 ≤ j ≤ m, f(i, j), the length of an
LCIS of Xi and Yj that ends on yj , can be computed by the
following dynamic programming formula.

f(i, j) =

0, if i = 0,

f(i− 1, j), if i > 0 and xi 6= yj ,

1 + max
t∈β(j)

f(i− 1, t), if i > 0 and xi = yj .

Proof:
(1) The initial case is trivial.
(2) In the case of xi 6= yj , we have that Z ∈

LCIS(Xi, Yj) if and only if Z ∈ LCIS(Xi−1, Yj), and thus
LCIS(Xi, Yj) = LCIS(Xi−1, Yj). Therefore, f(i, j) =

f(i− 1, j).
(3) In the case of xi = yj , let Z = z1z2 · · · zk ∈

LCIS(Xi, Yj) be an LCIS of Xi and Yj that ends on yj .
In this case, we have that f(i, j) = k, and z1z2 · · · zk−1
must be a common increasing subsequence of Xi−1 and Yt
for some 1 ≤ t < j, and zk−1 = yt < yj . It follows that
k − 1 ≤ LCIS(Xi−1, Yt), and thus

f(i, j) ≤ 1 + max
t∈β(j)

f(i− 1, t) (2)

On the other hand, let Z = z1z2 · · · zk ∈ LCIS(Xi−1, Yt)

for some 1 ≤ t < j such that zk = yt < yj , then Zyj , the
concatenation of Z and yj , must be a common increasing
subsequence of Xi and Yj ending on yj . This means, k+1 ≤
f(i, j), and thus f(i− 1, t) + 1 ≤ f(i, j). It follows that

f(i, j) ≥ 1 + max
t∈β(j)

f(i− 1, t) (3)

Combining (2) and (3), we have f(i, j) = 1+ max
t∈β(j)

f(i−

1, t).
The proof is complete.
Based on Theorem 1, the length of LCISs for the given

input sequences X = x1x2 · · ·xn and Y = y1y2 · · · ym

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_11

(Advance online publication: 28 August 2018)

__

of size n and m respectively, can be computed in O(nm)

time and O(nm) space by a standard dynamic programming
algorithm.

Algorithm 1: LCIS
Input: X,Y
Output: f(i, j), the length of LCIS of Xi and Yj

ending on yj
for j=1 to m do f(0, j)← 0;
for i=1 to n do

θ ← 0; // initialize θ to

maxt∈β(1) f(i− 1, t)

for j=1 to m do
if xi 6= yj then f(i, j)← f(i− 1, j) else

f(i, j)← θ + 1; // compute f(i, j)

if xi > yj then θ ← max{θ, f(i− 1, j)};
// update θ to

maxt∈β(j+1) f(i− 1, t)

end
end
return max1≤j≤m f(n, j)

In the for loop of the above algorithm at iteration (i, j),
if xi > yj , then θ is updated to maxt∈β(j+1) f(i− 1, t), and
thus θ = max

t∈β(j)
f(i− 1, t) when xi = yj . The correctness is

therefore insured by Theorem 1. It is clear that the time and
space complexities of the algorithm are both O(nm).

Based on the formula (??), we can reduce the space cost
of the algorithm LCIS to min{n,m}+1. When computing
a particular row of the dynamic programming table, no rows
before the previous row are required. Only two rows have
to be kept in memory at a time, and thus we need only
min{n,m}+ 1 entries to compute the table.

IV. A LINEAR SPACE ALGORITHM

A. The description of the algorithm

If a longest common increasing subsequence has to be con-
structed, not just its length, then the information provided by
L is not enough for this purpose. The linear space algorithm
proposed in this section is also based on Hirschberg’s divide-
and-conquer method of solving the LCS problem in linear
space [4]. In order to use the divide-and-conquer method,
we need to extend the definition of LCIS to a more general
definition of bounded LCIS as follows.

Definiton 5:
Let l and u be the given lower and upper bounds of

a sequence, respectively. If Z = z1z2 · · · zk is a common
increasing subsequence of X and Y satisfying l < z1 <

z2 < · · · < zk < u, then Z is called a bounded common
increasing subsequence of X and Y .

For the two substrings Xi0,i1 and Yj0,j1 , 1 ≤ i0 ≤
i1 ≤ n, 1 ≤ j0 ≤ j1 ≤ m, and the lower bound l and
the upper bound u, if i0 ≤ i ≤ i1 and j0 ≤ j ≤ j1,
then the set of all bounded LCISs of Xi0,i and Yj0,j that
ends on yj is denoted by LCIS(i0, i1, j0, j1, i, j, l, u). The
length of a bounded LCIS in LCIS(i0, i1, j0, j1, i, j, l, u) is
denoted as g(i0, i1, j0, j1, i, j, l, u). Similarly, the set of all
bounded LCISs of Xi,i1 and Yj,j1 that begins with yj is
denoted by LCISR(i0, i1, j0, j1, i, j, l, u). The length of a
bounded LCIS in LCISR(i0, i1, j0, j1, i, j, l, u) is denoted
as h(i0, i1, j0, j1, i, j, l, u).

In the special case of i0 = 1, i1 = n and j0 = 1, j1 = m,
g(1, n, 1,m, i, j, l, u) is denoted as f(i, j, l, u) compared to
f(i, j), the length of the unbounded LCIS of Xi and Yj that
ends on yj .

It is clear that f(i, j) = g(1, n, 1,m, i, j,−∞,∞) =

f(i, j,−∞,∞), 1 ≤ i ≤ n, 1 ≤ j ≤ m. The algorithm
to compute g(i0, i1, j0, j1, i, j, l, u) is essentially the same as
the algorithm to compute f(i, j). A linear space algorithm to
compute g(i0, i1, j0, j1, i, j, l, u) can be described as follows.

Algorithm 2: g(i0, i1, j0, j1, l, u)
Input: i0, i1, j0, j1, l, u
Output: L
for i = i0 to i1 do

if xi > l and xi < u then
L(0)← 0;
for j = j0 to j1 do

if xi > yj and L(j) > L(0) then
L(0)← L(j);
if xi = yj then L(j)← L(0) + 1;

end
end

end
return L

In the for loop of the above algorithm at iteration
(i, j), if xi > yj , then L(j) = g(i0, i1, j0, j1, i −
1, j, l, u), and it is compared with L(0), and thus L(0) =

max
t∈β(j)

g(i0, i1, j0, j1, i− 1, t, l, u) when xi = yj . Since only

matched pairs are checked in the algorithm, when the match
(i, j) is checked, we have xi = yj and l < xi < u, and thus
l < yj < u. Therefore, there is no need to check l < yj < u

explicitly in the algorithm.
At the end of the algorithm, the value of

g(i0, i1, j0, j1, i1, j, l, u) is stored in L(j).
It is clear that to compute an LCIS in

LCISR(i0, i1, j0, j1, i, j, l, u) is equivalent to compute
a longest decreasing subsequence for the two reversed
strings X̂i,i1 and Ŷj,j1 that ends on yj with lower and
upper bounds l and u, where X̂i,i1 = xi1xi1−1, · · · , xi

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_11

(Advance online publication: 28 August 2018)

__

and Ŷj,j1 = yj1yj1−1, · · · , yj . Therefore, the algorithm to
compute h(i0, i1, j0, j1, i, j, l, u) is also almost the same as
the algorithm to compute f(i, j). A linear space algorithm to
compute h(i0, i1, j0, j1, i, j, l, u) can be described similarly.

Let l, u be fixed integers. For simplicity, denote

g(i, j) =

g(1, i, 1,m, i, j, l, u), if 1 ≤ i ≤ n,1 ≤ j ≤ m,

0, otherwise.
(4)

h(i, j) =

h(i, n, 1,m, i, j, l, u), if 1 ≤ i ≤ n,1 ≤ j ≤ m,

0, otherwise.
(5)

and

M(i, l, u) = max
0≤j≤m

max
j<t
{g(i, j)+h(i+1, t) | yj < yt} (6)

Like the function M(i) defined in [4], the function
M(i, l, u) defined above is the maximal length of the two
merged LCIS for the subsequences of X spitted at position
i and Y .

Theorem 2: For 0 ≤ i ≤ n,

M(i, l, u) = max
0≤j≤m

f(n, j, l, u)

Proof:
Let M(i, l, u) = g(i, j) + h(i + 1, t) for some j, t and

j < t, yj < yt. Let Z(i, j) ∈ LCIS(1, i, 1,m, i, j, l, u)

and Z ′(i, j) ∈ LCISR(i + 1, n, t,m, i + 1, t, l, u). Then,
C = Z(i, j)Z ′(i, j), the concatenation of the two LCISs, is
a common increasing subsequence of X and Y of length
M(i, l, u), since j < t and yj < yt. Therefore, M(i, l, u) ≤
max

0≤j≤m
f(n, j, l, u).

On the other hand, let max
0≤j≤m

f(n, j, l, u) =

f(n, j′, l, u) = g(n, j′) for some j′ such that
Z(n, j′) ∈ LCIS(1, n, 1,m, n, j′, l, u). For 0 ≤ i ≤ n,
Z(n, j′) can be written as Z(n, j′) = S1S2, where S1 is
an increasing subsequence of X1,i and S2 is an increasing
subsequence of Xi+1,n. Then there must be s and t such
that s < t, ys < yt, S1 is an increasing subsequence of Y1,s,
and S2 is an increasing subsequence of Yt,m. By definition
of g and h, |S1| ≤ g(i, s) and |S2| ≤ h(i + 1, t). Thus
g(n, j′) = |S1| + |S2| ≤ g(i, j) + h(i + 1, t) = M(i, l, u),
i.e., max

0≤j≤m
f(n, j, l, u) ≤M(i, l, u).

It is clear that for 0 ≤ i ≤ n, M(i,−∞,∞) =

max
0≤j≤m

f(n, j,−∞,∞) = max
0≤j≤m

f(n, j). This is the length

of the LCIS of X and Y .
We now can use the above theorem recursively to design

a divide-and-conquer algorithm to find an LCIS of X and Y
as follows.

Algorithm 3: D&C(i0, i1, j0, j1, l, u)

Input: i0, i1, j0, j1, l, u
Output: A bounded LCIS of Xi0i1 and Yj0j1

1 p← i1 − i0 + 1;
2 if p > 1 then
3 i← i0 + bp/2c − 1;
4 L1 ← g(i0, i, j0, j1, l, u);
5 L2 ← h(i+ 1, i1, j0, j1, l, u);
6 (s, t)← split(j0, j1, L1, L2);
7 if s > j0 then D&C(i0, i− 1, j0, s− 1, l, ys);
8 if s > 0 then print ys;
9 if t > 0 then print yt;

10 if t > 0 and t < j1 then
D&C(i+ 2, i1, t+ 1, j1, yt, u);

11 end
12 else if p = 1 and xi0 > l and xi0 < u then
13 for j = j0 to j1 do
14 if xi0 = yj then print xi0 ; return;
15 end
16 end

In the above algorithm, the sub-algorithm
split(j0, j1, L1, L2) is used to find the left and right
split points s and t by using Theorem 2, where L1 and L2

are computed by g (Algorithm 2) and h respectively.

Algorithm 4: split(j0, j1, L1, L2)

Input: j0, j1, L1, L2

Output: s, t
s, t, sum← 0;
for j = j0 to j1 do if L2(j) > sum then
sum← L2(j), t← j;
for j = j0 to j1 do

if L1(j) > sum then sum← L1(j), s← j, t← 0;
for k = j + 1 to j1 do

if yk > yj and L1(j) + L2(k) > sum then
sum← L1(j) + L2(k), s← j, t← k;

end
end
return (s, t)

With the returned values of s and t, the problem can then
be divided into two smaller subproblems of finding LCISs
in LCIS(i0, i − 1, j0, s − 1, l, ys) and LCIS(i + 2, i1, t +

1, j1, yt, u). In the case of s = 0 is returned, the solution is
contained in L2, and thus the D&C call for the first half of
the subproblem can stop. Similarly, if t = 0 is returned, the
solution is contained in L1, and thus the D&C call for the
second half of the subproblem can stop.

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_11

(Advance online publication: 28 August 2018)

__

B. Correctness of the algorithm

We now prove that for the given l and u, if the above
algorithm is applied to the given sequences X and Y ,
D&C(1, n, 1,m, l, u) will produce a bounded LCIS of X
and Y with lower and upper bounds l and u. The claim can
be proved by induction on n and m, the sizes of the input
sequence X and Y respectively. In the case of n = 1 and
any m > 0, x1 is a bounded LCIS if and only if there exists
an index j, 1 ≤ j ≤ m such that x1 = yj and l < x1 < u.
This is verified in lines 11-15 of the algorithm. Thus, the
claim is true for the initial cases of n = 1 and any m > 0.

Suppose the claim is true when the size of the input
sequence X is less than n. We now prove that when the
size of the input sequence X is n, the claim is also true. In
this case, X is divided into two subsequences X1,bn/2c and
Xbn/2c+1,n. Then, in line 4-5 of the algorithm, the length
of a bounded LCIS in LCIS(1, bn/2c, 1,m, bn/2c, j, l, u)
is computed by g(1, bn/2c, 1,m, l, u, L1) and the result is
stored in L1(j), 1 ≤ j ≤ m. The length of a bounded
LCIS in LCISR(bn/2c + 1, n, 1,m, bn/2c + 1, j, l, u) is
also computed by h(bn/2c + 1, n, 1,m, l, u, L2) and the
result is stored in L2(j), 1 ≤ j ≤ m. M(bn/2c, l, u) =

max
0≤j≤m

max
j<t
{g(bn/2c, j)+h(bn/2c+1, t) | yj < yt} is then

computed by the algorithm split(s, t, 1,m,L1, L2) in line 6,
using the results in L1 and L2. The left and right split points
s and t are found such that

In lines 7 and 9 of the algorithm, the LCISs Z1 ∈
LCIS(1, bn/2c−1, 1, s−1, l, ys) and Z2 ∈ LCIS(bn/2c+
2, n, t + 1,m, yt, u) are found recursively, where ys < u is
an upper bound of Z1 and yt > l is a lower bound of Z2. It
follows from (7) and by induction that

Z1ys ∈ LCIS(1, bn/2c, 1, s, l, u)

ytZ2 ∈ LCIS(bn/2c+ 1, n, t,m, l, u)

|Z1ys|+ |ytZ2| =M(bn/2c, l, u)

ys < yt

(8)

Thus, Z = (Z1ys)(ytZ2) is a common increasing subse-
quence of X and Y with lower and upper bounds l and u. It
follows from (8) and Theorem 2 that |Z| =M(bn/2c, l, u) =
max

0≤j≤m
f(n, j, l, u). Therefore, Z, the common increasing

subsequence of X and Y produced by the algorithm, is an
LCIS of X and Y with lower and upper bounds l and u.

C. Time analysis of the algorithm

We have proved that a call D&C(1, n, 1,m, 0,∞) of
the algorithm produces an LCIS of X and Y . Let the
time cost of the algorithm be T (n,m) if the sizes of the
input sequences are n and m respectively. The problem
is divided into two smaller subproblems of finding LCISs

in LCIS(1, bn/2c − 1, 1, s − 1, l, ys) and LCIS(bn/2c +
2, n, t + 1,m, yt, u) by a call of split(s, t, 1,m,L1, L2)

and two calls of g(1, bn/2c, 1,m, l, u, L1) and h(bn/2c +
1, n, 1,m, l, u, L2). It is clear that the time costs of g and h
are both O(nm). Without loss of generality, we can assume
that m ≤ n, otherwise we can swap the roles of X and Y ,
and thus the time cost of split is O(m2) = O(nm). Thus
T (n,m) satisfies the following equation.

Where, 0 ≤ s < t ≤ m and thus s − 1 + m − t =

m−1+s−t < m. It can be proved by induction that (9) has
a solution T (n,m) = O(nm). The claim is obviously true
for T (1,m). Assume T (n,m) is bounded by c1 ·nm, and the
O(nm) term in (9) is bounded by c2 ·nm. It follows from (9)
that T (bn/2c−1, s−1)+T (n−bn/2c−1,m− t)+O(nm)

is bounded by

c1 · ((bn/2c − 1)(s− 1) + (n− bn/2c − 1)(m− t))

+c2 · nm ≤ c1 · n/2(s− 1 +m− t) + c2 · nm

≤ c1 · nm/2 + c2 · nm

= (c1/2 + c2) · nm

To be consistent with the assumption on the time bound of
T (n,m), we must have c1/2 + c2 ≤ c1, which is realizable
by letting c1 ≥ 2c2. It follows from (9) and by induction on
n that T (n,m) ≤ c1 · nm.

D. Space analysis of the algorithm

We assume that the input sequences X and Y are in
common storage using O(n + m) space. In the execution
of the algorithm D&C, the temporary arrays L1 and L2 are
used in the execution of the algorithms g and h. It is clear
that |L1| ≤ m and |L2| ≤ m. It is seen that the execution
of the algorithm D&C uses O(1) temporary space, and the
recursive calls to D&C are exclusive. There are at most
2n − 1 calls to the algorithm D&C (proved in [4]), and
thus the space cost of the algorithm D&C is proportional to
n and m, i.e. O(n+m).

V. CONCLUDING REMARKS

We have reformulated the problem of computing a longest
common increasing subsequence of the two given input
sequences X and Y of size n and m respectively. An
extremely simple linear space algorithm based on the new
formula can find a longest common increasing subsequence
of X and Y in time O(nm) using O(n+m) space. Our new
algorithm is much simpler than the O(nm) time algorithm
in [11], and the linear space algorithm in [8]. The time
complexity of the new algorithm may be improved further.

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_11

(Advance online publication: 28 August 2018)

__

M(bn/2c, l, u) = g(1, bn/2c, 1,m, bn/2c, s, l, u) + h(bn/2c+ 1, n, 1,m, n, t, l, u)

s < t

ys < yt

(7)

T (n,m) =

T (bn/2c − 1, s− 1) + T (n− bn/2c − 1,m− t) +O(nm) if n > 1,

O(m), if n = 1.
(9)

REFERENCES

[1] W. Chan, Y. Zhang, S.P.Y. Fung, D. Ye, and H. Zhu, Efficient
Algorithms for Finding a Longest Common Increasing Subsequence,
Journal of Combinatorial Optimization, 13, 2007, pp. 277-288.

[2] M. Crochemore, E. Porat, Fast computation of a longest increasing
subsequence and application,Information and Computation 208, 2010,
pp. 1054-1059.

[3] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology, Cambridge University Press,
Cambridge, UK, 1997.

[4] D.S. Hirschberg, A linear space algorithm for computing maximal
common subsequences, Commun. ACM 18(6), 1975, pp. 341-343.

[5] J.W. Hunt, T.G. Szymanski, A fast algorithm for computing longest
subsequences, Commun. ACM 20(5), 1977, pp. 350-353.

[6] M. Kutz, G.S. Brodal, K. Kaligosi, I. Katriel, Faster algorithms
for computing longest common increasing subsequences, Journal of
Discrete Algorithms, 9, 2011, pp.314-325.

[7] W.J. Masek and M.S. Paterson, A faster algorithm computing string
edit distances, J. Comput. System Sci. 20, 1980, pp. 18-31.

[8] Y. Sakai, A linear space algorithm for computing a longest common
increasing subsequence, Information Processing Letters 99, 2006, pp.
203-207.

[9] R.A. Wagner and M.J. Fischer, The string-to-string correction problem,
J. ACM 21(1), 1974, pp.168-173.

[10] J. Yan, M. Li , and J. Xu , An Adaptive Strategy Applied to Memetic
Algorithms, IAENG International Journal of Computer Science, vol.
42, no.2, 2015, pp73-84.

[11] I.H. Yang, C.P. Huang, K.M. Chao, A fast algorithm for computing
a longest common increasing subsequence, Information Processing
Letters 93 (5), 2005, pp. 249-253.

[12] D. Zhu , L. Wang , J. Tian, and X. Wang , A Simple Polynomial Time
Algorithm for the Generalized LCS Problem with Multiple Substring
Exclusive Constraints, IAENG International Journal of Computer
Science, vol. 42, no.3, 2015, pp214-220.

IAENG International Journal of Computer Science, 45:3, IJCS_45_3_11

(Advance online publication: 28 August 2018)

__

