
 

 

Abstract—The detection of transcription factor binding sites 

is a major problem in research in Biology. Methods and 

computer algorithms can be applied to reduce time complexity 

and cost of detecting transcription factor binding sites in 

laboratory experiments. One of the well-known methods 

commonly used is swarm intelligence. However, errors in 

detection of transcription factor binding sites can be caused by 

different binding sites in the same genome sequence. The 

purpose of this research is to improve the effectiveness and 

accuracy in the detection of transcription factor binding sites 

by applying the newly developed pre-processing procedure, 

Nexus, to Particle Swarm Optimization algorithm (NexusPSO). 
The accuracy of the NexusPSO algorithm was measured in 

comparison with other algorithms, using information content 

(IC) as an indicator, with Escherichia coli data. This study 

found that NexusPSO is the most accurate method being 

tested. NexusPSO was then tested using consensus sequences 

on Saccharomyces cerevisiae and Homo sapiens. NexusPSO 

showed nearly identical results when compared to DNA 

footprinting methods. 

 
Index Terms—Particle swarm optimization, Transcription 

factor binding site (TFBSs), Motif detection.  

 

I. INTRODUCTION 

MONG major DNA sequences component, there is 

conserved sequences fragment called Transcription 

factor binding sites (TFBSs). TFBSs are an integral part of 

the gene transcription process leading to protein synthesis. 

The TFBSs consist of subsequences known as motif 

sequences consisting of the same nucleotides: A, T, C and 

G. TFBSs assist the biological researchers in knowing the 

location of gene transcription which leads to protein 

synthesis. This information benefits researchers by reducing 

the cost, time and resources used in detecting TFBSs in the 

laboratory setting. TFBSs can be detected by employing 

rigorous labor using expensive laboratory equipment [1] 

resulting in high cost of experiments. Therefore, a computer 

application was developed to reduce the cost of detection by 

applying the Gibb Sampling algorithm, developed by  
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Charles E. Lawrence et al [2]. Later, the Gibb Sampling 

algorithm was developed to detect TFBSs via online 

computing programs, including: AlignACE [3] and 

BioProspector [4]. Gibb Sampling algorithm consists of two 

main processes. The first process is the sampling step where 

random DNA sequences are sampled an analyzed for 

possible TFBSs. The data is input into a Position Weight 

Matrix (PWM). The PWM showed the probability of each 

alphabet („A‟, „C‟, „G‟, „T‟) in every position of the motif 

sequence. The second process is the predictive update step, 

where the full sequence of DNA is sampled, and the PWM 

is optimized and selects the most suitable motifs. 

Gibb Sampling was further developed to detect TFBSs 

more effectively using software such as MEME [5], Weeder 

[6] and MDScan [7]. The Gibb sampling algorithm was then 

applied with the Bayesian probability model by Gibbs 

sampler [8]. Gibb Sampling is an algorithm classified as a 

type of searching or detecting method using statistical 

optimization. This was the most suitable technique of 

stochastic optimization suitable for searching in long 

sequences. However, the Gibb Sampling algorithm had 

limitation in terms of efficiency of time and accuracy.  

The Genetic Algorithm (GA) was applied by Falcon F.M 

Liu et al. [9] to increase the efficiency of detecting motifs 

through a program called FMGA. This method can be 

applied to TFBSs. GA used a crossover technique to 

randomly process  motif sequences for speed, and the 

mutation technique to generate quality PWM indicators in 

detection using  SAGA [10], MDGA [11] algorithms. 

When analyzing detection patterns of TFBSs, it can be 

considered a NP-Hard problem similar to the Traveling 

Salesman Problem (TSP) [12], Job-shop Scheduling 

Problem (JSP) [13], Flow Shop Scheduling Problem (FSP) 

[14], Longest Common Subsequence problem (LCS) [15], 

etc. [16]. Researchers have developed algorithms to solve 

NP-Hard problems such as Particle Swarm Optimization 

(PSO) algorithm [17] by J.Kennedy and R.Eberhart in 1995, 

the Ant Colony Optimization (ACO) algorithm by Dorigo et 

al. in 1996 [18], and Memetic algorithm by J. Yan and M. Li 

in 2015 [19]. However, such algorithms are still need to be 

improved as the problem of local optimums. These 

algorithms can be applied to detect TFBSs using hybrid 

concepts to avoid the problem of local optimums and/or to 

reduce time consumption of the algorithm process. 

Therefore, the algorithms were developed and applied for 
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exceeding these limitations such as time improvement in 

solving LCS problem using Simple Polynomial Time 

Algorithm [20] and improvement in both time and quality in 

detecting TFBSs using Ant Colony Regulatory 

Identification (ACRI) by Wei Liu et al. [21] and Particle 

Swarm Optimization Variants (PSO Variants) by Mustafa 

Karabulut and Turkay Ibrikci [22]. Both algorithms 

achieved admirable results, while ACRI can improve the 

speed of result, PSO can increase the accuracy. However, 

detection accuracy of TFBSs is still limited when detecting 

motif sequences containing different characteristics. 

 This paper proposes applying the PSO algorithm [17] and 

the newly developed Nexus procedure, called NexusPSO 

algorithm to yield more accurate results and avoid the 

problem of local optimums in detection of TFBSs. Nexus 

functions by creating custom subsequences in the genome 

sequence. Following the characterization of each 

subsequence, relationships are created within the 

subsequences. The quality of each relationship between 

subsequences is evaluated, and weak relationships pruned.   

The remaining parts of this research are presented as 

follows: Section II discusses the problem domain and 

related work; Section III describes the proposed approach; 

the data set and experiments are explained in Section IV; 

and Section V is the conclusions. 

II. BACKGROUND AND RELATED THEORIES 

A. Background and Signification of the Research Problem 

Detection of TFBSs can be considered a NP-Hard 

Problem. The variables of the problem can be defined as 

follows: The DNA sequences can be defined from the input 

sequence which is Si where i is the sequence of any input 

sequence. While n is the total number of input sequences. 

The length of input sequence Si is LS
i
 and the length of motif 

sequences is w. The number of total motif sequences 

(number of  Ms
i
) in the input sequence Si is number of MS

i
 = 

LS
i
- w + 1 where w < LS

i
. The total number of input 

sequences are defined as S = {S1, S2,…,Sn}and the group of 

motif sequences in each input sequence is Si = {M1, M2,…, 

ML-w-1, ML-w, ML-w+1}. The group of total alphabet data 

possible in the genome sequences is b = {„A‟, „C‟, „G‟, „T‟}.  

If the detection of TFBSs independently allowed motif 

abundance, each sequence will be varied and the complexity 

would be O((2
l
i
-w

)
n

 [23],[24]. Therefore, restricting the 

number of motif in each particular sequence is preferred in 

this experiment. 

 

B. Definition of Particle Swarm Optimization (PSO)    

Particle Swarm Optimization (PSO) has been developed 

from the principles of swarm intelligence initiated from the 

research on the behaviors in movement in schools of birds 

or fish. While traveling, these groups vary group leaders to 

have the most effective leader at each iteration. Therefore, 

swarm intelligence has been developed by J.Kennedy and 

R.Eberhart in 1995 [17] as an algorithm for solving the NP-

hard problems. This algorithm requires each bird or fish to 

be the considered a particle, with each particle selecting a 

different solution for each problem. Leaders are selected by 

running a fitness function and selecting the particle or 

particles with the highest calculated score.  

One of the main principles of PSO is the definition of the 

particles. Then, topology is set, selecting the best particle at 

each iteration, including adjustments for speed and positions 

of each particle. The operation is repeated until each particle 

obtains the most optimal solution or the operation has 

reached the maximum iteration. There is also a research [25] 

which approaches the adjustment of particle speeds using 
Swap Sequence (SS) to achieve the better solutions.   

The topology and connection among the particles within 

the PSO algorithm allow particles to share data according to 

the topography pattern. This causes each particle to move to 

a more suitable position by employing the data together 

among the best particles at each iteration within the 

neighborhood particles. The topologies [26] are as follows: 

1. GBest: is the topology of total relative particles. 

Therefore, each particle has the number neighbors 

each particle has which is CP -1, having CP as the 

total number of particles as shown in Fig. 1(a). 

2.  Bidirectional Ring: is the topology of a ring with 

each particle having two neighboring particles: Pi-1
 

and Pi+1 when i is the current particle as shown in Fig. 

1(b). 

3. Random: is the random topology of non-structured 

relative particles as each particle chooses the 

neighbors by random and defines the number of 

neighbors Cn and 0 < Cn<= CP -1; particle as shown 

in Fig. 1(c). 

4. Von Neumann: is the squared topology having the 

relative particles in a lattice structure. Each particle 

has four neighboring particles, consisting of: left Pi-1 

particle, right Pi+1 particle, above Ps
i-1 

particle, and 

below Ps
i+1 

particle, as shown in Fig 1(d). 

 

C. Fitness Function for Accuracy Measurement 

The fitness function is run to consider and find the 

appropriate subsequences (appropriate motif sequences) that 

have the strongest solution. The factors used to calculate the 

fitness score of the particles or results of the motif consist 

of: equation (1) Consensus scoring (CS) [21] and equation 

(2) Information content (IC) [27]. CS is used to  calculate 

the frequency of alphabetic patterns „A‟, „C‟, „G‟ and „T‟ in 

the results. This variable will not consider the frequency of 

other alphabets not involved in the motif sequences 

(background) as shown in Fig. 2. It is possible that high 

scores from CS can be attributed to background levels that 

are not accounted for in the score. 

 

          

   (1) 

 

 

 b refers to all possible alphabets. 

 w is the length of motif sequence. 

𝐶𝑆 = 2 − (1/𝑊)  𝑝𝑏𝑖𝑙𝑜𝑔2
𝑏=*𝐴,𝐶,𝐺,𝑇+

(𝑝𝑏𝑖)

𝑊

𝑖=1
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 pbi is the frequency of alphabet b. 

 

Equation (2) Information Content (IC) is the variable 

used in calculating the similarity value of the alphabetic 

patterns between the results of each motif sequence. This 

variable will consider the frequency of other alphabets not 

involved in the results of motif sequences (background) as 

well. 

 

              

   (2) 

 

 

 b refers to all possible alphabets.  

 fb
 
is the frequency of alphabet b in any motif 

sequence. 

 pb is the frequency of alphabet b which is not in the 

results of motif sequences (background).  

 

The best particle from all iterations is pbest and gbest is the 

best particle in the neighborhood from each iteration. pbest 

and gbest are the center in which the particle‟s neighborhood 

are required to move along, at different speeds depending on 

the distance of each particle relative to pbest and gbest. 

Considering equation (3), as the positions of particle pi 

which is distance from particle pbest and particle gbest 

increase, particle speed will increase. On the contrary,  pi 

speed decreases the more near it draws to particles pbest and 

gbest. 

 

vi+1= wi.vi + c1 yi (xPbest 
i
- xPi)+ c2 zi (xGbest

 i
- xi)     (3) 

 

xi+1= xi +vi+1                   (4) 

 

The variables in the equations (3), (4) are as follows: 

 wi is the internal factor influencing the speed of 

particle pi in the next generation vi+1. 

 c1 ,c2 is the value gained at random being from 0 to 

1. 

 xPbest
i
 is the best position from the previous 

functional round. 

 xGbest
i
 is the best position from the group at each 

iteration with the definition as follows: 

 

 xGbest
i
 = arg min f (x∗) = {x∗ ∈ P : f (x∗) <= f 

(x),∀x∈I} 

 

 yi and zi is the parameter influencing the speed of 

particle pi. 

 vi is the velocity at each iteration. 

 xPi is the position of particle pi at each iteration. 

 

III. PROPOSED PRINCIPLES AND CONCEPTS  

The Nexus algorithm, which is a pre-process newly 

invented, can be applied to the PSO algorithm to increase 

the effectiveness in detecting TFBSs by reducing the chance 

of adhering to local optimums. The Nexus algorithm is able 

to reduce the problem space, which reduces the number of 

all possible subsequences, while still maintaining accurate 

results. 

The Nexus algorithm consists of: grouping which will be 

stated descriptively in Section B; connection between the 

particles which will be stated descriptively in Section C; and 

the selection which will be stated descriptively in Section D.  

 

A. Indication of Variables 

In this research, all input sequences are defined as S = {S1, 

S2, …, Sn} and n is the number of input sequences. Each 

sequence of Si has the equal length L. Each subsequence in 

the input sequences S has equal length w. Any non-selected 

area is called background as shown in Fig. 2. The members 

of motif sequences, which are TFBSs CoM = {MS
1
, MS

2
 ,…, 

MS
n-1

, MS
n
}. The members of alphabet or nucleotides b = 

{„A‟, „C‟, „G‟, „T‟}. All subsequences in each input 

sequence Si = {M1, M2,…, ML-w-1, ML-w, ML-w+1}. Therefore, 

the total number of subsequences in the genome sequence is 

(L-w+1)*S 

 

B. Grouping  

This method uses a grouping procedure, which is the 

arrangement of subsequence into 4 groups following the 

number of members of Ns consisting of Group A, Group C, 

Group G, and Group T. Measuring counts the number of 

alphabets in each subsequence MS
ij
 from the total number of 

subsequences when any MS
ij
 has the maximum frequency of 

alphabet b MAX(b) having b   Ns. Therefore MS
ij

 is classified 

into Group(b). In the case that any MS
ij
 subsequence has the 

maximum frequency of alphabet b > 1, the subsequence 

MS
ij
can be grouped into more than one group according to 

the maximum number of alphabet b as shown Table I. Table 

I shows grouping of subsequences with a total of 4 input 

 
Fig. 1. Network pattern of Particle Swarm Optimization (PSO), Fig. (a) GBest. 

(b) Bidirectional Ring (c) Random and (d) Von Neumann. 
   

Fig. 2. Motif and background. 

 

𝐼𝐶 =   𝑓𝑏𝑙𝑜𝑔2 (𝑓𝑏/𝑝𝑏) 
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sequences (Sn=4) having a total of possible MS
ij
 subsequences 

in the 8 input sequences. It can be noted the 1
st
 sequence (S1) 

is defined for more than one group because the maximum 

frequency of that subsequence matches more than one 

alphabet. Other examples include: the 1
st
 subsequence 

(MS
11

), the 3
rd

 subsequence (MS
13

), and the 5
th

 subsequence 

(MS
15

), etc. 

 

C. Connection 

The creation of relations starts by taking all possible 

subsequences Mij in the input sequence i to create relations 

with possible subsequences in the input sequence i+1 

considering only subsequences in the same group (1< = i <= 

n-1 where n is the total number of input sequences). 

Therefore, the occurring pattern of relations between input 

sequence i and input sequence i+1 is as follows: 

 

([M(A)ij⋈M(A)i+1j],[M(C)ij⋈M(C)i+1j],[M(G)ij⋈M(G)i+1j],[M

(T)ij⋈ M(T)i+1j])  

 

⋈ is defined to be the related pairs of the subsequences in 

the input sequence Si and Si+1. The related pairs of the 

subsequences in the input sequence Si and each input 

sequence Si+1 will define the CS value. The data in Table II 

shows an example of related pairs calculated as equation of 

CS as shown in equation (1). 

 

D. Selection 

The selection of related pairs is the last process of the 

Nexus algorithm, where the best related pairs created in the 

connection process are selected. To select related pairs, the 

two input sequences with the highest CS value are selected. 

 

[Top2{M(A)ij⋈M(A)i+1j},Top2{M(C)ij⋈M(C)i+1j}, 

Top2{M(G)ij⋈ M(G)i+1j},Top2{M(T)ij⋈ M(T)i+1j}] 

 

The example in Table III shows the related pairs being 

selected from the subsequence Mij and subsequence Mi+1j 

being in the same group. The data in this table is selected 

from the data in Table II.  This process is intended to reduce 

the problem of local optimums from the random PSO 

process.  

 

E. Particles Initialization 

The process of defining particles in the NexusPSO is 

through the creation of particle Pi in the swarm. Each 

particle Pi consists of subsequence Mij  (defining i and j as 

any input sequence and subsequence, respectively) from 

each input sequence Si. The condition allows one 

subsequence per input sequence. This research defines the 

first input sequence S1 to be the data sequence defining the 

first motif of each particle having S1 ={ M11, M12,…,M1L-w-1, 

M1L-w, M1L-w+1} where particle Pi(M
1
) = M1j. Pi(M

1
) is the first 

subsequence of the particle (initial subsequence) defining 

each particle Pi to select the subsequence from the next 

input sequence until the last data sequence is determined. 

Subsequences with the highest CS score are selected from 

the related pairs resulting in Pi= (Pi(M
1
) , Pi(M

2
).., Pi(M

n-1
) , 

Pi(M
n
)), where n is the total number of input data. The 

patterns of particle Pi in each group have created the related 

pairs as follows: 

P(A) i  any particle in group „A‟ 

[Top1{M(A)1j        ⋈(M(A) 2j
Top1

,M(A) 2j
Top2

 ) }  

⋈ Top1{ M(A) 2j
Op
⋈(M(A) 3j

Top1
,M(A) 3j

Top2
 ) } 

 
⋈ Top1{ M(A) n-1j

Op
 ⋈(M(A) nj

Top1
,M(A)nj

Top2
) }] 

 

P(C) i  any particle in group „C‟ 

[Top1{M(C)1j        ⋈(M(C) 2j
Top1

,M(C) 2j
Top2

 ) }  

⋈ Top1{ M(C) 2j
Op
⋈(M(C) 3j

Top1
,M(C) 3j

Top2
 ) } 

 
⋈ Top1{ M(C) n-1j

Op
 ⋈(M(C) nj

Top1
,M(C)nj

Top2
) }] 

 

TABLE I 

EXAMPLE OF INPUT SEQUENCE RESULTS FROM GROUPING   

 

TABLE II  

EXAMPLE OF RELATED PAIRS BETWEEN SUBSEQUENCES IN THE INPUT 

SEQUENCE SI AND SI+1 

 
TABLE III  

EXAMPLE OF RELATED PAIRS SELECTED FROM THE INPUT SEQUENCE SI  

AND SI+1  
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P(G) i  any particle in group „G‟ 

[Top1{M(G)1j        ⋈(M(G) 2j
Top1

,M(G) 2j
Top2

 ) }  

⋈ Top1{ M(G) 2j
Op
⋈(M(G) 3j

Top1
,M(G) 3j

Top2
 ) } 

 
⋈ Top1{ M(G) n-1j

Op
 ⋈(M(G) nj

Top1
,M(G)nj

Top2
) }] 

 

P(T) i  any particle in group „T‟ 

[Top1{M(T)1j        ⋈(M(T) 2j
Top1

,M(T) 2j
Top2

 ) }  

⋈ Top1{ M(T) 2j
Op
⋈(M(T) 3j

Top1
,M(T) 3j

Top2
 ) } 

 
⋈ Top1{ M(T) n-1j

Op
 ⋈(M(T) nj

Top1
,M(T)nj

Top2
) }] 

 

The meanings of symbols and variables are as follows:  

 ⋈ is the relation of pairs in the sequences between 

the input sequence Si with the input sequence Si+1.   

 M(b)ij is a subsequence in the genome defining i 

and j to be any input sequence and any 

subsequence, respectively. The set of b is 

{„A‟,„C‟,„G‟,„T‟}.  

 M(b)ij
Top1

 is a subsequence with the highest CS 

value in relation to subsequence M(b)i-1j.  

 M(b)ij
Top2

 is the subsequence with the second 

highest CS value in relation to subsequence M(b)i-

1j. 

 n is the total number of input sequences. 

 M(b)ij
op 

is the optimal result of subsequences. 

 

The particles of NexusPSO algorithm are defined to have 

the number of particles equal to the total possible 

subsequences of each input sequence Li-w+1 with a size of 

w < Li. 

 

F. Particle’s Movement 

The initial position of the particles is defined in the 

process of initializing particles, as described in Section E. 

The NexusPSO defines the initial velocity of all particles as 

0 and uses the fitness value from equation (5), which is 

discussed in Section G. This is used to calculate the fitness 

value of each particle. The fitness values from every particle 

are then compared to indicate the most suitable particle Pbest 

as shown in Fig. 3(a). The comparison will be conducted by 

Gbest topology, with the topology using data shared among 

all particles, as shown in Fig. 1(a).  

After, the position of each particle within the 

neighborhood is adjusted by applying the data of 

subsequence Mij from the best particle Pbest to replace the 

subsequences of particle‟s neighborhood Pi, as shown in 

Fig. 3(b). Adjusting the position of particles in each 

iteration, results in the particles having continuous 

movement, until each particle obtains the most optimal 

solution or the operation has reached the maximum 

iteration. If the process ceases because the total number of 

iterations was reached, the algorithm will select the particle 

with the highest fitness score from the last iteration. The 

results of the NexusPSO algorithm indicate the position of 

TFBSs in the genome sequences. 

 

G. Fitness Function 

The scale measuring the particles optimal Pbest at each 

iteration ti is the fitness function. The NexusPSO algorithm 

uses equation (5) as the fitness function. Equation (5) 

calculates the Information Content (IC) of the TFBSs as 

shown in Equation (2).   

Equation (5) defines the length of subsequence W. The 

condition is 0 < W <= L-1 and L is the length of the input 

sequence. The possible alphabets are b = {„A‟, „C‟, „G‟, 

„T‟}. The frequency of alphabet b appearing in the result of 

the particle is f 'b calculated from equation (6) and the 

frequency of alphabet b not being in the results of particles 

is p'b calculated from equation (7).  

 

                     

                     (5) 

 

 

 

                        (6) 

 

 

  

                    (7) 

 

 

The symbols and variables are described below:  

 cb is the number of times any alphabet b appears in 

the subsequences within each column.  

 c0b is the number of times any alphabet b appears 

outside the selected subsequences (background). 

 N is the total number of input sequences.  

 S is the total number of alphabets not selected 

within the chosen subsequences.  

 db is the pseudo counts [2]. 

 D is the sum of pseudo counts. 

 

H. Input data Collection and NexusPSO Algorithm 

The Nexus algorithm is the pre-process consisting of: the 

grouping of subsequences (grouping), creation of 

connections between the subsequences (initializing), and the 

process of selecting the most suitable related pairs in the 

first two ranks (selection). This research collects relation 

tables, which consist of: table of input sequences, table of 

 
Fig. 3. Example of adjusting the particle position. (a) represents the 5 
particles in the input sequences. (b) shows the replacements within the 

subsequences. 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐼𝐶

𝑊

𝑖=1

 

𝑓′𝑏 
=

𝑐𝑏 + 𝑑𝑏
𝑁 − 1 + 𝐷

 

𝑝′𝑏 
=
𝑐0𝑏 + 𝑑𝑏

𝑆 + 𝐷
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total possible subsequences, and table of particle data. PSO 

randomly selects subsequences from the Nexus procedure. 

The Pseudocode of the NexusPSO algorithm is as follow: 

 

Algorithm NexusPSO 

Input: w = the length of subsequence, Maximum = number 

of iterations, N = number of input sequences, L = length of 

input sequences, b = {‘A’, ‘C’, ‘G’, ‘T’}. 

Output: the set of subsequences CoM 

1: Nexus process (pre-process)  

1.1: for i = 1 to N do    

1.2:        for j = 1 to Li-w+1 do  

1.3:         grouping M[i][j]; 

1.4:          connection: M[i][j] and M[i+1][j]; 

  end for i  

   end for i  

 

2. PSO process  

2.1. Initialize particles from best connection pair, start from 

first of sequences. 

2.2. Particle movement 

2.3       for k = 1 to Maximum OR not converged do 

2.4            select local best particle; 

2.5            update velocity of particles; 

2.6            update position of particles;  

2.7          if k = 1 or local best > global best then 

                   update global best from local best; 

           end if 
end for k  

 

IV. EXPERIMENT 

A. Dataset and Parameter Settings 

The dataset of genome sequences to be tested for 

efficiency and accuracy of NexusPSO algorithm consists of 

3 groups as follows: 

 Saccharomyces Cerevisiae [28] from the database 

SCPD. The length of input DNA sequences is 550 
nucleotide pairs (550 alphabets) with other 

properties as shown in Table IV. 

 Homo sapiens [29] from the database JASPAR. 

The length of input DNA sequences is 600 
nucleotide pairs (600 alphabets) with other 

properties as shown in Table V. 

 Escherichia coli: E.Coli [27] from the dataset of 

cyclic-AMP receptor protein (CRP) with 

properties as shown in Table VI. The length of 

each input DNA sequence is 105 nucleotide pairs 

(105 alphabets). The length of motif is defined to 

be 22 nucleotides [27]. This genome sequence has 

at least one TFBS sequence in each input DNA 

sequence. Also, these sequences have varied 

nucleotide patterns, which make them a popular 

data set to test the efficiency of detection 

algorithms [3, 5, 8, 11, 18, 22]. 

 

The parameter settings of particles in Nexus PSO algorithm 

are shown in Table VII which are proper data for the tested 

dataset [22].  

 

B. Operation 

This research developed the NexusPSO algorithm using 

the C# language, version 5.0 in the Windows operating 

system. This research also used the SQL Server 2012 

database management system as the design-related database 

in order to store the data of: DNA sequences, data of 

relations between all possible motifs, and the particle data. 

This research employs Weblogo (https:// 

weblogo.berkeley.edu/logo.cgi) to generate consensus 

sequences, which were used to analyze the efficiency of 

results gained from the NexusPSO algorithm. 

 

TABLE VI 

DATA OF TFBSS OF THE DATASET OF ESCHERICHIA COLI

 
 

TABLE VII 
PROPERTIES OF THE PARAMETERS FOR PARTICLES 

 
 

TABLE IV 
PROPERTIES OF THE GENOME SEQUENCES OF SACCHAROMYCES CEREVISIAE  

 

TABLE V 
PROPERTIES OF THE GENOME SEQUENCES OF HOMO SAPIENS 
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C. Experimental Results for Anal yzing the Efficiency 

 The results from consensus sequences using the 

NexusPSO algorithm to detect the motif sequences in the 

genome sequences of Saccharomyces cerevisiae dataset are 

shown in Figures 4 to 8. The consensus sequences results 

for Homo sapiens are shown in Figures 9 to 13. Table IV 

and Table V show the consensus sequences of NexusPSO 

algorithm are identical to the consensus sequences from 

DNA footprinting methods. 

Table VIII shows the representative sequences result of 

NexusPSO, selected by average IC value from all 18 runs, 

compared to the results from the traditional algorithms 

consisting of AlignACE [3], MEME [5], and Gibbs sampler 

[8] to detect the motifs in the genome sequences of 

Escherichia coli. Also, Table VIII compares the positions of 

motif sequences obtained from each algorithm with the 

positions of TFBSs. The Gibb Sampler results reveal 2 motif 

sequences with results more than 20 positions from TFBSs, 

the 5
th

 DNA sequences (ECOYA) and the 17
th

 DNA 

sequences (TRN9CAT). The AlignACE results show there 

 
Fig. 4. Results of CS from the group of DNA sequences GAL4 
 

  

 
Fig. 5. Results of CS from the group of DNA sequences RAP1 

  

 
Fig. 7. Results of CS from the group of DNA sequences MCB 

  

 
Fig. 10. Results of CS from the group of DNA sequences E2F1 
  

 
Fig. 6. Results of CS from the group of DNA sequences REB1 

 

  

 
Fig. 11. Results of CS from the group of DNA sequences FOXD1 

 

 
Fig. 13. Results of CS from the group of DNA sequences RELA 

  

 
Fig. 12. Results of CS from the group of DNA sequences USF1 

  

 
Fig. 9. Results of CS from the group of DNA sequences ELK4 
  

 

 
Fig. 8. Results of CS from the group of DNA sequences PDR3 
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are 2 motif sequences more than 15 positions from the 

TFBSs, the 7
th

 DNA sequence (ECOGALE) and the 17
th

 

DNA sequence (TRN9CAT). Both algorithms do not have 

any resulting motif sequences match TFBSs. Results from 

the MEME algorithm show there are 4 motif sequences 

more than 20 positions from TFBSs and 1 motif sequence 

16 positions from the TFBS, the 5
th

 DNA sequences 

(ECOCYA), the 15
th

 (ECOXUL), the 16
th

 (PBR-P4), the 

17
th

 (TRN9CAT), and the 11
th

 (ECOMALBA2), 

respectively, while 11 motif sequences match the TFBSs. 

According to the data in Table VIII, the motif sequence 

results of the GA [11] and ACRI [21] algorithms for the 17
th

 

DNA sequence (TRN9CAT) are shifted from the TFBS by 

28 and 11 positions respectively. The result of the PSO [30] 

algorithm for the 7
th

 sequence is also shifted from TFBS by 

18 positions. This shows these algorithms cannot detect the 

motif sequences of the 17
th

 and 7th
 DNA sequence 

(TRN9CAT, ECOGALE) accurately. The NexusPSO 

algorithm had the most accurate detection of the motif 

sequence in the 17
th

 DNA sequence (TRN9CAT) with a 

deviation from the TFBS of only 4 positions. Also, 

NexusPSO detected the motif sequences by completely TABLE VIII 

COMPARISON ON THE RESULTS OF TRADITIONAL ALGORITHMS, RELEVANT 

ALGORITHMS, AND NEXUSPSO ALGORITHM 

 

 
 

Fig. 14. Comparison results of IC value among AlignACE, GA, PSO, 

ACRI, and NexusPSO 

 

TABLE IX 
AVERAGE IC VALUES FROM 18 RUNS AMONG THE DIFFERENT ALGORITHMS 

    

TABLE X 
IC VALUES FROM 18 RUNS AMONG THE DIFFERENT ALGORITHMS 

 

 
Fig. 15. The process times of NexusPSO for 18 runs  
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matching the TFBSs for 16 sequences, resulting in the 

NexusPSO algorithm having the highest IC value, as shown 

in Fig. 14.  Table IX shows the average IC values from 18 

runs among the different algorithms including MEME, 

AlignACE, ACRI and NexusPSO. Table X shows the IC 

values of each run. The computational times are between 

980 and 1650 milliseconds as shown in Fig. 15. The 

comparison of t-values among the relevant algorithms 

including NexusPSO is shown in Table XI. Considering t-

test from 18 samples, the degree of freedom is 18+18-2 = 34 

and let the significance level is α = 0.05 (confidence level is 

95%), so that t0.95(34) = 1.691. Comparing to t-value of 

NexusPSO from Table XI, we found that t-value of 

NexusPSO is higher than t0.95(34). 
 

V. CONCLUSIONS 

There are many algorithms available for detecting TFBSs, 

many of which were tested in this study. The Nexus 

procedure is designed to manage the problem space to 

become smaller, helping the random process of the 

algorithm avoid local optimums results.  

The data from this study shows that NexusPSO can detect 

TFBSs more efficiently and accurately than other available 

methods. According to the samples in this study, NexusPSO 

have the highest IC at 11.029 scoring better than previously 

recorded results for PSO [30], GA [11] and ACRI [21] 

which had IC values of 10.95, 10.876, and 10.548, 

respectively. Considering t-test, it indicates that there are 

different significances between the information content by 

NexusPSO and other algorithms. Furthermore, the results of 

consensus sequences of NexusPSO show efficient results 

when compared to the results from DNA footprinting 

method. 

However, the NexusPSO algorithm still needs to develop 

the competence to detect TFBSs with multiple motifs in 

each input sequence. 
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